淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1108200917023000
中文論文名稱 地表參數化對中尺度氣象模擬及空氣品質模擬的影響
英文論文名稱 The effects of land surface representation on the simulations of mesoscale meteorological and photochemical air quality model
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系博士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 蔡哲慧
研究生英文姓名 Che-Hui Tsai
電子信箱 kyl@mail.tku.edu.tw
學號 893330059
學位類別 博士
語文別 中文
第二語文別 中文
口試日期 2009-06-10
論文頁數 148頁
口試委員 指導教授-江旭程
委員-吳清吉
委員-張能復
委員-盧博堅
委員-陳俊成
中文關鍵字 土地使用  土地覆蓋  都市熱島效應  臭氧預報  數值模擬 
英文關鍵字 land use  land cover  urban heat island  ozone forecast  numerical simulation 
學科別分類
中文摘要 臭氧事件日常發生於大尺度風速微弱、日照強烈時,在此氣象條件下,土地使用及覆蓋(Land use/ Land cover, LULC)資料庫和地表參數化對氣象模擬有顯著的影響。為了改進臭氧預測結果,氣象模式需要更好的地面表示方式。本研究目的是針對台灣臭氧事件日進行靈敏度分析,以了解LULC資料和地表參數化對氣象模擬和空氣污染物空間分佈的影響。

本研究選擇發生於2003年6月4日至6日的臭氧事件日進行探討,使用RAMS和CAM x模式進行模擬,並將都市能量模式(Town Energy Balance Model)併入RAMS模式,進行三個案例模擬:案例一使用AVHRR資料庫並關閉TEB模組;案例二使用MODIS資料庫並關閉TEB模組。此兩案例都以LEAF3模組計算都市影響。案例三使用MODIS資料庫,都市地區計算啟動TEB模組。

氣象模擬結果和8個地面氣象測站觀測資料進行驗證評估,結果顯示案例一模擬風速高估,地面溫度低估。MODIS案例風速模擬結果和觀測值接近;白天地面溫度模擬值已有改善,但夜晚地面溫度仍低估。案例三風速和地面溫度模擬值都有改善。整體評估後,啟動TEB模組可得到比較好的氣象模擬,氣象模擬結果亦發現都市的存在,使地面溫度上升1~2℃,風速降低1~2m/s。夜晚都市熱島效應的強度比白天大;都市的存在使對流、大氣亂流強度以及混合層高度增加。

將三個案例氣象模擬結果輸入空氣品質模式進行模擬,並和環保署空氣品質監測站觀測值進行驗證評估。模擬結果相當合理,仍以TEB案例表現最好。不論白天或夜晚,都市對臭氧、NO2濃度的空間和時間分佈都有重要的影響。

本研究亦針對2003年5月30日至31日高臭氧事件進行模擬,評估RAMS-TEB-CAMx模式預報臭氧的能力。模擬結果和臭氧、NO2觀測值進行驗證,結果尚稱合理。台灣北部地區模擬結果相當良好,但台灣中南部地區臭氧模擬值低估,NO2模擬值高估。海岸附近,大型點污染源會因NOx滴定作用而降低臭氧濃度,靠近山區臭氧的尖峰值偏低。模擬結果顯示模式有預報的能力,然而準確性不高,可能因預測風向偏差造成。
英文摘要 It is well known that ozone episodes occur under weak synoptic conditions with low wind speed and strong sunlight. During these periods, the Land use/ Land cover (LULC) dataset and surface parameterization scheme have significant influence on the meteorological simulation. To improve the performances of numerical ozone forecast, a better representation of land surface in the meteorological model is needed. The aims of this study is to carried out a numerical study to investigate the influence of LULC data and surface parameterization on the results of meteorological simulation and the calculated spatial distributions of atmospheric pollutants during ozone episodes in Taiwan.

An ozone episode occurred during the period June 4-6, 2003, was simulated using the RAMS and CAMx model. The town energy balance (TEB) urban canopy model was coupled to RAMS. Three numerical simulations were performed. The first simulation used AVHRR dataset and the TEB computation was turn off. The second simulation used MODIS dataset and the TEB computation was also turn off. The urban effects were represented by LEAF3 scheme for the first two runs. The third simulation used MODIS data and the TEB computation was turn on. The wind speeds computed by the first case were overestimated and the surface temperatures were underestimated when compared with the observations obtained from eight urban surface weather stations. In MODIS case, the surface wind speeds have better agreement when compared with observations. The results of surface temperature during day time were improved; however, they still underestimated during night time. As for the third case, the results for wind speeds and surface temperature were improved. Overall the meteorological simulations are superior when TEB is used. Numerical results indicate that urban can increases the surface temperature by 1~2 ℃ and decreases the wind speed by 1~2 m/s. The simulation indicates that the urban heat island effect is stronger at night than daytime. Urban can enhance the convection and atmospheric turbulence and increase mixing height.

The results of three meteorological simulations were used to drive the air quality model. The calculated concentrations of air pollutants were evaluated against the observations obtained by Taiwan EPA air quality monitoring network. Most of the results are very reasonable and the simulation using TEB is superior to the other cases. The present study shows that both nocturnal and diurnal urban effects have an important impact on the temporal and spatial distributions of ozone and nitrogen dioxide.

This study also examined the capability of applying RAMS-TEB-CAMx model to ozone forecasting during a 3-day episode of 29–31 May 2003. The results are fair when compared with observed O3 and NO2 concentrations. The performance of forecast in northern Taiwan is pretty good. However, the results of O3 concentrations were underestimated and NO2 concentrations were overestimated in middle and southern Taiwan. The large point sources located in the coastal zone will reduce the ozone concentration because of NOx titration effect. The peak ozone concentrations near the mountain range were underestimated. A possible reason of this imprecision is the error of wind direction caused by the complicated wind system in the simulation domain. Although the performance of this ozone forecast system is reasonable, there are numerous opportunities for improvements in the future.
論文目次 目 次
目 次 I
圖 次 III
表 次 VI
英文簡稱對照表 VII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 中尺度氣象模式中地面表示對模擬結果之影響 5
2.1 前言 5
2.2 LULC資料庫 8
2.3 人為廢熱 12
2.4 模式介紹 16
2.5 地表參數化模組 18
2.6 模擬案例 20
2.6.1 綜觀天氣 20
2.6.2 模式驗證 22
2.7 結果討論 23
2.7.1 4km網格模擬結果和地面測站比較驗證 23
2.7.2 1km網格模擬結果和地面測站比較驗證 31
2.7.3 地面溫度分佈比較 36
2.7.4 熱能量平衡 37
2.7.6 地面風場和溫度分佈 44
2.7.7 垂直剖面位溫和風場 47
2.8 結論與建議 56
第三章 地面表示對光化學空氣品質模擬結果之影響 57
3.1 前言 57
3.2 背景說明 58
3.3 空氣品質模式設定 59
3.4 空氣品質模擬驗證評估 60
3.5 結果討論 61
3.5.1 4km網格模擬結果和地面觀測值比較 61
3.5.2 1km網格模擬結果和地面觀測值比較 72
3.5.3 都市對地面臭氧濃度分佈影響 83
3.5.4 都市對臭氧垂直濃度的影響 86
3.6 結論 91
第四章 都市參數化模式模擬台灣臭氧預測 93
4.1 前言 93
4.2 臭氧事件日背景描述 94
4.3 模式設定 96
4.4 氣象模擬結果 96
4.4.1 氣象模擬結果和地面觀測資料比較 96
4.4.2 水平風場和溫度 101
4.4.3 垂直剖面溫度和速度分佈 105
4.5 光化學模擬結果 110
4.5.1 模擬結果和地面觀測值比較驗證 110
4.5.2 地面臭氧濃度分佈 118
4.5.3 污染物垂直濃度分佈圖 121
4.6 結論與建議 126
第五章 結論與建議 127
參考文獻 130
附錄A RAMS制御方程式 137
附錄B LEAF-3模組 139
附錄C TEB模組 143

圖 次
圖2- 1  AVHRR和MODIS土地利用型態分佈圖 9
圖2- 2  AVHRR和MODIS與人口分佈比較圖 11
圖2- 3  AVHRR和MODIS與建築物和道路密度大於30%比較圖 11
圖2- 4  AVHRR和MODIS與建築物和道路密度大於15%比較圖 12
圖2- 5  台灣地區固定污染源分佈圖(單位:W/m2) 14
圖2- 6  台灣地區人為廢熱分佈圖(單位:W/m2) 15
圖2- 7  RAMS模式水平網格結構 17
圖2- 8  2003年6月4日上午8點天氣圖 21
圖2- 9  2003年6月5日下午2點天氣圖 21
圖2- 10 2003年6月6日下午2點天氣圖 22
圖2- 11 2003年6月4至6日觀測與模擬溫度值時序列圖 25
圖2- 12 2003年6月4至6日觀測與模擬風速值時序列圖 28
圖2- 13 2003年6月4至6日觀測與模擬露點溫度時序列圖 30
圖2- 14 2003年6月4至6日(台南、高雄測站)溫度時序列圖 32
圖2- 15 2003年6月4至6日(台南、高雄測站)風速時序列圖 33
圖2- 16 2003年6月4至6日(台南、高雄測站)露點溫度時序列圖 34
圖2- 17 4 km網格地表溫度差異圖 38
圖2- 18 1 km網格地表溫度差異圖 39
圖2- 19 高雄、台南地區表面能量平衡圖(AVHRR案例) 40
圖2- 20 高雄、台南地區表面能量平衡圖(MODIS案例) 41
圖2- 21 高雄、台南地區表面能量平衡圖(TEB案例) 41
圖2- 22 高雄和屏東位溫剖面圖 43
圖2- 23 台南和永康位溫剖面圖 43
圖2- 24 4 km網格地表溫度及風場圖 45
圖2- 25 1 km網格地表溫度及風場圖 46
圖2- 26 2003年6月5日高雄地區混合層高度、位溫、速度剖面圖 48
圖2- 27 2003年6月5日高雄地區混合層高度、位溫、速度剖面圖(續) 49
圖2- 28 2003年6月5日台南地區混合層高度、位溫、速度剖面圖 50
圖2- 29 2003年6月5日台南地區混合層高度、位溫、速度剖面圖(續) 51
圖2- 30 2003年6月5日高雄地區垂直速度、位溫剖面圖 52
圖2- 31 2003年6月5日高雄地區垂直速度、位溫剖面圖(續) 53
圖2- 32 2003年6月5日台南地區垂直速度、位溫剖面圖 54
圖2- 33 2003年6月5日台南地區垂直速度、位溫剖面圖(續) 55

圖3- 1  臭氧小時濃度模擬值和觀測值時序列比較圖(4km 網格) 63
圖3- 2  臭氧小時濃度模擬值和觀測值時序列比較圖(4km 網格)(續) 64
圖3- 3  NO2小時濃度模擬值和觀測值時序列比較圖(4km 網格) 67
圖3- 4  NO2小時濃度模擬值和觀測值時序列比較圖(4km 網格)(續) 68
圖3- 5  8小時臭氧模擬值和觀測值時序列比較圖(4km 網格) 70
圖3- 6  8小時臭氧模擬值和觀測值時序列比較圖(4km 網格)(續) 71
圖3- 7  小時臭氧模擬值和觀測值時序列比較圖(1km 網格) 73
圖3- 8  小時臭氧模擬值和觀測值時序列比較圖(1km 網格)(續) 74
圖3- 9  NO2模擬值和觀測值時序列比較圖(1km 網格) 77
圖3- 10 NO2模擬值和觀測值時序列比較圖(1km 網格)(續) 78
圖3- 11 8小時臭氧模擬值和觀測值時序列比較圖(1km 網格) 80
圖3- 12 8小時臭氧值和觀測值時序列比較圖(1km 網格)(續) 81
圖3- 13 2003年6月5日至6日臭氧濃度分佈圖(4km網格) 84
圖3- 14 2003年6月5日至6日臭氧濃度分佈圖(1km網格) 85
圖3- 15 2003年6月5日至6日高雄市臭氧垂直濃度圖(AVHRR、TEB案例) 87
圖3- 16 2003年6月5日至6日高雄市NO2垂直濃度圖(AVHRR、TEB案例) 88
圖3- 17 2003年6月5日至6日台南市臭氧垂直濃度圖(AVHRR、TEB案例) 89
圖3- 18 2003年6月5日至6日台南市NO2垂直濃度圖(AVHRR、TEB案例) 90

圖4- 1  2003年5月29日下午2點天氣圖 95
圖4- 2  2003年5月30日下午2點天氣圖 95
圖4- 3  2003年5月31日下午2點天氣圖 96
圖4- 4  2003年5月29至31日觀測與模擬溫度值時序列圖 98
圖4- 5  2003年5月29至31日觀測與模擬風速值時序列圖 100
圖4- 6  2003年5月29至31日觀測與模擬露點溫度時序列圖 102
圖4- 7  水平風場和溫度圖(4km網格) 103
圖4- 8  水平風場和溫度圖(1km網格) 104
圖4- 9  2003年5月30日台南地區混合層高度、位溫、速度剖面圖 106
圖4- 10 2003年5月30日高雄地區混合層高度、位溫、速度剖面圖 107
圖4- 11 2003年5月30日台南地區垂直速度、位溫剖面圖 108
圖4- 12 2003年5月30日高雄地區垂直速度、位溫剖面圖 109
圖4- 13 臭氧小時濃度模擬值和觀測值時序列比較圖 111
圖4- 14 臭氧小時濃度模擬值和觀測值時序列比較圖(續) 112
圖4- 15 NO2小時濃度模擬值和觀測值時序列比較圖 113
圖4- 16 NO2小時濃度模擬值和觀測值時序列比較圖(續) 114
圖4- 17 8小時臭氧濃度模擬值和觀測值時序列比較圖 116
圖4- 18 8小時臭氧濃度模擬值和觀測值時序列比較圖(續) 117
圖4- 19 2003年5月30日至31日臭氧濃度分佈圖(4km網格) 119
圖4- 20 2003年5月30日至31日臭氧濃度分佈圖(1km網格) 120
圖4- 21 2003年5月30日至31日高雄市臭氧垂直濃度圖 122
圖4- 22 2003年5月30日至31日高雄市NO2垂直濃度圖 123
圖4- 23 2003年5月30日至31日台南市臭氧垂直濃度圖 124
圖4- 24 2003年5月30日至31日台南市NO2垂直濃度圖 125

表 次
表2- 1  AVHRR和MODIS都市定義比較表 10
表2- 2  各車種油耗效率(黃,2005) 13
表2- 3  模式結構設定表 16
表2- 4  RAMS網格結構 17
表2- 5  RAMS輸入資料和來源 18
表2- 6  TEB都市特性參數 20
表2- 7  評估氣象模式統計參考值 23
表2- 8  2003年6月4至6日(溫度、風速和露點溫度)觀測與模擬值統計表 26
表2- 9  2003年6月4至6日(台南、高雄測站)1km網格統計表 35

表3- 1  模擬期間臭氧監測站濃度超過120ppb的測站 58
表3- 2  CAMx所用的物理模式和數值方法 60
表3- 3  空氣品質監測站 62
表3- 4  最大小時臭氧濃度模擬結果之定量分析(4 km網格) 65
表3- 5  小時NO2濃度模擬結果之定量分析(4 km網格) 69
表3- 6  8小時臭氧濃度模擬結果之定量分析(4 km網格) 69
表3- 7  臭氧濃度模擬結果之定量分析(1 km網格和4km網格) 75
表3- 8  NO2濃度模擬結果之定量分析(1 km網格和4km網格) 79
表3- 9  8小時臭氧濃度模擬結果之定量分析(1 km網格和4km網格) 82

表4- 1  2003年5月29至31日臭氧濃度超過120ppb測站 94
表4- 2  2003年5月29至31日(溫度、風速和露點溫度)觀測與模擬值統計表 99
表4- 3  模擬結果之定量分析 115
參考文獻 Avissar R and Pielke RA, 1989: A Parameterization of Heterogeneous Land Surfaces for Atmospheric Numerical Models and Its Impact on Regional Meteorology. Monthly Weather Review. 117(10):2113–2136.
Baik JJ, et al., 2001: Dry and moist convection forced by an urban heat island. Journal of Applied Meteorology. 40(8):1462-1475.
Best MJ, 1998: Representing urban areas in numerical weather prediction models. Preprints, Second Urban Environment Symp., Albuquerque, NM, Amer. Meteor. Soc.:141-151.
Bornstein R and Lin Q, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmospheric Environment. 34(3):507-516.
BRAMS, 2009:, http://brams.cptec.inpe.br/
Chandrasekar A, et al., 2003: A comparison study of RAMS simulations with aircraft, wind profiler, lidar, tethered balloon and RASS data over Philadelphia during a 1999 summer episode. Atmospheric Environment. 37(35):4973-4984.
Chen C and Cotton WR, 1983: A one-dimensional simulation fo the stratocumulus-capped mixed layer. Boundary-Layer Meteorol. 25(289-321).
Chen K-j, et al., 2007: Meteorologically Adjusted Ground Level Ozone Trends in Southern Taiwan. Environmental Monitoring and Assessment. 129:339-347.
Chenevez J and Jensen CO, 2001: Operational ozone forecasts for the region of Copenhagen by the Danish Meteorological Institute. Atmospheric Environment. 35(27):4567-4580.
Cheng WL, 2001: Synoptic weather patterns and their relationship to high ozone concentrations in the Taichung Basin. Atmospheric Environment. 35(29):4971-4994.
Chou CC-K, et al., 2006: The trend of surface ozone in Taipei, Taiwan, and its causes: implications for ozone control strategies. Atmospheric Environment. 40:3898-3908.
CHRONOS, 2004: CHRONOS Model Forecasts, http://gfx.weatheroffice.ec.gc.ca/chronos/index_e.html
Clark TL and Farley RD, 1984: Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci. 41:329-350.
Cotton WR, et al., 2003: RAMS 2001: Current status and future directions. Meteorology and Atmospheric Physics. 82(1-4):5-29.
Davies HC, 1983: Limitations of some common lateral bounary shcemes used in regional NWP models. Monthly Weather Review. 111:1002-1012.
De Freitas ED, et al., 2005: A simple photochemical module implemented in RAMS for tropospheric ozone concentration forecast in the metropolitan area of Sao Paulo, Brazil: Coupling and validation. Atmospheric Environment. 39(34):6352-6361.
Dickinson RE, 1984: Modelling evapotranspiration for three-dimensional global climate models. Climate Processes and Climate Sensitivity, Geophys. Monogr. 29:58–72.
Dupont E, et al., 1999: Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment. Atmospheric Environment. 33(6):979-994.
Emery C and Edward T, 2001: Enhanced Meteorological Modeling and Performanc Evaluation for Two Texas Ozone Episodesprepared for the Texas Near Near Non-Attainment Areas through the Alamo Area Council of Government
Environ International Corporation, 2000: Comprehensive air quality model with extensions (CAMx)-users guide. Report # 415.899.0700, Environ International Corporation. Novato. CA, 97pp.
Environ International Corporation, 2006: User's Guide Comprehensive Air Quality Model with Extension (CAMx) Version 4.40. ENVIRON International Coporation, Novato, California, available at: http://www.camx.com
Estournel C, et al., 1983: OBSERVATIONS AND MODELING OF DOWNWARD RADIATIVE FLUXES (SOLAR AND INFRARED) IN URBAN/RURAL AREAS. Journal of Climate and Applied Meteorology. 22(1):134-142.
Foy Bd, et al., 2006: Satellite-derived land surface parameters for mesoscale modelling of the Mexico City basin. Atmospheric Chemistry and Physics 6(5):1315-1330.
Freitas ED, et al., 2007: Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of Sa?o Paulo, Brazil. Boundary-Layer Meteorology. 122(1):43-65.
Grell GA, et al., 2005: Fully coupled "online" chemistry within the WRF model. Atmospheric Environment. 39(37):6957-6975.
Harker J and Gibson P, 1995: Heat-stroke: a review of rapid cooling techniques. Intensive and Critical Care Nursing. 11(4):198-202.
Klemp JB and Wilhelmson RB, 1978: The simulation of three dimensional convective storm dynamics. J. Atmos. Sci. 35:1070–1096.
Kusaka H and Kimura F, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteorol. 43(12):1899-1910.
Lee TJ, 1992: The impact of vegetation on the atmospheric boundary layer and convective storms, Colorado State University, PhD dissertation
Lei W, et al., 2007: Characterizing ozone production in the Mexico City Metropolitan Area: A case study using a chemical transport model. Atmospheric Chemistry and Physics. 7(5):1347-1366.
Lei W, et al., 2008: Characterizing ozone production and response under different meteorological conditions in Mexico City. Atmospheric Chemistry and Physics Discussions. 8(3):12053-12079.
Lin CY, et al., 2008: Urban heat island effect and its impact on boundary layer development and land-sea circulation over northern Taiwan. Atmospheric Environment. 42(22):5635-5649.
Louis JF, 1979: A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorology. 17:187-202.
Mahrer Y and Pielke RA, 1977: A numerical study of the airflow over irregular terrain. Beitrage zur Physik der Atmosphare. 50:98-113.
Martilli A, et al., 2002: An urban surface exchange parameterisation for mesoscale models. Boundary-Layer Meteorology. 104(2):261-304.
Mascart P, et al., 1995: A Modified Parameterization of Flux-Profile Relationship in the Surface Layer Using Different Roughness Length Values for Heat and Momentum. Boundary-Layer Meteorol. 72:331-344.
Masson V, 2000: A physically-based scheme for the urban energy budget in atmospheric models. Boundary-Layer Meteorology. 94(3):357-397.
McCumber MC and Pielke RA, 1981: Simulation of the Effects of Surface Fluxes of Heat and Moisture in a Mesoscale Numerical Model 1. Soil Layer. J. Geophys. Res. 86(C10):9929–9938.
McHenry JN, et al., 2004: A real-time eulerian photochemical model forecast system. Bulletin of the American Meteorological Society. 85(4):525-548.
Mellor GL and Yamada T, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31:1791-1806.
Mellor GL and Yamada T, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20:851-875.
Mendoza-Dominguez A and Russell AG, 2001: Emission strength validation using four-dimensional data assimilation: Application to primary aerosol and precursors to ozone and secondary aerosol. Journal of the Air and Waste Management Association. 51(11):1538-1550.
Mesinger F and Arakawa A, 1976: Numerical methods used in atmospheric models. GARP Publication Series N, WMO/ICSU Joint Organizing Committee, 64pp.
MM5, 2008:, http://www.mmm.ucar.edu/mm5/
MODIS12Q1, 2009:, http://duckwater.bu.edu/lc/mod12q1.html
Oke TR, 1982: The energetic basis of the urban heat island (Symons Memorial Lecture, 20 May 1980). Quarterly Journal, Royal Meteorological Society. 108(455):1-24.
Oke TR, 1987: Boundary Layer Chimates. Methen, London.
Oke TR and East C, 1971: The urban boundary layer in Montreal. Boundary-Layer Meteorology. 1(4):411-437.
Oke TR, et al., 1999: The energy balance of central Mexico City during the dry season. Atmospheric Environment. 33(24-25):3919-3930.
Pielke RA and Uliasz M, 1998: Use of meteorological models as input to regional and mesoscale air quality models--limitations and strengths. Atmospheric Environment. 32(8):1455-1466.
Pielke Sr RA, et al., 1998: Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Global Change Biology. 4(5):461-475.
RAMS, 2009:, http://www.atmet.com/
Rowley FB, et al., 1930: Surface Conductances as Affected by Air Velocity, Temperature and Character of Surface. ASHRAE Trans. 36:429–446.
Rowley FB and Eckley WA, 1932: Surface Coefficients as Affected by Wind Direction. ASHRAE Trans. 38:33–46.
Russell A and Dennis R, 2000: NARSTO critical review of photochemical models and modeling. Atmospheric Environment. 34(12-14):2283-2324.
Sarrat C, et al., 2006: Impact of urban heat island on regional atmospheric pollution. Atmospheric Environment. 40(10):1743-1758.
Schneider A, et al., 2003: Mapping Urban Areas by Fusing Multiple Sources of Coarse Resolution Remotely Sensed Data. Photogrammetric Engineering and Remote Sensing. 69(12):1377-1386.
Seaman NL, 2000: Meteorological modeling for air-quality assessments. Atmospheric Environment. 34(12-14):2231-2259.
Seinfeld JH, 1988: Ozone Air Quality Models: A Critical Review. Journal of Air Pollution Control Association. 38:616–645.
Seinfeld JH and Pandis SN, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
Smagorinsky J, 1963: General circulation experiments with the primitive equations. Part I, The basic experiment. Monthly Weather Review. 91:99-164.
Sturrock N and Cole R, 1977: The Convective Heat Exchange at the External Surface of Buildings. Building Environ. 12:207-214.
Taha H, 1996: Modeling impacts of increased urban vegetation on ozone air quality in the South Coast Air Basin. Atmospheric Environment. 30(20):3423-3430.
Taha H, 1997: Modeling the impacts of large-scale albedo changes on ozone air quality in the South Coast Air Basin. Atmospheric Environment. 31(11):1667-1676.
Taha H, 2008: Meso-urban meteorological and photochemical modeling of heat island mitigation. Atmospheric Environment. 42(38):8795-8809.
Tremback CJ, 1990: Numerical simulation of a mesoscale convective complex : model development and numerical results. Ph.D. dissertation ASPN, Colorado State University,Dept. of Atmospheric Science,Fort Collins, CO80523
Tremback CJ and Kessler R, 1985: A Surface Temperature and Moisture Parameterisation for use in Mesoscale Numerical Models. Paper presented at 7th Conference on Numerical Weather Prediction, Montreal, Quebec, Canada, June.
Tripoli GJ, 1992: An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone. Meteorology and Atmospheric Physics. Springer-Verlag.
Tripoli GJ and Cotton WR, 1982: The Colorado State University three-dimensional cloud/mesoscal model -1982. Part I:General theoretical framework and sensitivity experiments. J. de Rech. Atmos. 16:185-220.
Tsai C-h, et al., 2009: Forecasting of ozone episode days by cost-sensitive neural network methods. Science of the Total Environment. 407:2124-2135.
Tsai C-h, et al., 2006: Long-term simulation of ozone pollution in Taiwan. Paper presented at Proceedings of the Air and Waste Management Association's Annual Conference and Exhibition, New Orelean.
Tsai C-h, et al., 2005: Use of chemical transport model for ozone forecast in Taiwan. Paper presented at 3rd International Symposium on Air Quality Management at Urban, Regional and Global Scales, Istanbul.
USEPA, 1992: User's guide for the urban air shed model. EPA-450/4-90-007(R), Office of Air Quality Planning and Standards, EPA, Research Triangle Park, NC.
USEPA, 1999: Science algorithms of the EPA models-3 community multiscale air quality (CMAQ) modeling system-vols. 1 and 2. EPA-600/R-99/030, Office of Research and Development, EPA, Washington, DC.
USEPA, 2008: Ozone Air Quality Standards, http://epa.gov/groundlevelozone/standards.html
USGS, 2009: Global land Cover Characterization Data Base, http://edc2.usgs.gov/glcc/
Vautard R, et al., 2001: Validation of a hybrid forecasting system for the ozone concentrations over the Paris area. Atmospheric Environment. 35(14):2449-2461.
Walko RL, et al., 2000: Coupled atmosphere-biophysics-hydrology models for environmental modeling. Journal of Applied Meteorology. 39(6):931-944.
Wiernga J, 1993: Representative roughness parameters for homogeneous terrain. Boundary-Layer Meteorology. 63(4):323-363.
WRF2.0, 2004:, http://wrf-model.org/index.php
Yu T-Y and Chang L-FW, 2005: Screening air pollution episodes by principal component analysis Journal of the Chinese Institute of Environmental Engineering. 15(1):57-64.
Yu TY and Chang LFW, 2000: Selection of the scenarios of ozone pollution at southern Taiwan area utilizing principal component analysis. Atmospheric Environment. 34(26):4499-4509.
曹嘉宏, 2007: 台灣土地利用型態對MM5模擬局部環流之影響, 中央大學, 碩士論文
游沛蓁, 2008: 台灣地區人為廢熱對氣象模式模擬之影響, 淡江大學, 碩士論文
黃運貴, 2005: 運輸部門能源消費量及節能措施之研究, 台灣大學, 博士論文
經濟部能源局, 2009a: 98年2月能源統計月報
經濟部能源局, 2009b: 能源平衡表, http://www.moeaec.gov.tw/opengovinfo/Plan/all/energy_balance/main/ch/default.htm
潘雲潔, 2008: 台灣地區不同土地使用形態對氣象模式模擬結果的影響, 淡江大學, 碩士論文
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-08-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-08-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信