淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1107201923411000
中文論文名稱 以自我效能理論探討智慧型手機通訊軟體使用成癮-以通訊軟體LINE為例
英文論文名稱 Using Self-efficacy Theory to Explore Smartphone Addiction of Messaging Application: The LINE case
校院名稱 淡江大學
系所名稱(中) 資訊管理學系碩士在職專班
系所名稱(英) On-the-Job Graduate Program in Advanced Information Management
學年度 107
學期 2
出版年 108
研究生中文姓名 王毅中
研究生英文姓名 Yi-Zhong Wang
學號 706630323
學位類別 碩士
語文別 中文
口試日期 2018-06-01
論文頁數 57頁
口試委員 指導教授-吳錦波
委員-吳錦波
委員-李鴻璋
委員-黃旭立
中文關鍵字 LINE  成癮  自我效能  焦慮  手機黏著度 
英文關鍵字 LINE  Addiction  self-efficacy  Anxiety  Adherence rate of using mobile phone 
學科別分類
中文摘要 從2011年6月,LINE在手機應用程式平台上發布,此通訊軟體讓使用者以更能縮短人與人之間溝通的距離,但也因此減少人與人之間的近距離互動。從LINE一開始定位為通訊軟體後,並一直持續更新並增加更多的服務內容,進而增加使用者的使用意圖。
本研究透過問卷的形式來蒐集資料,問卷對象為LINE使用人員,加入了自我效能理論模式裡的人際自我效能、情感自我效能、LINE自我效能來探討對於使用LINE並造成成癮的影響,並加入調節變數焦慮以及手機黏著度來探討使用LINE造成成癮的行為。
本研究結論成果顯示「自我效能」確實對使用者使用LINE造成成癮有正向影響,但影響使用者最大因素來自於「焦慮」及「手機黏著度」。整體來說「自我效能」調節變數「焦慮」及「手機黏著度」確實為讓使用者更影響使用LINE造成成癮的因素。本研究貢獻在於讓使用者了解自我效能造成成癮的影響因素的理解並作為未來研究方向的基礎。
英文摘要 Since Line launched on the mobile application platform in June 2011, LINE has enabled users to more closely communicate with each other, but also to interact less closely with each other. At first LINE was initially positioned as a communication software, it has been continuously updated and added more service contents, and increasing users' usage intentions.
The data of the study is collected through the questionnaire, questionnaire object is focused on the LINE personnel, added the self-efficacy theory model of interpersonal self-efficacy, emotional self-efficacy, LINE self-efficacy to explore for using LINE and cause the effects of addiction, and added regulatory variate anxiety and adherence rate of using mobile phone to explore the addiction of using LINE.
The results of this study shows that "self-efficacy" does have a positive effect on the addiction of LINE users, but the most influential factors are "anxiety" and " adherence rate of using mobile phone ". Overall, self-efficacy, regulatory variate anxiety and adherence rate of using mobile phone were found to cause the addictive factors for LINE users. The contribution of this study is to provide users with an understanding of the factors that self-efficacy can cause the addiction of the Line users and to be served as a basis for future research.
論文目次 目 次 IV
表目錄 V
圖目錄 VI
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究問題及目的 3
第貳章 理論發展與假說 4
第一節 智慧型手機 4
第二節 智慧型手機成癮 6
第三節 通訊軟體的起源及發展現況 8
第四節 通訊軟體-LINE簡介 9
第五節 使用行為之理論 11
第參章 研究方法 19
第一節 研究架構 19
第二節 研究變數操作型定義與衡量題項 20
第三節 研究設計 28
第四節 資料分析方法 29
第肆章 研究結果與分析 31
第一節 樣本描述性統計分析 31
第二節 問卷量表信度與效度檢驗 37
第三節 假說與理論模型之驗證 41
第伍章 結論與建議 44
第一節 研究結論 44
第二節 理論意涵 46
第三節 實務意涵 46
第四節 研究限制 46
第五節 研究貢獻 47
第六節 研究建議與未來方向 47
參考文獻 49
附錄A:問卷 54

表目錄

表3-1 自我效能衡量題項參考 21
表3-2 情感自我效能衡量題項參考 22
表3-3 人際自我效能衡量題項參考 23
表3-4  LINE自我效能衡量題項參考 24
表3-5 手機黏著度衡量題項參考 25
表3-6 焦慮衡量題項參考 26
表3-7  LINE成癮衡量題項參考 27
表4-1 基本資料分析 32
表4-1 基本資料分析(續) 33
表4-1 基本資料分析(續) 34
表4-2 因素負荷量未達檢驗標準之題項 37
表4-3 本研究信效度檢定表 38
表4-4 本研究中變數的因素分析 39
表4-4 本研究中變數的因素分析(續) 40
表4-5 路徑係數分析結果 42
表4-6 8組假說檢定結果 43

圖目錄

圖3-1 本研究之研究架構圖 19
圖4-1 研究模型驗證結果 41

參考文獻 LINE在台灣超級夯 用戶數說出來嚇死人(2018)。TVBS新聞網。Retrieved from https://news.tvbs.com.tw/travel/981849
台灣真的在行動時代落後嗎?2017上半年台灣行動網際網路報告(2017)。新網路科技網。Retrieved from https://www.smartm.com.tw/article/33373436cea3
凃郁忠.(2012). 探討影響消費者下載行動應用軟體意願之研究.(碩士), 國立高雄師範大學資訊教育研究所.
徐鵬翔.(2012). 智慧型手機使用滿意度與品牌忠誠度之研究.(碩士), 國立中山大學資訊管理學系.
張立人.(2013).孩子手機成「癮」 半夜躲被窩瘋玩。聯合新聞網。Retrieved from http://mag.udn.com/mag/life/storypage.jsp?f_ART_ID=477985
國家發展委員會.(2018). 107年持有手機民眾數位機會調查報告.委
託聯合行銷研究股份有限公司之報告.
賴宛琳.(2012).App「LINE」爆紅崛起!看雜誌。第 116 期,2013
年 12 月 20 日。Retrieved from
http://www.watchinese.com/article/2012/4402
韓登亮、齊志斐.(2005). 大學生手機成瘾症的心理學探析. 當代青年
研究;2005年12 期.
Ahmet Naci Çoklar, Yusuf Levent Şahin, (2011). Technostress Levels of
Social Network Users Based on ICTs in Turkey, European
Journal of Social Sciences Volume 23, Number 2.
AllAboutCounseling.com (2013). Nomophobia. llAboutCounseling.com.
Retrieved November 12, 2013 form the World Wide Web:
http://www.allaboutcounseling.com/library/nomophobia/
Bandura, A. (1997). Self-efficacy: The exercise of control. New York:
W.H.Freeman and Company.
Bandura, A., Reese, L., & Adams, N. E. (1982). Microanalysis of action
and fear arousal as a function of differential levels of perceived
self-efficacy. Journal of Personality and Social Psychology, 43, 5–
21.
Bandura, Albert. (1986). Social foundations of thought and action: asocial
cognitive theory. New Jersey: Prentice- Hall.
Brod, C. (1984). Technostress: The human cost of the computer
revolution.Reading, MA: Addison-Wesley.
Beverley A. Kirk, Nicola S. Schutte, Donald W. Hine.(2008)
Development and preliminary validation of an emotional
self-efficacy scale, Personality and Individual Differences 45 (2008)
432–436
Busko, M. (2008). Anxiety Linked With Increased Cell-Phone
Dependence, Abuse.
Medscape, Retrieved November 12, 2013, form the World Wide
Web: http://www.medscape.com/viewarticle/571204
Charles, S. T., Piazza, J. R., Mogle, J., Sliwinski, M. J., & Alemida, D.
M. (2013).The wear and tear of daily stressors on mental health.
Psychological Science 24(5), 733-741.
Chen, Y. -F. (2006). Social phenomena of mobile phone use: An
exploratory study in Taiwanese college students. Journal of Cyber
Culture and Information Society, 11, 219-244.
Cheung, S. K., & Sun, S. Y. K. (2000). Effect of self-efficacy conditions
of mutual-aidorganization members. Social Behavior and
Personality : An international journal, 28(5), 413–422.
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy:
Development of a measure and initial test. MIS Quarterly, 19(1),
189–211.
Davis, R. A. (2001). A cognitive-behavioral model of pathological
Internet use.Computers in Human Behavior, 17(2), 187–195.
Dahui, L., Glenn, J. B., & James, C. W. (2006). Why Do Internet Users
Stick with a Specific Web Site? A Relationship Perspective.
International Journal of Electronic Commerce, 10(4), 105.
Ellison, N.B., Steinfield, C., Lampe, C. (2007). The Benefits of Facebook
Friends:Social Capital and College Students’ Use of Online
Social Network Sites. Journal of Computer-Mediated
Communication (12:4), pp. 1143-1168.
Ferris, G. R., Treadway, D. C., Perrewe´, P. L., Brouer, R. L., Douglas,
C., & Lux, S. (2007). Political skill in organizations. Journal of
Management, 33, 290–320.
Fan, C., & Mak, A. S. (1998). Measuring social self-efficacy in a
culturally diverse student population. Social Behaviors and
Personality: An International Journal,26(2), 131–144.
Galanaki, E. P., & Kalantzi-Azizi, A. (1999). Loneliness and social
dissatisfaction:Itsrelation with children’s self-efficacy for peer
interaction. Child Study Journal,29, 1–22.
Gregory, Christina, 1996. “Internet Addiction Disorder: Signs,
Symptoms, and Treatments,” Psycom,Montclair: Vertical
health, LLC., http://www.psycom.net/iadcriteria.html.
Han, J. and Hur, G. (2004). Construction and validation of mobile phone
Addiction scale. Korean Journal of Journalism and Communication
Studies, Vol. 48,pp.138–165.
Harper, S. (2000). Managing Technostress in UK Libraries: A Realistic
Guide. Journal of Ariadne. Available at http:
//www.ariadne.ac.uk/issue25/technostr Accessed Jenuary 18, 2010.
Hong, F. Y., Chiu, S. I., & Huang, D. H. (2012). A model of the
relationship between psychological characteristics, smartphone
addiction and use of mobile phones by Taiwanese female university
students. Computer in Human Behavior,
28(6), 2152–2159.
Hyoungkoo Khang, Hyung-Jin Woo, Jung Kyu Kim, (2012). Self as an
antecedent of mobile phone addiction. Int. J. Mobile
Communications, Vol. 10, No. 1, 2012
Hatterer, L. J. (1994), Addictive Process, Encyclopedia of Psychology,
New York: John Wiley and Sons.
Hong, F. Y., Chiu, S. I., & Huang, D. H. (2012). A model of the
Relationship between psychological characteristics, smartphone
addiction and use of mobile phones by Taiwanese female
university students. Computer in Human Behavior,
28(6), 2152–2159.
Huang, Z., Qian, M. Y., & Yi, C. L. (2006). Correlated factors
comparison: The trends of computer game addiction and internet
relationship addition. Chinese Journal of Clinical Psychology,
14(3), 244–247.
Ishii, K., (2006). Implications of Mobility: The Uses of Personal
Communication Media in Everyday Life. Journal of
Communication 56(2), 346-365. 2006
Judy Chuan-Chuan Lin (2007.12).”Online stickiness: its antecedents
and Effect on purchasing intention”. Accessed on 23 August
2012,page 507-516.
Jenaro, C., Flores, N., Gomez-Vela, M., Gonzalez-Gil, F. and Caballo, C.
(2007).Problematic internet and cell-phone use: Psychological,
behavioral, and health correlates. Addiction Research and Theory,
Vol. 15, pp.309–320.
Kim,H.,Kim,G.J.,Park,H.W.,& Rice,R.E.(2007),Configurationsofrela
tionships in different media: FtF, email, instant messenger,
mobile phone,and SMS.Journal of Computer-Mediated
Communication,12(4),1183-1207.
Kim, J. and Haridakis, P.M. (2009). The role of internet user
characteristics and motives in explaining three dimensions of
internet addiction. Journal of Computer-Mediated Communication,
Vol. 14, pp.988–1015.
Kwon et. al. 2013. “Development and Validation of A Smartphone
Addiction Scale, SAS”, Plos One, 8. San Francisco: Public Library
of Science.
King, A. L. S., Valenca, A. M., Silva, A. C. O., Baczynski, T., Carvalho,
M. R., & Nardi, A. E. (2013). Nomophobia: Dependency on
virtual environments or social phobia? Computers in Human
Behavior, 29(1), 140-144.
Lou, H., Luo, W., and Strong, D. (2000), “Perceived Critical Mass Effect
on Groupware Acceptance,” European Journal of Information
Systems, Vol. 9, pp. 91-103.27. McKinney,
Leung et al.(2000), Who are the mobile phone have-nots? Influences and
consequences.New Media & Society, 1(2):209-226.
Larson, L. M., & Daniels, J. A. (1998). Review of the counselling
self-efficacy literature. The Counseling Psychologist, 26, 179–218.
Lin YH, Chang LR, Lee YH, Tseng HW, Kuo1 TBJ, Chen SH (2014).
Development and Validation of the Smartphone Addiction
Inventory (SPAI).PLoS ONE. 2014; 9(6): e98312.(SCI)
Lin, H.-F. (2007). Predicting consumer intentions to shop online: An
empirical test of competing theories. [doi: DOI:
10.1016/j.elerap.2007.02.002]. Electronic
Commerce Research and Applications, 6(4), 433-442.
Lin, J. C.-C., & Lu, H. (2000). Towards an Understanding of the
Behavioral Intention to Use a Web Site. International Journal of
Information Management, 20(3),197-208.
Liu, H. (2007). Social network profiles as taste performances. Journal of
Computer-Mediated Communication, 13(1).
Lapointe, L., Boudreau-Pinsonneault, C. & Vaghefi, I. (2013, January). Is
smartphone usage truly smart? A qualitative investigation of IT
addictive behaviors. Paper presented at 2013 46th Hawaii
International Conference on System Sciences. Hawaii, USA.
Lee, C.C., Hsieh, M.C., (2011). The Influence of Mobile Self-Efficacy on
Attitude Towards. Mobile Advertising, in, IEEE, 2009, pp.
1231-1236
Muris, P., Schmidt, H., Lambrichs, R., & Meesters, C. (2001). Protective
and vulnerability factors of depression in normal adolescents.
Behavior Research and Therapy, 39(5), 555–565.
Meschtscherjakov, A. (2009). Mobile Attachment - Emotional
Attachment Towards Mobile Devices and Services. MobileHCI’09,
September 15 - 18, 2009, Bonn,Germany.
Petrides, K. V., & Furnham, A. (2003). Trait emotional intelligence:
Behavioral validation in two studies of emotion recognition and
reactivity to mood induction. European Journal of Personality, 17,
39–57.
Petrides, K. V., Sangareasu, Y., Furnham, A., & Fredrickson, N. (2006).
Trait emotional intelligence and children’s peer relations at school.
Social Development,15, 537–547.
Richelle L. Oakley, Prashant C. Palvia. (2012). A Study of the Impact of
Mobile Self-Efficacy and Emotional Attachment on Mobile Device
Infusion. Proceedings of the Eighteenth Americas Conference on
Information Systems, Seattle,Washington, August 9-12, 2012
Sherer, M. & Maddux, J.E. (1982). The self-efficacy scale: Construction
and validation,Psychological Reports, 51, 663-671.
Shao-I. Chiu,(2014). The relationship between life stress and smartphone
addiction on taiwanese university student: A mediation model of
learning self-Efficacy and social self-Efficacy. Computers in
Human Behavior 34 (2014) 49–57
Tony Cheng-Kui Huang, Chuang-Chun Liu, Dong-Cheng Chang, (2012).
an empirical investigation of factors influencing the adoption of
data mining tools.International Journal of Information
Management 32 (2012) 257– 270
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User
Acceptance of information technology: Toward a unified view.
MIS Quarterly, 27(3),425–478.
Von Hippel. E. and Thomke, S. (2002),Customers as Innovators: A New
Way to Create Value. Harvard Business Review, Vol.80 (4), pp.74-81
Young, K. S. & Rogers, R. C. (1998). The Relationship Between
Depression and Internet Addiction. CyberPsychology &
Behavior, 1, 25-28.
Zhang, J. X., & Schwarzer, R. (1995). Measuring optimistic self-beliefs:
a Chinese adaptation of the General Self-Efficacy
Scale. Psychologia: An International Journal of Psychology in the
Orient, 38 (3), 174-181.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2024-07-18公開。
  • 同意授權瀏覽/列印電子全文服務,於2024-07-18起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信