淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1107201316171200
中文論文名稱 以新穎性電化學安培法發展不具電化學活性分子之量測技術以及微晶片電泳電化學偵測平台的開發
英文論文名稱 Novel avenues in determination of electrochemically inactive species and construction of a new amperometric platform in microchip electrophoresis
校院名稱 淡江大學
系所名稱(中) 化學學系博士班
系所名稱(英) Department of Chemistry
學年度 101
學期 2
出版年 102
研究生中文姓名 陳繼浩
研究生英文姓名 Chi-Hao Chen
學號 896160024
學位類別 博士
語文別 英文
口試日期 2013-05-28
論文頁數 244頁
口試委員 指導教授-林孟山
委員-傅明仁
委員-何佳安
委員-蔡東湖
委員-陳志欣
中文關鍵字 安培法  多胺  肌酸肝  鈉乃浦  嘌呤  微晶片  電滲流 
英文關鍵字 Amperometry  Polyamine  Creatinine  Nabam  Purine  Microchip  Electroosmotic flow 
學科別分類
中文摘要 本研究第一部分基於銅金屬的配位能力,發展在環境以及生醫檢測上具有重要指標性但不具電化學活性偵測物質的檢測方法。實驗上基於銅金屬在氧化時,由於價態轉變需要額外配位基螯合的特性,將電極表面難溶的氧化層轉變為可溶性的銅錯合物,並藉由流注系統將之帶離電極表面,使得內層金屬銅層可繼續氧化產生氧化電流訊號。藉由量測此氧化訊號的大小可對不具電化學活性的分子如多胺、肌酸酐以及易毒化分子如鈉乃浦、嘌呤進行電化學分析。
實驗首先先以一系列多胺分子對整個量測機制進行研究,實驗結果發現多牙配位基且能與銅離子螯合成五圓環或六圓環的錯合物才能達到較高的靈敏度,因此推論本方法具有結構的選擇性,此外此選擇性可藉由緩衝溶液的酸鹼值改變配位基的帶電性質進行調整。實驗條件經最佳化後,多胺分子可在0.1 M磷酸緩衝液,pH 10下,對於精胺、亞精胺、腐胺以及屍胺四種多胺分子的偵測極限分別可達到50, 60,110以及270 nM。
鈉乃浦為雙硫醯胺化合物,為環境常見之殺菌農藥,根據國際殺蟲劑殘留物聯席會議裁定,鈉乃浦的殘留量需小於7 ppm,而此分析物不易以電化學進行分析。然而以結構上,鈉乃浦適合本研究所開發的機制。經最佳化探討後,最佳化條件為:50m M 磷酸緩衝液pH 5.75,偵測電位為- 0.125V,線性範圍為0.2 μM to 10 μM (or 0.051 to 2.56 ppm)。此方法不受環境分子如SDS,腐植酸以及樟腦的影響。然而,由於鈉乃浦的螯合處容易與其他金屬結合,造成有效濃度的下降,因此利用陽離子交換樹脂將樣品中的重金屬先行交換出來,可防止重金屬的干擾。
在醫學研究上,肌酸酐是評估腎功能的重要指標,正常人血清中的肌酸酐濃度約0.6~1.2 mg/dL,每天排放於尿中的總量為1~2.5g。由於肌酸酐完全不具有電化學活性,傳統上偵測此一分子須依序經由肌酸酐酶、肌酸酶以及肌氨酸氧化酶三個酵素轉換出過氧化氫之後進行量測,或是利用肌酸酐去亞胺酶轉換出銨根離子再進行偵測,因此在偵測線性、選擇性以及實用性上都尚待改善。而本研究發現肌酸酐符合本偵測機制,可在無酵素輔助下直接對肌酸酐進行分析。最佳化的分析條件為100 mM磷酸緩衝液(pH 7.0),偵測電位為-100 mV,其線性範圍為25 μg/dL to 1.5 mg/dL。本方法除了尿酸外不受其他傳統易氧化物質的干擾,而在包覆上一層Nafion 薄膜後,可排除尿酸的干擾。
接者基於本機制可對尿酸進行偵測,因此對於尿酸的嘌呤結構類似物如黃嘌呤、次黃嘌呤、腺嘌呤、鳥嘌呤以及咖啡因進行研究,這些嘌呤類分子雖然是具有電化學活性之分子,然而偵測上需要相當高的氧化電位且會造成嚴重的店及毒化現象。而本方法是利用配位的方式進行偵測,分析物本身不會進行氧化,因此可大幅提升分析的再現性。而研究結果顯示除了咖啡因外,其餘的嘌呤類似物的偵測極限都可低於μM,而無法偵測咖啡因的原因推測是來自於螯合官能基產生的立體障礙所致。
第二部份則是開發微晶片電泳系統搭配整合式電化學偵測平台,希冀能以簡單的電泳分離增加電化學系統的選擇性。然而為了降低製作成本以及增加後續電極材料的可變性,實驗上選擇利用翻模法製作PDMS微流道,並以網版印刷以及濕式蝕刻的方式先行在玻璃基材上製作出電極溝槽,之後填入導電碳膠而完成整合式電化學偵測平台的製作。在不需要顯微鏡的輔助下,偵測系統與微流道貼合的變異性僅有2.2%。本系統雖然是利用導電碳膠作為去偶合電極,但在電場強度為200V/cm下,此電化學偵測系統背景電流值的變異仍僅有1.4 pA,且不會產生短路的現象。而利用多巴胺以及鄰苯二酚對此系統的分析特性的進行評估。其線性分別為0.1 到 100 μM (R = 0.998) 以及 0.2 到 200 μM (R=0.996)。理論板數分別達15700以及34600(plate/m)。此外由於導電碳膠可以輕易用丙酮清除,因此電極的部份可輕易進行去除並重新製作。
最後一部份則是發展簡易的電滲流強度評估方法。在電泳分析中,電滲流佔有舉足輕重的腳色,傳統上需要加入中性分子或是利用各種物理或化學的方式改變局部緩衝液的組成才可對電滲流進行評估。而本研究中所開發的偵測平台上,發現去偶合電極除了可消除高壓電場的干擾外,還會將溶液中的氧氣轉變為過氧化氫,因此藉由改變去偶合電極與工作電極之間的距離便可在不添加任何物質或改變溶液組成的情況下以對電滲流的強度進行評估。最後也應用於評估分析物的電泳性質上。
英文摘要 The goal of this thesis is to develop a new amperometric scheme to deal with those electrochemically inactive species by using a copper based or copper plated electrode. Since the target analytes such as polyamines, purines, nabam and creatinine can be used as a ligand for cupric ions, the passive oxide layer on the copper plating electrode would be converted into a soluble cupric or cuprous complex after reacting with these analytes. This behavior exposed the inner copper layer to the solution and an oxidation reaction would be induced to further regenerate the passive layer and the intensity of the oxidation current can be used to reflect the concentration of these analytes.
Firstly, the basic behaviors of this scheme were investigated respect to the polyamines. The results of this approach show that this new amperometric scheme possesses better sensitivity in those analytes that could form a stable five or six member-ring complex with cupric ion, and the selectivity of this scheme would be
further regulated by the charge polarity of the chelating site. Moreover, in the optimal experimental, the detection limit of spermine, spermidine, putrescine and cadaverine is 0.05, 0.06, 0.11 and 0.27 μM, respectively (S/N = 3).
Nabam is a dithiocarbamate based fungicide which is extensively used today. According to the requirement of the Joint FAO /WHO Meeting on Pesticide Residues (JMPRs), the tolerance limit of this pesticide is 7 ppm. Electrochemical determination of the nabam has rarely been successful due to its poor redox property and surface contamination. However, nabam is not only a fungicide but also a famous chelating molecule; thus, it would be a suitable candidate for this scheme. Under a set of optimal condition with operating potential at -0.125 V in a 50 mM phosphate buffer, pH 5.75, the dynamic range of nabam is 0.2 μM to 10 μM (or 0.051 to 2.56 ppm), which meets the requirement of JMPR. This method is free from the common environmental interferences. However, a simple cation exchange column was used to release the chelated nabam molecule from other metal-nabam complexes.
Creatinine is an important index of renal function in the clinical diagnosis, which maintains a range between 0.6 to 1.2 mg/dL in the serum for a health subject that is independently of dietetic habit. Traditionally, because the creatinine is an electrochemically inactive molecule, most approaches require a series of enzymatic reactions to facilitate their electrochemical applications. However, a serious interference from each enzymatic intermediates and poor linearity are commonly encountered problems. Here, creatinine was identified as a target ligand to be determined via this special scheme. After a careful optimization, this scheme can be conducted at potential of -0.1 V in a phosphate buffer (pH 7). The linearity of creatinine is started from 0.025 to 1.5 mg/dL. This method does not suffer from most biological interferences except uric acid. However, a Nafion® coated copper plated electrode successfully overcame the interference of the uric acid with a slightly decreased sensitivity of creatinine. The feasibility of further clinical application is demonstrated by evaluating the creatinine concentration in a urine sample.
Finally, because this scheme shows a highly sensitive in uric acid, therefore, the feasibility of its structural analog such as xanthine, hypoxanthine, guanine, and adenine were investigated. Although these purine derivatives can be directly determined with a carbon based electrode at relative high oxidation potential, it would encounter several problems including biological interferences and surface contamination. However, because the operating potential of this proposed scheme can be held below 0 V and the analyte would not be really oxidized in the proposed scheme. Moreover, because one of the structural analog, caffeine, could not be performed in this scheme, which implies this scheme has not only a structural selectivity but also a stereo selectivity.
The following project described a novel method to fabricate an integrated amperometric platform for an off-channel based microchip electrophoresis. A simple screen printed protocol combining a wet etching procedure was used to define the three electrode system, decoupler electrode, and their conductive circuit on a glass substrate. Subsequently, a carbon based amperometric platform was obtained by filling the conducted carbon ink into these cavities. The variation of reassembled of this device is only 2.2 % without the assistance of the microscope (N = 6). This device was characterized by dopamine (DA) and catechol (CA). Under the optimum conditions, this device possesses a low background with a very low noise level of 1.4 pA (peak to peak). The linear range for DA and CA are 0.1 to 100 μM (R = 0.998) and 0.2 to 200 μM (R = 0.996) with sensitivity of 82.17 and 37.51 pA/μM, respectively, and a theoretical plate number is 15700 and 34600 (plate/m) for DA and CA, respectively. Finally, the carbon ink electrode can be easily removed by acetone solution, which indicates this platform could be easily renewed when necessary.
The next work focused on the development of a simple method to estimate the electroosmotic flow (EOF) without using any complicated electric profile or physical alteration. In our off channel microfludic device, it is found the carbon ink based decoupler electrode maintains its reductive capacity after the electric field is turned
off. This residual reduction capacity would continuously convert the dissolved oxygen to hydrogen peroxide and accumulated on the decoupler electrode. Subsequently this sample plug was used as a marker driven by EOF and would be delivered to reach the working electrode during the next electrophoretic run. In this scheme, the EOF has been proven to be determined by using a single microchannel only. Subsequently, this scheme was transferred into a cross type microchannel, and the electrophoretic property of the target analyte can be estimated after a simple calculation with the retention time of the self-generate marker and the target analyte.
論文目次 TABLE OF CONTENTS
論文提要內容……………………………………………………………I
Abstract ………………………………………………………………IV
Table of Contents…………………………………………………VIII
List of Figures ……………………………………………………XV
List of schemes… ………………………………………………XVIII
List of Tables………………………………………………………XIX
Chapter 1
Introduction ……………………………………………………………1
1-1 Chemical sensors and biosensors………………………………1
1-1-1 Introduction …………………………………………………1
1-1-2 Recognition element…………………………………………2
1-1-3 Transducers……………………………………………………3
1-2 Electrochemical sensors…………………………………………5
1-2-1 Potentiometric sensor………………………………………6
1-2-2 Amperometric sensor ………………………………………7
1-2-3 Voltammetric sensor ………………………………………9
1-2-4 Conductive sensor …………………………………………10
1-3 Fabrication of a Biosensor……………………………………11
1-3-1 Adsorption method …………………………………………12
1-3-2 Entrapment method …………………………………………13
1-3-3 Covalent and cross link immobilization ……………15
1-4 Modified electrodes ……………………………………………16
1-4-1 Purpose of surface modification ………………………16
1-4-2 Enhance the selectivity with a thin layer
modification…………………………………………………17
1-4-3 Improve the electron transfer rate and potential
recognition …………………………………………………18
1-5 Methods of electrode surface modification ………………19
1-5-1 Physical and chemical adsorption………………………20
1-5-2 Covalent bonding with the surface functional
group …………………………………………………………21
1-5-3 Heterogamous blending modified electrode……………22
1-5-4 Electrochemical deposition of metal based
material………………………………………………………24
1-6 Determination of electrochemical inactive species ……25
1-6-1 Ion exchanged conducting polymers ……………………26
1-6-2 Pulsed amperometric detection …………………………27
1-6-3 Indirect amperometry based on derivation or
inhibition……………………………………………………28
1-7 Microchip electrophoresis ……………………………………30
1-7-1 History of micro total analysis system………………30
1-7-2 Construction of a microfludic device…………………30
1-7-3 Topographically direct photolithography ……………32
1-7-4 Lithographic techniques used in polymeric
substrates……………………………………………………33
1-7-5 Hot embossing and thermal injection molding ………34
1-7-6 Soft lithography and PDMS ………………………………35
1-8 Electrophoresis …………………………………………………36
1-8-1 Brief introduction of electrophoresis ………………36
1-8-2 CZE and Electroosmotic flow ……………………………38
1-8-3 Methods of sample injection ……………………………41
1-8-3-1 Floating injection………………………………………42
1-8-3-2 Gated injection …………………………………………43
1-8-3-3 Pinched injection ………………………………………44
1-9 Detector used in the microchip………………………………45
1-9-1 UV/Visible spectrometer …………………………………46
1-9-2 Fluorescence spectrometer ………………………………47
1-9-3 Electrochemical detector…………………………………48
1-9-3-1 Microchip integrated with conductivity
detectors …………………………………………………49
1-9-3-2 Microchip integrated with amperometric
detectors …………………………………………………50
1-9-3-3 In-channel detection model……………………………51
1-9-3-4 End channel detection …………………………………53
1-9-3-5 Off channel detection …………………………………55
1-10 Purpose of this thesis ………………………………………56

Chapter 2
Development of a structural specific amperometric scheme for electrochemically inactive species determination………58
2-1 Introduction………………………………………………………58
2-1-1 Problems of electroanalysis in the clinical
chemistry ……………………………………………………58
2-1-2 The importance of polyamines in clinical diagnosis
and food chemistry…………………………………………59
2-1-3 Present methods in determination of these
polyamines……………………………………………………60
2-1-4 Creatinine and the renal function ……………………61
2-1-5 Present methods in diagnosis of the creatinine……61
2-1-6 Brief introduction of these purine derivatives……62
2-1-7 The difficulty in electroanalysis of these purine
derivatives …………………………………………………63
2-1-8 Introduction of the Ethylene bisdithiocarbamate
(EBDC) and several optical methods in determining
of the Nabam…………………………………………………65
2-1-9 Electrochemical methods in sensing these EBDC
pesticides……………………………………………………66
2-1-10 Brief review of complex-based electrochemical
method used in electroanalysis…………………………67
2-2 Development of structure-specific electrochemical
sensor and its application for polyamines
determination ……………………………………………………70
2-2-1 Experimental section………………………………………71
2-2-1-1 Reagents……………………………………………………71
2-2-1-2 Apparatus …………………………………………………71
2-2-1-3 Electrode preparation and preservation……………72
2-2-1-4 Mechanism study and flow injection analysis ……73
2-2-1-5 Long-term electrolysis…………………………………74
2-2-1-6 Chemical oxidation assistant complex formation
study ………………………………………………………74
2-2-1-7 Procedure of the HPLC study …………………………74
2-2-2 Result and discussion ……………………………………75
2-2-2-1 Voltammograms of the polyamine………………………75
2-2-2-2 Potential assisted complex formation………………76
2-2-2-3 Structure dependent electrochemical sensor………81
2-2-2-4 Investigation of the pH effect………………………85
2-2-2-5 Different mechanism at higher operating
potential …………………………………………………87
2-2-2-6 Analytical performance of the polyamines…………88
2-2-2-7 Demonstration of the real sample……………………89
2-2-3 Conclusion……………………………………………………92

2-3 A novel structural specific creatinine sensing scheme
for the determination of the urine creatinine …………94
2-3-1 Material and ………………………………………………96
2-3-1-1 Apparatus …………………………………………………96
2-3-1-2 Reagents……………………………………………………96
2-3-1-3 Fabrication and conservation of the copper
plating electrode ………………………………………97
2-3-1-4 Procedure of stripping analysis ……………………97
2-3-1-5 Procedure of the real sample test …………………98
2-3-2 Result and discussion ……………………………………98
2-3-2-1 Mechanism study …………………………………………98
2-3-2-2 Optimization of the FIA………………………………102
2-3-2-3 Analytic performances…………………………………105
2-3-2-4 Interference study ……………………………………108
2-3-2-5 Analysis of real sample………………………………110
2-3-3 Conclusion …………………………………………………112

2-4 New strategy for amperometric determination of nabam
pesticide by using potential assisted surface oxide
regeneration method……………………………………………113
2-4-1 Experimental section ……………………………………114
2-4-1-1 Apparatus…………………………………………………114
2-4-1-2 Reagents …………………………………………………114
2-4-1-3 Fabrication and conservation of the copper
plating electrode………………………………………115
2-4-1-4 Mechanism study and dual electrode flow injection
analysis …………………………………………………115
2-4-1-5 Procedure of the real sample application ………116
2-4-2 Result and discussion……………………………………116
2-4-2-1 Mechanism study…………………………………………116
2-4-2-2 Optimization of the operating potential…………121
2-4-2-3 Optimization of the buffer condition ……………123
2-4-2-4 Optimization of the flow rate and injected
volume………………………………………………………126
2-4-2-5 Analytical performance ………………………………128
2-4-2-6 Interference and real sample application ………130
2-4-3 Conclusion …………………………………………………134

2-5 Low-potential amperometric determination of purine
derivatives through surface oxide replaced technique
on copper plating electrode ………………………………135
2-5-1 Material and methods ……………………………………136
2-5-1-1 Apparatus…………………………………………………136
2-5-1-2 Reagents …………………………………………………136
2-5-1-3 Fabrication and conservation of the copper
plating electrode………………………………………137
2-5-2 Result and discussion……………………………………137
2-5-2-1 mechanism study…………………………………………137
2-5-2-2 Optimization of experimental conditions…………143
2-5-2-3 Analytical performance of purine derivative……144
2-5-2-4 Reproducibility and interference study …………149
2-5-3 Conclusion …………………………………………………152

Chapter 3
New strategies for microchip electrophoresis: Fabrication and EOF determination………………………………………………153
3-1 Introduction ……………………………………………………154
3-2 Experimental ……………………………………………………159
3-2-1 Chemicals……………………………………………………159
3-2-2 Instrument …………………………………………………159
3-2-3 The photolithographic processes of embossed mold
for PDMS microchannel……………………………………160
3-2-4 Fabrication procedure of the off-channel base
integrated platform………………………………………161
3-2-5 Procedure of microchip electrophoresis ……………164
3-3 Results and discussion ………………………………………166
3-3-1 Characterization of the working electrode by using
scanning electron microscopy …………………………166
3-3-2 Influence of relative position between the channel
outlet and working electrode …………………………168
3-3-3 Influence of operating potential ……………………174
3-3-4 Influence of injection time……………………………176
3-3-5 Analytical performance …………………………………178
3-3-6 Demonstration of totally renewable amperometric
platform ……………………………………………………182
3-4 Conclusions………………………………………………………183

Chapter 4
Monitoring electroosmotic flow by using marker free amperometric method and its application in fast mobility determination in microchip electrophoresis………………… 184
4-1 Introduction ……………………………………………………185
4-2 Material and methods …………………………………………188
4-2-1 Instruments…………………………………………………188
4-2-2 Fabrication of PDMS/glass amperometric system……189
4-2-3 Procedure of EOF determination ………………………191
4-3 Results and discussions………………………………………191
4-3-1 Mechanism study……………………………………………191
4-3-2 Evaluation of the EOF of this glass/PDMS hybrid
device ………………………………………………………200
4-3-3 Simultaneous evaluation of the velocity of EOF and
analyte………………………………………………………203
4-4 Conclusion ………………………………………………………208

Conclusion of this thesis…………………………………………209

References ……………………………………………………………212

List of Figures
Figure 1-1 Sketch diagram of numerous of immobilization
techniques ………………………………………………12
Figure 1-2 Flow chart of photolithography…………………… 32
Figure 1-3 sketch of double layer of Stern’s model……… 40
Figure 1-4 Typical cross design of microchip
electrophoresis…………………………………………42
Figure 1-5 Sketch of floating injection……………………… 43
Figure 1-6 Sketch of gated injection……………………………44
Figure 1-7 Sketch of pinched injection…………………………45
Figure 1-8 Schematics of various amperometric detection
used in microchip electrophoresis…………………51
Figure 2-1 Cyclic voltammograms of SPD on the copper
deposited electrode and CV responses of Cu-SPD
complex on the glassy carbon electrode …………77
Figure 2-2 Typical visible spectrograms for long-term
electrolysis…………………………………………… 78
Figure 2-3 Dual hydrodynamic voltammograms of up-stream
electrode and relative current responses from
down-stream electrode…………………………………83
Figure 2-4 Absorbance-time recording upon increasing the
oxidant concentration…………………………………84
Figure 2-5 Influence of pH on the Cu-SPD complex
formation…………………………………………………86
Figure 2-6 Actual response and the reproducibility of SPD
measurement ……………………………………………90
Figure 2-7 Chromatograms of polyamines in diluted urine
sample ……………………………………………………90
Figure 2-8 Typical voltammograms of creatinine on a copper
electrode……………………………………………… 101
Figure 2-9 The influences of potential of this creatinine
sensor……………………………………………………103
Figure 2-10 The influences of the pH of this creatinine
sensor……………………………………………………104
Figure 2-11 The influences of flow rate of this creatinine
sensor……………………………………………………104
Figure 2-12 The influences of sample volume of this
creatinine sensor…………………………………… 105
Figure 2-13 Typical calibration curve of the Cu based
creatinine sensor…………………………………… 106
Figure 2-14 Standard addition analysis of the real
sample……………………………………………………111
Figure 2-15 Typical voltammograms of nabam on the glassy
carbon electrode and copper plating
electrode……………………………………………… 118
Figure 2-16 Typical generation-collection study by using an
upstream copper electrode and a downstream
carbon ink electrode ……………………………… 120
Figure 2-17 The influences of potential of this nabam
sensor……………………………………………………123
Figure 2-18 Influence of pH in nabam determination……… 124
Figure 2-19 Influence of buffer of this nabam sensor…… 125
Figure 2-20 The influence of buffer concentration of this
nabam sensor……………………………………………125
Figure 2-21 Influence of loading volume of this nabam
sensor……………………………………………………127
Figure 2-22 Flow rate study………………………………………127
Figure 2-23 Typical calibration curve of the nabam……… 129
Figure 2-24 Analytical result of an artificial sample……131
Figure 2-25 EDX spectrum of dried real sample………………133
Figure 2-26 Voltammograms of xanthine on a copper and a
glassy carbon…………………………………………140
Figure 2-27 The influences of potential………………………142
Figure 2-28 The influence of the pH……………………………143
Figure 2-29 The influence of buffer concentration…………143
Figure 2-30 Flow rate study of xanthine………………………144
Figure 2-31 Calibration curve and actual response of
xanthine ………………………………………………146
Figure 2-32 Reproducibility and actual response of 10 μM
xanthine……………………………………………… 150
Figure 3-1 Schematic process of fabrication of this
device……………………………………………………163
Figure 3-2 Schematic drawing of Glass sheet, PDMS sheet
and the actual picture of this PDMS/ glass
hybrid device………………………………………… 165
Figure 3-3 SEM picture of cross section and top view of
glass sheet…………………………………………… 167
Figure 3-4 Actual electropherograms and schematic side view
of the relationship between channel outlet and
working electrode…………………………………… 171
Figure 3-5 Reproducibility of assembling of this PDMS/glass
device……………………………………………………172
Figure 3-6 Normalized hydrodynamic voltammograms of
catechol obtained from different positions of
channel outlet…………………………………………173
Figure 3-7 Hydrodynamic voltammogram of dopamine, catechol
and background residual current………………… 175
Figure 3-8 Influence of injection time in simultaneous
determination of dopamine and catechol…………177
Figure 3-9 Calibration curves of dopamineand catechol……180
Figure 4-1 Sketch of glass, PDMS and PDMS/glass hybrid
device……………………………………………………190
Figure 4-2 Actual electropherogram with different distance
of DDW……………………………………………………193
Figure 4-3 Cathodic determination of catecol in the absence
and presence of POD………………………………… 193
Figure 4-4 Potential of the decoupler electrode in the
whole electrophoresis……………………………… 195
Figure 4-5 Dynamic Voltammogram of oxygen and hydrogen
peroxide on a rotating disk carbon ink
electrode……………………………………………… 196
Figure 4-6 Influence of the resting time…………………… 198
Figure 4-7 Mobility and velocity of EOF with different
electric field…………………………………………202
Figure 4-8 EOF of this PDMS/glass hybrid device with
various pH and the conductivity of relevant
tested solution……………………………………… 202
Figure 4-9 Influence of the detecting potential……………204
Figure 4-10 Actual electropherograms of tested analytes…206

List of schemes

Scheme 2-1 Possible mechanism of this structure-specific
sensor…………………………………………………… 82
Scheme 2-2 Proposed creatinine measurement mechanism…… 101
Scheme 2-3 Possible mechanism of PASOR used in the nabam
determination………………………………………… 121
Scheme 2-4 Analytical performance of purine-like
molecules ………………………………………………147
Scheme 4-1 Proposed mechanism of this EOF measurement
scheme……………………………………………………199

List of Tables

Table 1-1 Typically covalent reagent and its corresponding
functional groups……………………………………… 16
Table 1-2 Simple comparison of four techniques in
electrophoresis………………………………………… 38
Table 2-1 Current response with various amino analytes……84
Table 2-2 Analytical performance of polyamine sensor and a
simple comparison with other methods………………91
Table 2-3 Interference study of this polyamine sensor…… 91
Table 2-4 Comparison of the analytical performance with
other creatinine sensor ……………………………107
Table 2-5 The interference studies of copper modified
electrode in the presence and absence of
Nafion® membrane ………………………………………109
Table 2-6 Simple comparison with prior sensing scheme for
nabam …………………………………………………… 129
Table 2-7 Interference study of this nabam sensor…………132
Table 2-8 Determination of nabam in pond and rice field
sample…………………………………………………… 133
Table 2-9 Comparison of the analytical performance with
other purine sensors………………………………… 148
Table 2-10 The interference studies on the copper plating
electrode……………………………………………… 151
Table 3-1 Average signal and (W1/2) with different position
of channel outlet………………………………………172
Table 3-2 Simple comparison between prior integrated
amperometric platforms and current scheme………181
Table 4-1 Effective retention time and its electrophoretic
velocity of EOF and the tested analyte………… 207
參考文獻 [1]A. P. F. Turner, Current trends in biosensor research and development. Sensors and Actuators 17 (1989), 433-450.
[2] C.G Marxer, M. C. Coen, H. Bissig, U. F. Greber, L. Schlapbach, Simultaneous measurement of the maximum oscillation amplitude and the transient decay time constant of the QCM reveals stiffness changes of the adlayer, Anal. Bioanal. Chem. 377 (2003) 570-577.
[3] S. Wei, F. Zhao, B. Zeng, Electrochemical behavior and determination of uric acid at single-walled carbon nanotube modified gold electrodes, Microchim. Acta 150 (2005) 219-224.
[4] T. R. I. Cataldi, A. Rubino, R. Ciriello, Sensitive quantification of iodide by ion-exchange chromatography with electrochemical detection at a modified platinum electrode, Anal. Bioanal. Chem. 382 (2005) 134-141.
[5] E. R. Lowe, C. E. Banks, R. G. Compton, Gas sensing using edge-plane pyrolytic-graphite electrodes: electrochemical reduction of chlorine, Anal. Bioanal. Chem. 382 (2005) 1169-1174.
[6] S. A. John, Simultaneous determination of uric acid and ascorbic acid using glassy carbon electrodes in acetate buffer solution, J. Electroanal. Chem. 579 (2005) 249-256.
[7] M. J. Schöning, A. Poghossian, Recent advances in biologically sensitive field-effect transistors, Analyst 127 (2002) 1137-1151.
[8] A. A. Shul’ga, M. Koudelka-Hep, N.F. de Roolj, Glucose-sensitive enzyme field effect transistor using potassium ferricyanide as an oxidizing substrate, Anal. Chem. 66 (1994) 205-210.
[9] Y. Miyahara, T. Maruzumi, S. Shiokawa, H. Matsuoka, I. Karube, S. Suzuki, Micro urea sensor using semiconductor and enzyme immobilizing technologies, Chem. Soc. Japan 6 (1983) 823-830.
[10] T. D. Waite, F. M. M. Morel, Characterization of complexing agents in natural waters by copper(II)/copper(I) amperometry, Anal. Chem. 55 (1983) 1268-1274.
[11]S.V. Dzyadevich, V.N. Arkhipova, A. P. Soldatkin, A. V. El’skaya, A. A. Shul’ga, Glucose conductometric biosensor with potassium hexacyanoferrate(III) as an oxidizing agent, Anal. Chim. Acta 374 (1998) 11-18.
[12] W.Y. Lee, S.R. Kim, T.H. Kim, K.S. Lee, M. C. Shin, J.K. Park, Sol–gel-derived thick-film conductometric biosensor for urea determination in serum, Anal. Chim. Acta 404 (2000) 195-203.
[13] N.F. Sheppard, D.J. Mears, Model of an immobilized enzyme conductimetric urea biosensor, Biosens. Bioelectron. 11 (1996) 967-979.
[14] M.M. Castillo-Ortega, D.E. Rodriguez, J.C. Encinas, M. Plascencia, F.A. Mendez-Velarde, R. Olayo, Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly(n-butyl methacrylate) composites, Sens. & Actuators B 85 (2002) 19-25.
[15] O.O. Soldatkin, I.S. Kucherenko, V.M. Pyeshkova, A.L. Kukla, N. Jaffrezic -Renault A.V. El'skaya, S.V. Dzyadevych, A.P. Soldatkin, Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions, Bioelectrochemistry 83 (2012) 25–30
[16] Sergei V. Dzyadevych, Alexey P. Soldatkin , Jean-Marc Chovelon, Assessment of the toxicity of methyl parathion and its photodegradation products in water samples using conductometric enzyme biosensors Analytica Chimica Acta 459 (2002) 33–41
[17] L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29-45.
[18] Audrey Sassolas , Loïc J. Blum, Béatrice D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors, Biotechnol Adv. 30 (2012), 489-511
[19] F. Tasca, L. Gorton, W. Harreither, D. Haltrich, R. Ludwig, G. Noll, Highly efficient and versatile anodes for biofuel cells based on cellobiose dehydrogenase from Myriococcum thermophilum. J. Phys.Chem. C 112 (2008), 13668–13673.
[20] Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, K. Kano, Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Phys. Chem. Chem. Phys. 9 (2007), 1793–1801.
[21] B. C. Dave, B. Dunn, J. S. Valentine, and J. I. Zink, Sol–gel encapsulation method for biosensors. Anal. Chem. 66 (1994), 1120A–1127A.
[22] W. Jin and J. D. Brenan, Properties and applications of proteins encapsulated within sol–gel derived materials. Anal. Chimi.Acta 461 (2002), 1–36.
[23] V. G. Gavalas, S. A. Law, J. C. Ball, R. Andrews, L. G. Bachasa, Carbon nanotube aqueous sol–gel composites: enzyme-friendly platforms for the development of stable biosensors. Anal. Biochem., 329 (2004), 247–252.
[24] F. Tain and G. Zhu, Sol–gel derived iridium composite glucose biosensor. 2002 Sens. & Actuators B, 86: 266–270.
[25] M. S. Lin, W. C. Shih, Chromium hexacyanoferrate based glucose biosensor, Anal. Chimi. Acta 381 (1999) 183-189
[26] Meir Wilchek, Talia Miron, Oriented versus random protein immobilization J. Biochem. Biophys. Methods 55 (2003) 67–70
[27] J. Moreno, M. Arroyo, M. Hernhiz, J. Sinisterra, Covalent immobilization of pure isoenzymes from lipase of Candida rugosa, Enzyme and Microbial Technology 21 (1997), 552-558,
[28] M. Delvaux, S. Demoustier-Champagne , Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors, Biosens. Bioelectron. 18 (2003) 943-/951.
[29] P. Sˇevcˇ´ıkova´, Z. Glatz, J. Tomandl, Determination of homocysteine in human plasma by micellar electrokinetic chromatography and in-capillary detection reaction with 2,2-dipyridyl disulfide, J Chromatogra. A, 990 (2003) 197–204.
[30] R. W. Murray, Chemically Modified Electrodes Acc. Chem. Res. 13 (1980), 135-141.
[31] R. Sternberg, D. S. Bindra, G. S. Wilson, D. R. Thevenot, Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development, Anal. Chem. 60 (1988) 2781-2786.
[32]J. Wang. S.-P. Chen and M. S. Lin, Use of different electropolymerzation conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films, J. electroanal. Chem. 273 (1989) 231-242.
[33] Y. Zhao, W. Zhang, H. Chen, Q. Luo Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection. Sensors & Actuators B 92 (2003) 279–285
[34] C. Deng, J. Chen, X. Chen, M. Wang, Z. Nie, S. Yao, Electrochemical detection of l-cysteine using a boron-doped carbon nanotube-modified electrode. Electrochimi. Acta 54 (2009) 3298–3302
[35] L. I. Boguslavsky, L. Geng, I.P. Kovalev, S.K. Sahni, Z. Xu, T.A. Skotheim, Amperometric thin film biosensors based on glucose dehydrogenase and Toluidine Blue O as catalyst for NADH electrooxidation, Biosensors & Bioelectronics 10 (1995) 693-704.
[36] L. T. Kubota, F. Gouvea, A. N. Andrade, B. G. Milagres, G. D. O. Neto, Electrochemical sensor for NADH based on Meldola’s Blue immobilized on silica gel modified with Titanium phosphate, Electruchimica Acta 41(1996) 1465-1469.
[37] C. J. Mu, D. A. LaVan, R. S. Langer, B.R. Zetter, Self-Assembled Gold Nanoparticle Molecular Probes for Detecting Proteolytic Activity In Vivo, ACS Nano, 4 (2010) 1511–1520.
[38] S. Komathi, A. I. Gopalan, K. Lee, Fabrication of a novel layer-by-layer film based glucose biosensor with compact arrangement of multi-components and glucose oxidase, Biosens. Bioelectron. 24 (2009) 3131–3134
[39] T. Rajesh, D. Kumar, V. K. Tanwar, V. Sharma, N. Singh, A. M. Biradar, An amperometric uric acid biosensor based on Bis[sulfosuccinimidyl] suberate crosslinker/3-aminopropyltriethoxysilane surface modified ITO glass electrode, Thin Solid Films 519 (2010) 1128–1134.
[40] S. Mahajan, P. Kumar and K. C. Gupta, An efficient and versatile approach for the construction of oligonucleotide microarrays, Bioorganic & Medicinal Chemistry Letters 16 (2006) 5654–5658
[41] R. S. Deinhammer, M. Ho, J.W. Anderegg, M. D. Porter, Electrochemical oxidation of amine-containing compounds: a route to the surface modification of glassy carbon electrodes, Langmuir, 10 (1994), 1306-1313.
[42] P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi, K. Pinson, J.-M. Saveant, Covalent Modification of Carbon Surfaces by Aryl Radicals Generated from the Electrochemical Reduction of Diazonium Salts, J. Am. Chem. Soc. 119 (1997), 201-207.
[43] C. P. Andrieux, F. Gonzalez, J.-M. Saveant, Derivatization of Carbon Surfaces by Anodic Oxidation of Arylacetates. Electrochemical Manipulation of the Grafted Films J. Am. Chem. Soc. 119 (1997), 4292-4300.
[44] G. L. Luque, N. F. Ferreyra, A. G. Leyva, G. A. Rivas, Characterization of carbon paste electrodes modified with manganese based perovskites-type oxides from the amperometric determination of hydrogen peroxide, Sensors and Actuators B 142 (2009) 331–336.
[45] D. Gligor, F. Balaj, A. Maicaneanu, R. Gropeanu, I. Grosu, L. Muresan, I. C. Popescu, Carbon paste electrodes modified with a new phenothiazine derivative adsorbed on zeolite and on mineral clay for NADH oxidation, Materials Chemistry and Physics 113 (2009) 283–289
[46] A. Malinauskas, T. Ruzgas, L. Gorton, Electrocatalytic Oxidation of Coenzyme NADH at Carbon Paste Electrodes, Modified with Zirconium Phosphate and Some Redox Mediators, Journal of Colloid and Interface Science 224 (2000), 325–332.
[47] A. Malinauskas, T. Ruzgas, L. Gorton, Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilised on zirconium phosphate, J. Electroanal. Chem. 509 (2001) 2–10
[48] M. S. Lin, J. S. Wang, Determination of an Ethylene Bisdithiocarbamate Based Pesticide (Nabam) by Cobalt Phthalocyanine Modified Carbon Ink Electrode, Electroanalysis, 16 (2004), 904-909.
[49] N. Lezi, A. Economou, P. A. Dimovasilis, P. N. Trikalitis, M. I. Prodromidis, Disposable screen-printed sensors modified with bismuth precursor compounds for the rapid voltammetric screening of trace Pb(II) and Cd(II), Anal. Chimi. Acta 728 (2012) 1– 8
[50] F. Ricci, A. Amine, C. S. Tuta , A. A. Ciucu , F. Lucarelli , G. Palleschi , D. Moscone, Prussian Blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability, Anal. Chimi. Acta 485 (2003) 111–120
[51] E. C. Rama, J. Biscay, M. B. G. Garcia, A. J. Reviejo, J. M. Pingarron, Comparative study of different alcohol sensors based on Screen-Printed Carbon Electrodes, Analytica Chimica Acta 728 (2012) 69– 76
[52] S. A. G. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlett, P. J. Doyle, G. Denuault, Detection of Hydrogen Peroxide at Mesoporous Platinum Microelectrodes, Anal. Chem. 74 (2002), 1322-1326.
[53] Z. Li, S. Lin, Z. Chen, Y. Shi, X. Huang, In situ electro-deposition of Pt micro-nano clusters on the surface of {[PMo12O40]3_ /PAMAM}n multilayer composite films and their electrocatalytic activities regarding methanol oxidation, Journal of Colloid and Interface Science 368 (2012) 413–419
[54] Z. Chen, L. Hao, C. Chen, A fast electrodeposition method for fabrication of lanthanum superhydrophobic surface with hierarchical micro-nanostructures, Colloids and Surfaces A: Physicochem. Eng. Aspects 401 (2012) 1– 7.
[55] L. Zhang, Y. Liu, Z. Wang, J. Cheng, Capillary zone electrophoresis with pre-column NDA derivatization and amperometric detection for the analysis of four aliphatic diamines Analytica Chimica Acta 508 (2004) 141–145
[56] S. Honda, Postcolumn derivatization for chromatographic analysis of Carbohydrates, Journal of Chromatography A, 720 (1996) 183-199
[57] X. Luo , X. Tracy, Cu(i) Sponge-like nanostructured conducting polymers for electrically controlled drug release, Electrochemistry Communications 11 (2009) 1956–1959
[58] C. Wang, P. G. Whitten, C. O. Too, G. G. Wallace, A galvanic cell driven controlled release system based on conducting polymers, Sensors and Actuators B 129 (2008) 605–611
[59] D. Ge, X. Tian, R. Qi, S. Huang, J.Mu, S. Hong, S. Ye, X. Zhang, D. Li, W. Shi, A polypyrrole-based microchip for controlled drug release, Electrochimica Acta 55 (2009) 271–275
[60] Y. Tian, J. Wang, Z. Wang, S. Wang, Electroreduction of nitrite at an electrode modified with polypyrrole nanowires, Synthetic Metals 143 (2004) 309–313
[61] J. Pernaut, K. Zong, J. R. Reynolds, Study of a new crown-ether derivatized polydioxypyrrole, Synthetic Metals 130 (2002) 1–8
[62] M. S. Lin, W. C. Shih, Chromium hexacyanoferrate based glucose biosensor, Analytica Chimica Acta 381 (1999) 183-189
[63] M. S. Lin, T. F. Tseng, W. C. Shih Chromium(III) hexacyanoferrate(II)-based chemical sensor for the cathodic determination of hydrogen peroxide, Analyst, ,123 (1998) 159–163.
[64] I. La¨hdesma¨ki, W. W. Kubiak , A. Lewenstam, A. Ivaska, Interferences in a polypyrrole-based amperometric ammonia sensor, Talanta 52 (2000) 269–275
[65] J. A. Polta, D. C. Johnson, Pulsed Amperometric Detection of Electroinactive Adsorbates at Platinum Electrodes in a Flow Injection System, Anal. Chem. 57,(1985), 1373-1376
[66] W. R. Lacourse, W. A. Jackson, D. C. Johnson, Pulsed Amperometric Detection of Alkanolamines following Ion Pair Chromatography, Anal. Chem. 61 (1989) 2466-2471
[67] P. J. Vandeberg, D. C. Johnson. Pulsed Electrochemical Detection of Cysteine, Cystine, Methionine, and Glutathione at Gold Electrodes Following Their Separation by Liquid Chromatography, Anal. Chem.65, (1993), 2713-2718
[68] G. G. Neuburger, D. C. Johnson, Pulsed Amperometric Detection of Carbohydrates at Gold Electrodes with a Two-step Potential Waveform, Anal. Chem., 59, (1987) 150-154.
[69] J.C. Hoekstra and D.C. Johnson, "Comparison of Potential-Time Waveforms for the Detection of Biogenic Amines in Complex Mixtures Following Their Separation by Liquid Chromatography," Anal. Chem. 70, (1998) 83-88.
[70] D. G. Williams, D. C. Johnson, Pulsed Voltammetric Detection of Arsenic (III) at Platinum Electrodes in Acidic Media, Anal. chem., 64, (1992) 1785-1789.
[71] S. W. Chan, G. Lin, K. Yamamoto, D. T. W. Yew, J. A. Rudd, Simultaneous determination of amino acids in discrete brain areas in Suncus murinus by high performance liquid chromatography with electrochemical detection, Journal of Pharmaceutical and Biomedical Analysis 53 (2010) 705–709.
[72] R. Wintersteiger , M. H. Barary, F. A. El-Yazbi, S. M. Sabry, A. M. Wahbi, Reversed phase-liquid chromatography of primary and secondary aliphatic amines after derivatization combined with electrochemical detection, Analytica Chimica Acta 306 (1995) 273-283
[73] T. Tanaka, K. Izawa, M. Okochi, T. Lim, S. Watanabe, M. Harada, T. Matsunaga, On-chip type cation-exchange chromatography with ferrocene-labeled anti-hemoglobin antibody and electrochemical detector for determination of hemoglobin A1c level, Analytica Chimica Acta 638 (2009) 186–190
[74] K. Sato, J. Jin, T. Takeuchi, T. Miwa, Y. Takekoshi, S. Kanno, S. Kawase, Indirect amperometric detection of underivatized amino acids in microcolumn liquid chromatography with carbon film based ring–disk electrodes, Analyst, 125 (2000), 1041–1043
[75] H. Zhou, L. A. Holland, P. Liu, An integrated electrochemical capillary liquid chromatography–dual microelectrode system for bromine based reaction detection, Analyst, 126 (2001), 1252–1256
[76] Y. S. Fung, S.Y. Mo, Determination of Amino Acids and Proteins by Dual-Electrode Detection in a Flow System, Anal. Chem. 67 (1995), 1121-1124
[77] S. Solé, A. Merkoçi, S. Alegret,. Determination of toxic substances based on enzyme inhibition. Part I. Electrochemical biosensors for the determination of pesticides using batch procedures. Crit. Rev. Anal. Chem., 33 (2003), 89-126,
[78] M. Ovalle, M.Stoytcheva, R. Zlatev, B. Valdez, Electrochemical study of rat brain acetylcholinesterase inhibition by chlorofos: kinetic aspects and analytical applications. Electrochimica acta, 55 (2009) 516-520.
[79] M, Pohanka, P, Dobes, L. Drtinova, K. Kuca, Nerve agents assay using cholinesterase based biosensor. Electroanalysis21 (2009), 1177-1182
[80] K. E. Paul, T. L. Breen, J. Aizenberg, G. M. Whitesides, Maskless photolithography: Embossed photoresist as its own optical Element, Appl. Phys. Lett., 73, (1998), 2893-2895.
[81] G. Schottner, Hybrid Sol-Gel-Derived Polymers: Applications of Multifunctional Materials, Chem. Mater. 13 (2001), 3422-3435.
[82] B. Mednikarov, M. Sahatchieva, Photolithagraphic structuring with evaporated inorganic photoresist, Journal of optoelectronics and Advanced Materials 7 (2005), 1415 - 1419
[83] H. Ridaoui, F. Wieder, A. Ponche, O. Soppera, Direct ArF laser photopatterning of metal oxide nanostructures prepared by the sol–gel route, Nanotechnology 21 (2010) 1-10
[84] A. del Campo, E. Arzt, Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem Rev 108 (2008), 911–955.
[85] H. Yang, A. Jin, Q. Luo, C. Gu, Z. Cui. Comparative study of e-beam resist processes at different development temperature. Microelectron Eng 84 (2007), 1109–1121.
[86] H. Elsner, H. Meyer. Nanometer and high aspect ratio patterning by electron beam lithography using a simple DUV negative tone resist. Microelectron Eng 57 (2001), 291–297.
[87] J. M. Li, C. Liu, L.Y. Zhua, The formation and elimination of polymer bulges in CO2 laser microfabrication, Journal of Materials Processing Technology 209 (2009) 4814–4821
[88] Q. Xie, M.H. Hong, H.L. Tan, G.X. Chen, L.P. Shi, T.C. Chong, Fabrication of nanostructures with laser interference lithography, Journal of Alloys and Compounds 449 (2008) 261–264
[89] P.-F. Chauvy, P. Hoffmann, D. Landolt, Electrochemical micromachining of titanium using laser oxide film lithography: excimer laser irradiation of anodic oxide, Applied Surface Science 211 (2003) 113–127
[90] S. A. Baeurle, A. A. Gusev. On the glassy state of multiphase and pure polymer materials. Polymer 47 (2006), 6243–6253.
[91] H. Schift, S. Bellini, J. Gobrecht, F. Reuther, M. Kubenz, Fast heating and cooling in nanoimprint using a spring-loaded adapter in a preheated press. Microelectron Eng 84 (2007) 932–937.
[92] H. Schift, Nanoimprint lithography: an old story in modern times? A review. J Vac Sci Technol B 26 (2008), 458–529.
[93] S. Chou, P. Krauss, P. Renstrom. Imprint lithography with 25- nanometer resolution. Science 272 (1996), 85–91.
[94] H. Becker, W. Dietz, P. Dannberg, Microfludic manifolds by polymer hot embossing for μ-TAS application, Proceedings of Micro Total Analysis Systems, 98 (1998) 253-256.
[95] P, Choi, P. Fu, L. Guo, Siloxane copolymers for nanoimprint lithography. Adv Funct Mater 17 (2007), 65–70.
[96] Y. Xia, G. M. Whitesides, Soft lithography. Angew Chem Int Ed 37 (1998) 551–625.
[97] J. P. Rolland, R. M. Van Dam, D. A. Schorzman, S. R. Quake, J. M. DeSimone, Solvent-Resistant Photocurable “Liquid Teflon” for Microfluidic Device Fabrication, J. AM. CHEM. SOC. 126 (2004) 2322-2323
[98] X. Ren, M. Bachman, C. Sims, G.P. Li, N. Allbritton, Electroosmotic properties of microfluidic channels composed of poly (dimethylsiloxane), J. Chromatogr. B 762 (2001) 117–125
[99] Y. Berdichevsky, J. Khandurina, A. Guttman, Y.-H. Lo, UV/ozone modification of poly(dimethylsiloxane) microfluidic channels, Sensors and Actuators B 97 (2004) 402–408
[100] J. A. Vickers, M. M. Caulum, C. S. Henry, Generation of Hydrophilic Poly(dimethylsiloxane) for High-Performance Microchip Electrophoresis, Anal. Chem. 78 (2006), 7446-7452
[101] A.Tiselius, A new apparatus for electrophoretic analysis of colloidal mixtures, Trans. Faraday Soc, 33 (1937), 524-531
[102] O. Olsvik, J. Wahlberg, B. Petterson, Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains". J. Clin. Microbiol. 31 (1993) 22–27.
[103] K. Weber, M. Osborn, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 244 (1969): 4406–4412.
[104] Q. V. Winkle, "Electrokinetic phenomena," in AccessScience, ©McGraw-Hill Companies, 2008
[105] D. J. Harrison, A. Manz, Z. Fan, H. Ludi, H. M. Widmers, Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip, Anal. Chem. 64 (1992) 1928-1932
[106] S. C. Jacobson, R. Hergenoder, L. B. Koutny, R. J. Warmack, J. M. Ramsey. Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices, Anal. Chem. 66 (1994), 1107-1113
[107] S. C. Jacobson, L. B. Koutny, R. Hergenroder, A. W. Moore, d J. M. Ramsey, Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor, Anal. Chem. 66 (1994), 3472-3476
[108] S. C. Jacobson, R.Hergenruder, A.W. Moore, J. M. Ramsey, Precolumn Reactions with Electrophoretic Analysis Integrated on a Microchip, Anal. Chem.66 (1994) 4127-4132
[109] Y. Liu, J. A. Vickers, C. S. Henry, Simple and sensitive electrode design for microchip electrophoresis/electrochemistry, Anal. Chem. 76 (2004) 1513-1517
[110] T. Wang, J.H. Aiken, C.W. Huie, R.A. Hartwick, Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis. Anal. Chem. 63 (1991) 1372.
[111] C. Culbertson, J.Jorgenson, Lowering the UV Absorbance Detection Limit in Capillary Zone Electrophoresis Using a Single Linear Photodiode Array Detector, Anal. Chem. 70 (1998), 2629–2638.
[112] B. H. Huynh, B. A. Fogarty, P. Nandi , S. M. Lunte, A microchip electrophoresis device with on-line microdialysis sampling and on-chip sample derivatization by naphthalene 2,3-dicarboxaldehyde/2-mercaptoethanol for amino acid and peptide analysis, Journal of Pharmaceutical and Biomedical Analysis 42 (2006) 529–534
[113] L. J. Jin, B. C. Giordano, J. P. Landers, Dynamic Labeling during Capillary or Microchip Electrophoresis for Laser-Induced Fluorescence Detection of Protein-SDS Complexes without Preor Postcolumn Labeling, Anal. Chem. 73, (2001), 4994-4999
[114] X. Huang, R. N. Zare Improved End-Column Conductivity Detector for Capillary Zone Electrophoresis, Anal. Chem. 63 (1991), 2193-2196
[115] J. Bastemeijer, W. Lubking, F. Laugere, Electronic protection method for conductivity detectors in micro capillary electrophresis devices, sensor and actuat. B 83 (2002) 98-103.
[116] D. Kaniansky, V. Zelenska´, M. Masa´r, F. Iva´nyi, Sˇ . Gazd´ıkova, Contactless conductivity detection in capillary zone electrophoresis, Journal of Chromatography A, 844 (1999) 349–359
[117] M. Pumera, J. Wang, F. Opekar, I. Jelı´nek, J. Feldman, H. Lo1we, S. Hardt, Contactless Conductivity Detector for Microchip Capillary Electrophoresis, Anal. Chem. 74 (2002) 1968-1971
[118] J. Lichtenberg, N.F. de Rooij, E. Verpoorte A microchip electrophoresis system with integrated in-plane electrodes for contactless conductivity detection. Electrophoresis, 23 (2002), 3769
[119] C.-Y. Lee, C.M. Chen, G.-L. Chang, C.-H. Lin, L.-M. Fu, Fabrication and characterization of semicircular detection electrodes for contactless conductivity detector – CE microchips. Electrophoresis 27 (2006) 5043-5050.
[120] S. R. Wallenborg, L. Nyholm, C. E. Lunte, End-Column Amperometric Detection in Capillary Electrophoresis: Influence of Separation-Related Parameters on the Observed Half-Wave Potential for Dopamine and Catechol, Anal. Chem. 71 (1999) 544-549.
[121] W. Z. Lu, R. M. Cassidy, Background Noise in Capillary Electrophoretic Amperometric Detection. Anal. Chem. 66 (1994), 200-204.
[122] R. A. Wallingford, A. G. Ewing, Capillary Zone Electrophoresis with Electrochemical Detection, Anal. Chem. 59 (1987), 1762-1766.
[123] A. T. Woolley, K. Lao, A. N. Glazer, R. A. Mathies, Capillary Electrophoresis Chips with Integrated Electrochemical Detection, Anal. Chem. 70 (1998), 684-688
[124] M. H. Ghanim, M. Z. Abdullah, Integrating amperometric detection with electrophoresis microchip devices for biochemical assays: Recent developments, Talanta 85 (2011) 28–34
[125] Y. Xiao, K. Wang, X. Yu, J. Xu, H. Chen, Separation of aminophenol isomers in polyelectrolyte multilayers modified PDMS microchip, Talanta 72 (2007) 1316–1321
[126] R. S. Martin, K. L. Ratzlaff, B. H. Huynh, S. M. Lunte, In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat, Anal. Chem. 74 (2002) 1136-1143
[127] G.-S. Joo, S.K. Jha, Y.-S. Kim A capillary electrophoresis microchip for amperometric detection of DNA. Curr. Appl. Phys. 9 (2009), e222–e224
[128] A. Arora, J. C. T. Eijkel, W. E. Morf, A. Manz,, A Wireless Electrochemiluminescence Detector Applied to Direct and Indirect Detection for Electrophoresis on a Microfabricated Glass Device, Anal. Chem. 73 (2001), 3282-3288
[129] F. Mavre´, K. Chow, E. Sheridan, B. Chang, J. A. Crooks, R. M. Crooks, A Theoretical and Experimental Framework for Understanding Electrogenerated Chemiluminescence (ECL) Emission at Bipolar Electrodes, Anal. Chem. 81 (2009), 6218–6225
[130] D. R. Laws, D. Hlushkou, R. K. Perdue, U. Tallarek, R.M. Crooks, Bipolar Electrode Focusing: Simultaneous Concentration Enrichment and Separation in a Microfluidic Channel Containing a Bipolar Electrode, Anal. Chem. 81 (2009), 8923–8929
[131] H. Lee, S. Chen, Microchip capillary electrophoresis with amperometric detection for several carbohydrates, Talanta 64 (2004) 210–216.
[132] J. Wang, G. Chen, M. P. Chatrathi, A. Fujishima, D. A. Tryk, D. Shin, Microchip Capillary Electrophoresis Coupled with a Boron-Doped Diamond Electrode-Based Electrochemical Detector, Anal. Chem. 75 (2003), 935-939
[133] J. Wang, G. Chen, M. P. Chatrathi, M. Musameh, Capillary Electrophoresis Microchip with a Carbon Nanotube-Modified Electrochemical Detector, Anal. Chem. 76 (2004), 298-302
[134] Y. Liu, J. A. Vickers, C. S. Henry, Simple and Sensitive Electrode Design for Microchip Electrophoresis/Electrochemistry, Anal. Chem.76 (2004) 1513-1517
[135] J. Wang, B. Tian, E. Sahlin, Micromachined Electrophoresis Chips with Thick-Film electrochemical Detectors, Anal. Chem. 71 (1999) 5436-5440
[136] D. Chen, F. Hsu, D. Zhan, C. Chen, Palladium Film Decoupler for Amperometric Detection in Electrophoresis Chips, Anal. Chem. 73 (2001) 758-762
[137] A. A. Dawoud , T. Kawaguchi and R. Jankowiak, Integrated microfluidic device with an electroplated palladium decoupler for more sensitive amperometric detection of the 8-hydroxy-deoxyguanosine (8-OH-dG) DNA adduct, Anal. Bioanal. Chem. 388 (2007) 245–252
[138] K. Liao , C. Chen, H. Huang, C. Lin, Poly(methyl methacrylate) microchip device integrated with gold nanoelectrode ensemble for in-column biochemicalreaction and electrochemical detection, Journal of Chromatography A, 1165 (2007) 213–218
[139] C. Chen, G. Chang, C. Lin, Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes. Journal of Chromatography A, 1194 (2008) 231–236
[140] H. M. Wallace, A. V. Fracer and A. Hughes, A perspective of polyamine metabolism, Biochem. J. 376 (2003) 1-14.
[141] T. Thomas, T. J. Thomas, Polyamine metabolism and cancer J. Cell. Mol. Med. 7 (2003) 113-126.
[142] M. Y. Khuhawar, G.A. Qureshi, Polyamines as cancer markers: applicable separation methods, Journal of Chromatography B, 764 (2001) 385–407
[143] J. Harada, M. Sugimoto, Polyamines prevent apoptotic cell death in cultured cerebellar granule Neurons Brain Res. 753 (1997) 251-259.
[144] F. R. Antoine, C. I. Wei, R. C. Littell, M. R. Marshall, HPLC Method for Analysis of Free Amino Acids in Fish Using o-Phthaldialdehyde Precolumn Derivatization J. Agric. Food Chem. 47 (1999) 5100-5107.
[145] G. Vinci, M.L. Antonelli, Biogenic amines: quality index of freshness in red and white meat. Food Control 13 (2002) 519-524.
[146] K. Maruta, R. Teradalra, N. Watanabe, T. Nagatsu, M. Asano, K. Yamamoto, T. Matsumoto, Y. Shlonoya, K. Fujita, Simple, sensitive assay of polyamines by high-performance liquid chromatography with electrochemical detection after post-column reaction with immobilized polyamine oxidase, Clin. Chem. 35 (1989) 1694-1696.
[147] C. Löser, U. Wunderlich, U. R. Fölsch, Reversed-phase liquid chromatographic separation and simultaneous fluorimetric detection of polyamines and their monoacetyl derivatives in human and animal urine, serum and tissue samples: An improved, rapid and sensitive method for routine application, J. Chromatogr. B 430 (1988) 249-262
[148] Q. Wu, Y. Su, L. Yang, J. Li, J. Ma, C.Wang, Z. Li, Determination of polyamines by high-performance liquid chromatography with chemiluminescence detection. Microchim. Acta 159 (2007) 319-324.
[149] J. Liu, X. Yang, E. Wang, Direct tris(2,2′-bipyridyl)ruthenium (II) electrochemiluminescence detection of polyamines separated by capillary electrophoresis. Electrophoresis 24 (2003) 3131-3138.
[150] D.A. Dobberpuhl, J.C. Hoekstra, D.C. Johnson, Pulsed electrochemical detection at gold electrodes applied to monoamines and diamines following their chromatographic separation. Anal. Chim. Acta 322 (1996) 55-62.
[151] M. Koppang, M. Witek, J. Blau, G. M. Swain, Electrochemical oxidation of polyamines at diamond thin-film electrodes. Anal. Chem. 71 (1999) 1188-1195.
[152] J. H. Shin, Y. S. Choi, H. J. Lee, S. H. Choi, J. Ha, I. J. Yoon, H. Nam, and G. S.Cha, A Planar Amperometric Creatinine Biosensor Employing an Insoluble Oxidizing Agent for Removing Redox-Active Interferences, Anal. Chem. 2001, 73, 5965-5971
[153] D. Jacobi, C. Lavigne, J.-M. Halimi, H., Fierrard, C. Andres, C. Couet, F. Maillot,Variability in creatinine excretion in adult diabetic, overweight men and women: Consequences on creatinine-based classification of renal disease, Diabetes Res. Clin. Pract., 80 (2008). 102–107
[154] A. Bökenkamp, W. Hofmann, How to estimate GFR-serum creatinine, serum cystatin C or equations? Clin. Biochem. 40 (2007), 153–161
[155] S. Yaturu, R.D. Reddy, J. Rains, S.K. Jain Plasma and urine levels of resistin and adiponectin in chronic kidney disease. Cytokine, 37 (2007), 1–5
[156] M. Wyss, R. Kaddurah-Daouk Creatine and creatinine metabolism. Phys. Rev., 80 (2000), 1107–1213
[157] C. P. Patel, R.C. George Liquid chromatographic determination of creatinine in serum and urine. Anal. Chem., 53 (1981), 734 –735
[158] J. A. Weber, A. P. Zanten Interferences in current methods for measurements of creatinine. Clin. Chem., 37 (1991), 695–700
[159] G. M. Kale, U. Lad, S. Khokhar, Electrochemical Creatinine Biosensors, Anal. Chem., 80 (2008), 7910–7917
[160] A. J. Killard, M. R. Smyth, Creatinine biosensors: Principles and designs, Trends Biotechnol., 18 (2000), 433–437
[161] G. F. Khan, W. Wernet, A highly sensitive amperometric creatinine sensor, Anal. Chim. Acta, 351 (1997), 151–158
[162] P. C. Pandey, A. P. Mishra, Novel potentiometric sensing of creatinineSens. Actuators B: Chem., 99 (2004), 230–235
[163] R. Koncki, A. Radomska, E. Bodenszac, S. Gląb, Creatinine biosensor based on ammonium ion selective electrode and its application in flow-injection analysis Talanta, 64 (2004), 603–608
[164] C. Martelet, A.P. Soldatkin, J. Montoriol, W. Sant, N. Jaffrezic-Renault, Development of potentiometric creatinine-sensitive biosensor based on ISFET and creatinine deiminase immobilised in PVA/SbQ photopolymeric membrane, Mater. Sci. Eng. C, 21 (2002), 75–79
[165]T. Osaka, S. Komaba, A. Amano, Y. Fujino, H. Mori Electrochemical molecular sieving of the polyion complex film for designing highly sensitive biosensor for creatinine Sens. Actuators B: Chem., 65 (2000), 58–63
[166] M. Trojanowicz, A. Lewenstam, T. Krawczynski vel Krawczyk, F. Lahdesmaki, W. Szczepek Flow Injection Amperometric Detection of Ammonia Using a Polypyrrole-Modified Electrode and Its Application in Urea and Creatinine Biosensors, Electroanalysis, 8 (1996), 233–243
[167] H. J. Huang, Y. T. Shih Stability of dislocation short-range reactions in BCC crystals, Anal. Chim. Acta, 392 (1999), 143–150
[168] M. Heinig, R. J. Johnson, Role of uric acid in hypertension, renal disease, and metabolic syndrome. Clev. Clin. J. Med. 73 (2006) 1059–1064.
[169] J. H. T. Luong, K. B. Male, C. Masson, A.L. Nguyen, Hypoxanthine Ratio Determination in Fish Extract Using Capillary Electrophoresis and Immobilized EnzymesJ. Food Sci. 57 (1992) 77-81.
[170] A. S. Hernandez-Cazares, M.-C. Aristoy, F. Toldra, Hypoxanthine-based enzymatic sensor for determination of pork meat freshness, Food Chemistry 123 (2010) 949–954
[171] J. Wang, Electrochemical nucleic acid biosensors, Anal. Chim. Acta 469 (2002) 63-71.
[172] A. M. Oliveira-Brett, L. N. da Silva, C. M. A. Bret, Adsorption of Guanine, Guanosine, and Adenine at Electrodes Studied by Differential Pulse Voltammetry and Electrochemical Impedance, Langmuir 18 (2002) 2326–2330.
[173] H. Holden, T. Paul, M. Armistead, P. M. Armistead, H. H.Thorp, Oxidation kinetics of guanine in DNA molecules adsorbed onto indium tin oxide electrodes, Anal. Chem. 73 (2001) 558–564.
[174] R. N. Goyal, G. Dryhurst, Redox chemistry of guanine and 8-oxyguanine and a comparison of the peroxidase-catalysed and electrochemical oxidation of 8-oxyguanine, J. Electroanal. Chem. 135(1982), 75–91.
[175] A. M. Oliveira-Brett , V. Diculescu, J. A. P. Piedade, Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode Bioelectrochemistry 55 (2002) 61– 62
[176] J. Zhao, J. P. O’Daly, R.W. Henkens, J. Stonehuerner, A.L. Crumbliss, A xanthine oxidase/colloidal gold enzyme electrode for amperometric biosensor applications, Biosens. Bioelectron. 11 (1996) 493-502.
[177] A.-L. Nguyen, J.H.T. Luong, Development of mediated amperometric biosensors for hypoxanthine, glucose and lactate: a new format, Biosens. Bioelectron. 8 (1993) 421–431.
[178] P. Kalimuthu, S. A. John, Simultaneous determination of epinephrine, uric acid and xanthine in the presence of ascorbic acid using an ultrathin polymer film of 5-amino-1,3,4-thiadiazole-2-thiol modified electrode, Anal. Chimi. Acta 647 (2009) 97–103.
[179] F. Zhang, Z. Wang, Y. Zhang, Z. Zheng, C. Wang, Y. Du, W. Ye, Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode, Talanta 93 (2012) 320– 325
[180] Y.Wang, Simultaneous determination of uric acid, xanthine and hypoxanthine at poly(pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode, Colloids and Surfaces B: Biointerfaces 88 (2011) 614– 621
[181] P. Wang, H. Wu, Z. Dai, X. Zou, Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film Biosens. Bioelectron. 26 (2011) 3339–3345.
[182] M. Zhou, Y. Zhai, S. Dong, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide, Anal. Chem. 81(2009) 5603–5613.
[183] D. Luo, J. Zhi, Fabrication and electrochemical behaviour of vertically aligned boron-doped diamond nanorod forest electrodes Electrochem. Commun. 11(2009) 1093–1096.
[184] D. R. Cooley, W. J. Manning, Estimating the risks and benefits of pesticides: considering of the agroecosystem and intergrated pest management in the use of EBDC fungicides on apples, Environmental Pollution, 88 (1995), 315–320
[185] World Health Organization Environmental Health Criteria, vol. 78, World Health Organization, Geneva (1988)
[186] FAO/PL:1967/M/11/1, WHO/Food Add./68.30.
[187] G. Crnogorac, W. Schwack, Residue analysis of dithiocarbamate fungicides, Trends in Analytical Chemistry, 28 (2009), 40–50
[188] O. H. J. Szolar, Environmental and pharmaceutical analysis of dithiocarbamates, Anal. Chimi. Acta, 582 (2007), 191–200
[189] D. G. Clarke, H. Baum, E. L. Stanley, W. F. Hester, Determination of Dithiocarbamates, Anal. Chem., 23 (1951), 1842–1846
[190] M. Petsch, J. Seipelt, B.X. Mayer-Helm, A novel pre-column derivatization reaction for the determination of dithiocarbamates in plasma by high-performance liquid chromatography, Anal. Chimi. Acta, 516 (2004), 119–124
[191] A. Waseem, M. Yaqoo, A. Nabi , Photodegradation and Flow-Injection Determination of Dithiocarbamate Fungicides in Natural Water with Chemiluminescence Detection, Analytical Sciences, 25 (2009), 395–400
[192] K. Tsukagoshi, N. Okuzono, R. Nakajima, Separation and determination of emetine dithiocarbamate metal complexes by capillary electrophoresis with chemiluminescence detection of the tris(2,29-bipyridine)–ruthenium(II) complex J. Chromatogr.y A, 958 (2002), 283–289
[193] J. S. Aulakh, A. K. Malikb, R. K. Mahajan, Solid phase microextraction-high pressure liquid chromatographic determination of Nabam, Thiram and Azamethiphos in water samples with UV detection: Preliminary data, Talanta, 66 (2005), 266–270
[194] L. Mathew, M. L. P. Reddy, T. P. Rao, C. S. P. Iyer, A. D. Damodaran, Differential pulse anodic stripping voltammetric determination of ziram (a dithiocarbamate fungicide) Talanta, 43 (1996), 73–76
[195] M. S. Lin, B. I. Jan, H. J. Leu, J. S. Lin, Trace measurement of dithiocarbamate based pesticide by adsorptive stripping voltammetry, Analytica Chimica Acta, 388 (1999), 111–117
[196] Y. D. Zhao, W. D. Zhang, H. Chen, Q. M. Luo, Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection, Sensors and Actuators B, 92 (2003), 279–285
[197] C. Deng, J. Chen, X. Chen, M. Wang, Z. Nie, S. Yao, Electrochemical detection of l-cysteine using a boron-doped carbon nanotube-modified electrode, Electrochimica Acta, 54 (2009), 3298–3302
[198] M. S. Lin, J. S. Wang, Determination of an Ethylene Bisdithiocarbamate Based Pesticide (Nabam) by Cobalt Phthalocyanine Modified Carbon Ink Electrode, Electroanalysis, 16 (2004), 904–909
[199] M. Tabeshnia, M. Rashvandavei, R. Amini, F. Pashaee, Electrocatalytic oxidation of some amino acids on a cobalt hydroxide nanoparticles modified glassy carbon electrode. J. Electroanal. Chem. 647 (2010) 181-186.
[200] M. T. El-Haty, A.H. Amrallah, R.A. Mahmoud, A.A. Ibrahim, pH-metric studies on ternary metal complexes of some amino acids and benzimidazole. Talanta 42 (1995) 1711-1717.
[201] A. Safavi, N. Maleki, E. Farjami, F.A. Mahyari, Simultaneous electrochemical determination of glutathione and glutathione disulfide at a nanoscale copper hydroxide composite carbon ionic liquid electrode. Anal. Chem. 81 (2009) 7538-7543.
[202] C. Zhai, C. Li, W. Qiang, J. Lei, X. Yu, H. Ju, Amperometric detection of carbohydrates with a portable silicone/quartz capillary microchip by designed fracture sampling Anal. Chem. 79 (2007) 9427-9432.
[203] C.R. Loscombe, G.B. Cox, J.A.W. Dalziel, Application of a copper electrode as a detector for high-peformance liquid chromatography. J. Chromatogr. A 166 (1978) 403-410.
[204] A. Hidayat, D.B. Hibbert, P.W. Alexander, Amperometric detection of amines using cobalt electrodes after separation by ion-moderated partition chromatography. Talanta 44 (1997) 239-248.
[205] P. Luo, F. Zhang, R.P. Baldwin, Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode, Anal. Chem. 63 (1991) 1702-1207.
[206] H.-H. Strehblow, B. Titze, The investigation of the passive behaviour of copper in weakly acid and alkaline solutions and the examination of the passive film by esca and ISS, Electrochim. Acta 25 (1980) 839-850.
[207] A.V. Zelewsky, Stereochemistry of Coordination Compounds, John Wiley & Sons, New York, 1996.
[208] J.-M. Zen, H.-H. Chung, A.S. Kumar, Selective Detection of o-Diphenols on Copper-Plated Screen-Printed Electrodes, Anal. Chem. 74 (2002) 1202-1206.
[209] M. M. Kimberly, J. H. Goldstein, Determination of pKa values and total proton distribution pattern of spermidine by carbon-13 nuclear magnetic resonance titrations, Anal. Chem. 53 (1981) 789-793.
[210] A. Gugliucci, Polyamines as clinical laboratory tools, Clin. Chim. Acta 344 (2004) 23-35.
[211] J. W. Suh, S. H. Lee, B. C. Chung, J. Park, Urinary polyamine evaluation for effective diagnosis of various cancers, J. Chromatogr. B 688 (1997) 179-186.
[212] M. A. Witek, G.M. Swain, Aliphatic polyamine oxidation response variability and stability at boron-doped diamond thin-film electrodes as studied by flow-injection analysis, Anal. Chim. Acta 440 (2001) 119-129.
[213] X. Sun, X. Yang, E. Wang, Determination of biogenic amines by capillary electrophoresis with pulsed amperometric detection, J. Chromatogr. A 1005 (2003) 189-195.
[214] Z. Y. Yan, C.J. Jiao, Y.P. Wang, F.M. Li, Y.M. Liang, Z.X. Li, A method for the simultaneous determination of β-ODAP, α-ODAP, homoarginine and polyamines in Lathyrus sativus by liquid chromatography using a new extraction procedure, Anal. Chim. Acta 534 (2005) 199-205.
[215] M. Wimmerovaˇı, L. Macholaˇın, Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: A novel approach for enzyme immobilization, Biosens. Bioelectron. 14 (1999) 695-702.
[216] R. W. Frei, W. T. Kok, H.B. Hanekamp, P. Bos, Amperometric detection of amino acids with a passivated copper electrode, Anal. Chim. Acta., 142 (1982), 31–45
[217] J. Niclos-Gutierrez, M. Tribet, B.A. Covelo, G. Sicilia-Zafra, R. Navarrete- Casas, D. Choquesillo-Lazarte, J.M. Gonza’lez-Pe’rez, A. Castineiras, Ternary copper(II) complexes with N-carboxymethyl-l-prolinato(2−) ion and imidazole or creatinine: A comparative study of the interligand interactions influencing the molecular recognition and stability, J. Inorg. Biochem., 99 (2005), 1424–1432
[218] J. H. Shin, Y.S. Choi, H. J. Lee, S. H. Choi, J. Ha, I. J. Yoon, H. Nam, G. S. Cha, A Planar Amperometric Creatinine Biosensor Employing an Insoluble Oxidizing Agent for Removing Redox-Active Interferences Anal. Chem. 73 (2001) 5965-5971
[219] J.-C. Chen, A.S. Kumar, H.-H. Chung, S.-H. Chien, M.-C. Kuo, J.-M. Zen, An enzymeless electrochemical sensor for the selective determination of creatinine in human urine, Sensors and Actuators B 115 (2006) 473–480
[220] A. Radomska, E. Bodenszac, S. Gł˛ab, R. Koncki, Creatinine biosensor based on ammonium ion selective electrode and its application in flow-injection analysis Talanta, 64 (2004) 603–608
[221] P. C. Falco´, L.A. T. Genaro, S. M.r Lloret,F. B. Gomez, A. S. Cabeza, C. M. Legua, Creatinine determination in urine samples by batchwise kinetic procedure and flow injection analysis using the Jaffé reaction: chemometric study, Talanta 55 (2001) 1079–1089
[222] W. Song, W. Wang, L. Zhang, S. Tong, X. Li, Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination Biosens. Bioelectron., 25 (2009) 708–714.
[223] P. R. Tomás, M. L. Carmen, V. Tomás, C. Rocio, Flow-injection fluorimetric determination of nabam and metham, Talanta, 43 (1996), 193–198
[224 ] X. Tang, Y. Liu, H. Hou, T. You, A nonenzymatic sensor for xanthine based on electrospun carbon nanofibers modified electrode, Talanta 83 (2011) 1410–1414
[225] Z. Wang, X. Dong, J. Li, An inlaying ultra-thin carbon paste electrode modified with functional single-wall carbon nanotubes for simultaneous determination of three purine derivatives, Sens. & Actuator B 131 (2008) 411–416
[226] X. Niu, W. Yang, J. Ren, H. Guo, S. Long, J. Chen, J. Gao, Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode, Electrochimi. Acta 80 (2012) 346– 353
[227] D. Sun, Y. Zhang, F. Wang, K. Wu, J. Chen, Y. Zhou, Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica, Sens. & Actuat. B 141 (2009) 641–645
[228] Y. Fan, K.-J. Huang, D.-J. Niu, C.-P. Yang, Q.-S. Jing, TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine, Electrochimi. Acta 56 (2011) 4685–4690
[229] T. A. Ivandini, K. Honda, T. N. Rao, A. Fujishima, Y. Einaga, Simultaneous detection of purine and pyrimidine at highly boron-doped diamond electrodes by using liquid chromatography, Talanta 71 (2007) 648–655
[230] Y. Z. Zhang, Y. Pan, S. Su, L.P. Zhang, S.P. Li, M.W. Shao, A Novel functionalized single-wall carbon nanotube modified electrode and Its application in determination of dopamine and uric acid in the presence of high concentrations of ascorbic acid modified GCE, Electroanalysis 19 (2007) 1695-1701
[231] B. Zhang, D. Huang, X. Xu, G. Alemu, Y. Zhang, F. Zhan, Y. Shen, M. Wang, Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes, Electrochimi. Acta 91 (2013) 261– 266
[232] M. V. B. Zanoni, E. I. Rogers, C. Hardacre, R. G. Compton, The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids, Anal. Chimi. Acta 659 (2010) 115–121.
[233] A. T., Woolley, R. A. Mathies, Ultra-High-Speed DNA Sequencing Using Capillary Electrophoresis Chips, Anal. Chem. 67 (1995) 3676 – 3680.
[234] J. Han, A. K. Singh, Rapid protein separations in ultra-short microchannels: microchip sodium dodecyl sulfate–polyacrylamide gel electrophoresis and isoelectric focusing, Journal of Chromatography A, 1049 (2004) 205–209
[235] M. Pumera, X. Llopis, A. Merkoci, S. Alegret, Microchip Capillary Electrophoresis with a Single-Wall Carbon Nanotube Gold Electrochemical Detector for Determination of Aminophenols and Neurotransmitters, Microchim Acta 152 (2006) 261–265
[236] J. Wang , G. Chen, A. Muck Jr. , M. P.Chatrathi ,A. Mulchandani, W. Chen, Microchip enzymatic assay of organophosphate nerve agents, Analytica Chimica Acta 505 (2004) 183–187
[237] Y.-H. Dou, N. Bao, J.-J. Xu, H.-Y. Chen, A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis, Electrophoresis 23 (2002) 3558–3566.
[238] J. Wang, B. Tian, E. Sahlin, Micromachined Electrophoresis Chips with Thick-Film Electrochemical Detectors, Anal. Chem. 71 (1999) 5436-5440
[239] Y. Zeng, H. Chen, D.-W. Pang, Z. L. Wang, J.-K. Cheng, Microchip Capillary Electrophoresis with Electrochemical Detection, Anal. Chem. 74 (2002) 2441-2445
[240] R. P. Baldwin, T. J. Roussel, Jr. M. M. Crain, V. Bathlagunda, D. J. Jackson, J. Gullapalli, J. A. Conklin, R. Pai, J. F. Naber, K. M. Walsh, R. S. Keynton, Fully Integrated On-Chip Electrochemical Detection for Capillary electrophoresis in a Microfabricated Device, Anal. Chem. 74 (2002) 3690-3697
[241] D. Chen, F.-L. Hsu, D.-Z. Zhan, C.-h. Chen, Palladium Film Decoupler for Amperometric Detection in Electrophoresis Chips, Anal. Chem. 73 (2001) 758-762
[242] J. Yan, Y. Du, J. Liu, W. Cao, X. Sun, W. Zhou, X. Yang, E. Wang, Fabrication of Integrated Microelectrodes for Electrochemical Detection on Electrophoresis Microchip by Electroless Deposition and Micromolding in Capillary Technique, Anal. Chem. 75 (2003) 5406-5412.
[243] Y. Kong, H. Chen, Y. Wang, S.A. Soper, Fabrication of a gold microelectrode for amperometric detection on a polycarbonate electrophoresis chip by photodirected electroless plating, Electrophoresis 27 (2006), 2940–2950
[244] N. E. Hebert, B. Snyder, R. L. McCreery, W. G. Kuhr, S. A. Brazill, Performance of Pyrolyzed Photoresist Carbon Films in a Microchip Capillary Electrophoresis Device with Sinusoidal Voltammetric Detection, Anal. Chem. 75 (2003) 4265-4271.
[245] J. A. Vickers, B. M. Dressen, M. C. Weston, K. Boonsong, O. Chailapakul, D. M. Cropek, C. S. Henry, Thermoset polyester as an alternative material for microchip electrophoresis/ Electrochemistry, Electrophoresis 28 (2007) 1123–1129
[246] R. S. Martin, K. L. Ratzlaff, B. H. Huynh, S. M. Lunte, In-Channel Electrochemical Detection for Microchip Capillary Electrophoresis Using an Electrically Isolated Potentiostat, Anal. Chem. 74 (2002) 1136-1143.
[247] Y. Ding, A. Ayon, C. D. Garc´ıa, Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis, Analytica Chimica Acta 584 (2007) 244–251
[248] M. L. Kovarik, M. W. Li, R. S. Martin, Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/ electrochemistry, Electrophoresis 26 (2005) 202–210.
[249] J. S. Rossier, R. Ferrigno, H. H. Girault, Electrophoresis with electrochemical detection in a polymer Microdevice, J. Electroanal. Chem. 492 (2000) 15–22.
[250] Y. Kong, H. Chen, Y. Wang, S. A. Soper, Fabrication of a gold microelectrode for amperometric detection on a polycarbonate electrophoresis chip by photodirected electroless plating, Electrophoresis 27 (2006) 2940–2950.
[251] N. A. Lacher, S. M. Lunte, R. S. Martin, Development of a Microfabricated Palladium Decoupler/Electrochemical Detector for Microchip Capillary Electrophoresis Using a Hybrid Glass/ Poly(dimethylsiloxane) Device, Anal. Chem. 76 (2004) 2482-2491.
[252] M. Casta ˜no-Alvareza, M. T. Fernandez-Abedul, A. Costa-Garcia, M. Agirregabiria, L. J. Fernandez, J. Mi. Ruano-Lopez, B. Barredo-Presa, Fabrication of SU-8 based microchip electrophoresis with integrated electrochemical detection for neurotransmitters, Talanta 80 (2009) 24–30
[253] R. P. Baldwin, T. J. Roussel, Jr., M. M. Crain, V. Bathlagunda, D. J. Jackson, J. Gullapalli, J.A. Conklin, R. Pai, J. F. Naber, K. M. Walsh, R. S. Keynton, Fully Integrated On-Chip Electrochemical Detection for Capillary Electrophoresis in a Microfabricated Device, Anal. Chem. 74 (2002), 3690-3697
[254]Y. Wang, H. Chen, Integrated capillary electrophoresis amperometric detection microchip with replaceable microdisk working electrode II. Influence of channel cross-sectional area on the separation and detection of dopamine and catechol, J. Chromatogr. A, 1080 (2005) 192–198
[255] Y. Ding, A. Ayon, C. D. Garc´ıa, Electrochemical detection of phenolic compounds using cylindrical carbon-ink electrodes and microchip capillary electrophoresis, Anal. Chimi. Acta 584 (2007) 244–251
[256] A. Manz, N. Graber, H. M. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing, Sens. Actuator B Chem. 1 (1990), 244-248.
[257] D. R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, , Micro total analysis systems. 1. Introduction, theory, and technology, Anal. Chem. 74 (2002), 2623-2636.
[258] K. D. Lukacs, J. W. Jorgenson, Capillary zone electrophoresis: Effect of physical parameters on separation efficiency and quantitation, J. High Resolut. Chromatogr., 8 (1985) 407-411
[259] J. H. Knox, K.A. McCormack, Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance, Chromatographia, 38 (1994), 207-214
[260] H. Ye, Z. Gu, D. H. Gracias, Kinetics of Ultraviolet and Plasma Surface Modification of Poly(dimethylsiloxane) Probed by Sum Frequency Vibrational Spectroscopy, Langmuir 22 (2006), 1863-1868.
[261] K. F. Schrum, J. M. Lancaster III, S. E. Johnston, S. D. Gilman, Monitoring electroosmotic flow by periodic photobleaching of a dilute, neutral fluorophore. Anal. Chem. 72 (2000), 4317-4321.
[262] J. A. Vickers, M. M. Caulum, C. S. Henry, Generation of Hydrophilic Poly(dimethylsiloxane) for High-Performance Microchip Electrophoresis. Anal. Chem. 78 (2006), 7446-7452
[263] V. Hruska, B. Gas, Kohlrausch regulating function and other conservation laws in electrophoresis. Electrophoresis. 28 (2007), 3-14.
[264] X. Huang, M. J. Gordon, R.N. Zare, Current-Monitoring Method for Measuring the Electroosmotic Flow Rate in Capillary Zone Electrophoresis. Anal. Chem. 60 (1988), 1837-1838
[265] W. Wang, L. Zhao, J.-R. Zhang , J.-J. Zhu, Indirect amperometric measurement of electroosmotic flow rates and effective mobilities in microchip capillary electrophoresis. J. Chromatogra. A, 1142 (2007) 209–213
[266] K. Vcelakova, I. Zuskova, E. Kenndler, B. Gas, Determination of cationic mobilities and pKa values of 22 amino acids by capillary zone electrophoresis Electrophoresis 25 (2004) 309-317.
[267] J. L. Pittman, C. S. Henry, S. D. Gilman, Experimental Studies of Electroosmotic Flow Dynamics in Microfabricated Devices during Current Monitoring Experiments. Anal. Chem. 75 (2003), 361-370
[268] J. C. StClaire, M. A. Hayes, Heat index flow monitoring in capillaries with interferometric backscatter detection. Anal. Chem. 72 (2000), 4726-4730.
[269] R. M. Saito, C. A. Neves, F. S. Lopes, L. Blanes, J. A. Brito-Neto, C. L. do Lago, Monitoring the Electroosmotic Flow in Capillary Electrophoresis Using Contactless Conductivity Detection and Thermal Marks. Anal. Chem. 79 (2007), 215-223
[270] D.C. Chen, F. L. Hsu, D. Z. Zhan, C.H. Chen, Palladium film decoupler for amperometric detection in electrophoresis chips, Anal. Chem. 73 (2001), 758- 762.
[271] N. A. Lacher, R. S. Martin, S. M. Lunte, Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device. Anal. Chem. 76 (2004), 2482-2491
[272] R. Chen, H. Guo, Y. Shen , Y. Hu, , Y. Sun, Determination of EOF of PMMA microfluidic chip by indirect laser-induced fluorescence detection. Sens. & Actuat. B 114 (2006) 1100–1107
[273] L.-L. Gou, C.-G. Shi, C.-M. Yu, Z.-Q. Pan, N. Bao, H.-Y. Gu, Applying pure water plugs for electroosmotic flow monitoring in microchip Electrophoresis, Sens. & Actuat. B 160 (2011) 1485– 1488.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-07-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信