§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1107201313260300
DOI 10.6846/TKU.2013.00305
論文名稱(中文) 二苯亞甲基山梨醇與醇系統有機膠之結構與性質研究
論文名稱(英文) Studies on the structure-property of the organogels composed of dibenzylidene sorbitol and alcohol system
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 李易晉
研究生(英文) Yi-Chin Lee
學號 600401177
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-06-28
論文頁數 115頁
口試委員 指導教授 - 賴偉淇
委員 - 童世煌
委員 - 楊大毅
關鍵字(中) 自組裝
二苯亞甲基山梨醇
有機膠
關鍵字(英) self-assemble
DBS
organogel
第三語言關鍵字
學科別分類
中文摘要
本研究以二苯亞甲基山梨醇(DBS)之衍生物與醇類極性溶劑所形成有機膠分別形成兩個系統,一方面改變溶劑極性基團與分子量,另一方面改變二苯亞甲基山梨醇分子上的基團作探討;討論其有機膠之結構型態、流變性質、熱性質、分子間作用力。
    由結構與型態中可觀察到DBS形成之馬爾他十字類似球晶外觀,並由SEM與TEM中觀察到DBS與其衍生物自組裝所形成網狀纖維之外觀,DBS有機膠可由SAXS觀察到可能為層狀堆積。由流變性質與熱性質可發現,因PEG溶劑鏈長較長末端基影響相對明顯;長碳鏈與OH末端基使DBS不易自組裝,形成之有機膠強度較弱且有機膠相變化較慢。IR與UV分析可知道雖小分子溶劑OH末端基較多,但分子無長碳鏈阻礙有助於DBS的自組裝。在DBS與其衍生物系統中,由流變性質與熱性質可得知DBS衍生物分子上的碳基團對於自組裝型成立體障礙,阻礙PEG的OH末端基團影響使其較易自組裝並使有機膠易相變化,但不易形成整齊的結構。IR分析可得知1wt%DBS有機膠雖有較強的氫鍵,但形成的纖維強度不足以成膠。藉由UV與文獻推測出DBS苯環為T-shape堆疊而DMDBS為邊對平面之堆疊模式。
英文摘要
We study the organogels of structure, rheology and thermal Properties in two systems by 1,3:2,4 -Dibenzylidene sorbitol(DBS) and alcohol systems. One system is the difference between molecular weight and different end groups of alcohol solvents and another is the structure difference between DBS and its derivers.
By POM analysis, we found the spherulite-like structure and the 3-D network of DBS by TEM and SEM. We also found the DBS organogels aggregate as lamellar type by SAXS. By rheology and thermal Properties analysis, we found the long carbon chains of PEG make the OH end groups more influential ;the long carbon chains of PEG and the OH end groups made DBS cannot self-assemble easily result in weaker organogels and slower phase transition . By IR and UV analysis we found though small molecular weight solvents have more OH end groups, DBS still self-assemble easily in these solvents without long carbon chains barrier.
By rheology and thermal properties analysis, we found the alkyl groups steric resistance of DBS derivers keep the molecules away from PEG OH end groups then made organogelaters self-assemble and phase transition easily. By IR analysis we found though 1wt% DBS organogel has stronger hydrogen bond, the fibers of DBS were too weak to form gel. By UV analysis, we can simulate DBS phenyl rings stack as T-shape (point to face) and DMDBS stack as face to edge structure.
第三語言摘要
論文目次
總目錄

總目錄	V
圖目錄	VII
表目錄	X
第一章 緒論	1
1-1 前言	1
1-2 研究目的	2
第二章 理論背景	3
2-1 流變概念	3
2-1.1 黏彈性模型	4
2-1.2 剪切黏度	6
2-1.3動態流變性質	7
2-2 有機凝膠	8
2-2.1 凝膠	8
2-2.2 DBS有機膠	11
第三章 文獻回顧	12
3-1.1小分子有機膠	12
3-1.2 成膠劑對掌性	15
3-2.1 DBS 型膠化劑	17
3-2.2 DBS有機膠	20
第四章 實驗	25
4-1 實驗藥品	25
4-2 實驗設備	28
4-3 實驗流程	32
4-4 實驗樣品製備	34
第五章 溶劑變化對DBS有機膠性質結果與討論	36
5-1 溶劑變化對DBS有機膠流變性質影響	36
5-1.1 振幅掃描(amplitude sweep)	36
5-1.2 頻率掃描(frequency sweep)	38
5-1.3 凝膠熔解溫度 Td(gel dissolution temperature)	40
5-1.4 成膠時間(gel formation time)與成膠溫度Tf(gel formation temperature)	43
5-2溶劑變化對DBS有機膠結構與型態學影響	48
5-3 溶劑變化對DBS有機膠TGA熱重分析	63
5-4 溶劑變化分子作用力分析	67
5-4.1 分子間與分子內氫鍵作用力	67
5-4.2 苯環交互作用力	73
5-5 溶劑變化對DBS有機膠結論	78
第六章 DBS及衍生物變化對PEG400有機膠結果與討論	79
6-1 DBS及衍生物變化對PEG400有機膠流變性質	79
6-1.1 振幅掃描(amplitude sweep)	79
6-1.2 頻率掃描(frequency sweep)	81
6-1.3 凝膠熔解溫度 Td(gel dissolution temperature)	82
6-1.4成膠時間(gel formation time)與成膠溫度Tf(gel formation temperature)	84
6-2DBS及衍生物變化對PEG400有機膠結構與型態學	86
6-3DBS及衍生物變化對PEG400有機膠TGA熱重分析	96
6-4 DBS及衍生物變化對PEG400有機膠分子作用力分析	99
6-4.1 分子間與分子內氫鍵作用力	99
6-4.2 苯環交互作用力	103
6-5 DBS及衍生物變化對PEG400有機膠結論	107
第七章 參考文獻	110







圖目錄
圖2-2 DBS 結構式	11
圖3-1(a)固態纖維 (b)流體纖維	12
圖3-2 三十六烷層狀堆積示意圖	13
圖 3-3(a) 純DBS球晶	14
圖3-4 (A) (B)雙螺旋纖維SEM圖(C) (D) 雙螺旋纖維TEM圖(E) 雙螺旋纖維示意圖	16
圖3-5 DBS分子結構圖	17
圖3-6 DBS合成示意圖	17
圖3-7 DBS衍生物結構式	18
圖3-8 DBS碳位標示圖	19
圖3-9 DBS在不同末端基PEG中成膠時間與溫度	21
圖3-10 不同濃度DBS/PEG Td流變圖	21
圖3-11 不同濃度DBS與不同末端基Td流變圖	22
圖3-12 純DBS場發掃描式電子顯微鏡圖	22
圖3-13 2wt% DBS/PPG (a)25℃(b)83℃(c)105℃(d)130℃	23
圖3-14 DBS與St、MMA有機膠	24
圖4-1 DBS與不同溶劑相圖	32
圖4-2 不同膠化劑與PEG400相圖	33
圖5-1 3wt%DBS/PEG400 振幅掃描	37
圖5-2 3wt%DBS/溶劑變化振幅掃描	37
圖5-3 3wt%DBS/PEG400 頻率掃描	39
圖5-4 3wt%DBS-溶劑變化頻率掃描	39
圖5-5 3wt%DBS/不同溶劑有機膠凝膠熔解溫度 Td	41
圖5-6 3wt%DBS/PEG400成膠時間	44
圖5-7 3wt% DBS/PEG200成膠時間	44
圖5-8 3wt% DBS/P5G成膠時間	45
圖5-9 3wt% DBS/GL成膠時間	45
圖5-10 3wt% DBS/PG成膠時間	46
圖5-11 3wt% DBS/EG成膠時間	46
圖5-12 PEG400/DBS (a)3wt%(b)4wt%(c)5wt%有機膠POM	51
圖5-13 PEG200/DBS (a)3wt%(b)4wt%(c)5wt%有機膠POM	52
圖5-14 P5G/DBS (a)3wt%(b)4wt%(c)5wt%有機膠POM	53
圖5-15 GL/DBS (a)3wt%(b)4wt%(c)5wt%有機膠POM	54
圖5-16 PG/DBS (a)3wt%(b)4wt%(c)5wt%有機膠POM	55
圖5-17 EG/DBS (a)3wt%(b)4wt%(c)5wt%有機膠POM	56
圖5-18 3wt%DBS/PEG400(a)未沖洗(b)以水沖洗表面SEM	57
圖5-19 3wt%DBS/EG(a)表面 (b)表面皺摺間 SEM	58
圖5-20 3wt%DBS/PEG400(a)50kx (b)100kx TEM	59
圖5-21 3wt%DBS/PEG400 SAXS圖譜	60
圖5-22 3wt%DBS/PEG200 SAXS圖譜	60
圖5-23 3wt%DBS/P5G SAXS圖譜	61
圖5-24 3wt%DBS/GL SAXS圖譜	61
圖5-25 3wt%DBS/PG SAXS圖譜	62
圖5-26 3wt%DBS/EG SAXS圖譜	62
圖5-27純DBS熱重損失圖	63
圖5-28 3wt%DBS/PEG400熱重損失圖	64
圖5-29 3wt%DBS/PEG200熱重損失圖	64
圖5-30 3wt%DBS/P5G熱重損失圖	65
圖5-31 3wt%DBS/GL熱重損失圖	65
圖5-32 3wt%DBS/PG熱重損失圖	66
圖5-33 3wt%DBS/EG熱重損失圖	66
圖5-34 純DBS FT-IR光譜	69
圖5-35 DBS/PEG400有機膠FT-IR光譜	70
圖5-36 DBS/PEG200有機膠FT-IR光譜	70
圖5-37 DBS/P5G有機膠FT-IR光譜	71
圖5-38 DBS/GL有機膠FT-IR光譜	71
圖5-39 DBS/PG有機膠FT-IR光譜	72
圖5-40 DBS/EG有機膠FT-IR光譜	72
圖5-41 苯環錯位示意圖	73
圖5-42 苯環平行位移示意圖	74
圖5-43 DBS/PEG400有機膠 UV/vis圖	76
圖5-44 DBS/PEG200有機膠 UV/vis圖	76
圖5-45 DBS/P5G有機膠 UV/vis圖	76
圖5-46 DBS/GL有機膠 UV/vis圖	77
圖5-48 DBS/EG有機膠 UV/vis圖	77
圖6-1 DBS及衍生物有機膠振幅掃描	80
圖6-2 DBS衍生物/PEG400有機膠頻率掃描	81
圖6-3 不同膠化劑/PEG400有機膠凝膠熔解溫度 Td	83
圖6-4不同膠化劑/PEG400有機膠成膠時間	85
圖6-5 純DBS再結晶外觀	88
圖6-6 純DMDBS再結晶外觀	88
圖6-7 純TBPMN再結晶外觀	89
圖6-8 3wt%DBS/ PEG400 POM	89
圖6-9 3wt%DBS/PEG400未沖洗有機膠SEM	90
圖6-10 3wt%DBS/PEG400水沖洗有機膠SEM	90
圖6-11 1wt%DMDBS/PEG400未沖洗有機膠SEM	91
圖6-12 1wt%DMDBS/PEG400水沖洗有機膠SEM	91
圖6-13 1wt%TBPMN/PEG400未沖洗有機膠SEM	92
圖6-14 1wt%TBPMN/PEG400水沖洗有機膠SEM	92
圖6-15 3wt%DBS/PEG400有機膠TEM	93
圖6-16 1wt%DMDBS/PEG400有機膠TEM	94
圖6-17 1wt%TBPMN/PEG400有機膠TEM	95
圖6-18純膠化劑粉末熱重損失圖	97
圖6-19 DBS有機膠熱重損失圖	97
圖6-20 DMDBS有機膠熱重損失圖	98
圖6-21 TBPMN有機膠熱重損失圖	98
圖6-22 純膠化劑FT-IR光譜	101
圖6-23 DBS與有機膠FT-IR光譜	101
圖6-24 DMDBS與有機膠FT-IR光譜	102
圖6-25 TBPMN與有機膠FT-IR光譜	102
圖6-26 (a)苯環堆疊(b)甲苯堆疊(c)受束縛苯環堆疊式意圖	103
圖6-27苯環平行位移示意圖	104
圖6-28 DMDBS苯環堆疊示意圖	105
圖6-29 DBS/PEG400有機膠 UV/vis圖	106
圖6-30 DMDBS/PEG400有機膠 UV/vis圖	106
圖6-31 TBPMN/PEG400有機膠 UV/vis圖	106
圖6-32 DBS堆疊式意圖	108
圖6-33 DMDBS堆疊式意圖	109
圖6-34 TBPMN堆疊式意圖	109



表目錄

表5-1 DBS/不同溶劑有機膠凝膠熔解溫度 Td比較表	42
表5-2 不同溶劑基團比較表	42
表5-3 不同溶劑有機膠之成膠時間與成膠溫度Tf	47
表6-1不同膠化劑有機膠凝膠熔溫度Td比較表	83
表6-2不同膠化劑有機膠之成膠時間與成膠溫度Tg	85
參考文獻
1.	I. Natkaniec, I. Majerza' Experimental and Theoretical IR, R, and INS Spectra of 2,2,4,4-Tetramethyl-3-T-Butyl-Pentane-3-Ol’, Journal of molecular structure , 788(2006), 93–101.
2.	J. F.Steffe, (1996). Rheological methods in food process engineering. Freeman press.
3.	W. R. Schowalter, (1978). Mechanics of non-Newtonian fluids (pp. 144-147). Oxford: Pergamon press.
4.	H. Cao, K. Yu , K. Qian ,X. Sha ,Y. Chen, 'Shear-Thickening Behavior of Modified Silica Nanoparticles in Polyethylene Glycol', Journal of Nanoparticle Research , 14(2012), 1–9
5.	J. C. Leroux , A. Vintiloiu, 'Organogels and Their Use in Drug Delivery — a Review', Journal of Controlled Release , 15(2008), 179–192.
6.	Hunter, R. J. & White, L. R. (1992). Foundations of Colloid Science, Vol. 1 Oxford University Press. New York.
7.	R. Stan ,S. RoŞca, C. Ott, S. RoŞca, E. Perez,I. R. Lattes and A. Lattes, 'D-Sorbitol Based Organogelators with Nitrogen Groups', Revue Roumaine de Chimie,  51(2006), 609–613.
8.	呂世源 魏得育, 科學發展 2006年6月,402期, p. 60 – 65.
9.	R. J. Spontak* ,D. J. Mercurio,'Morphological Characteristics of 1,3:2,4-Dibenzylidene Sorbitol/Poly(Propylene Glycol) Organogels' , Journal of Physical Chemistry B , 105(2001), 2091–2098.
10.	M. Shuster , J. Lipp, A. E. Terry, Y. Cohen, 'Fibril Formation of 1,3:2,4-Di(3,4-Dimethylbenzylidene) Sorbitol in a Polypropylene Melt',  Langmuir , 22(2006), 6398–6402.
11.	C. K. Hall, E. A. Wilder, S. A. Khan,R. J. Spontak , 'Effects of Composition and Matrix Polarity on Network Development in Organogels of Poly(Ethylene Glycol) and Dibenzylidene Sorbitol',Langmuir , 19(2003), 6004–6013.
12.	R. G. Weiss,P. Terech, 'Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels', Chemical Review, 97(1997), 3133–3159.
13.	賴柏翔, '以AOT 逆微胞系統製備有機凝膠及二氧化鈦奈米粒子之結構與性質研究', 淡江大學化學工程與材料工程研究所碩士論文 (2010).
14.	W. Helfrich, J. H. Fuhrhop, 'Fluid and Solid Fibers Made of Lipid Molecular Bilayers',Chemical review, 93 (1993), 1565–1582.
15.	H. Kobayashi, J. H. Jung, M. Masuda,T. Shimizu and S. Shinkai, 'Helical Ribbon Aggregate Composed of a Crown-Appended Cholesterol Derivative Which Acts as an Amphiphilic Gelator of Organic Solvents and as a Template for Chiral Silica Transcription', Journal of American Chemical Society, 123 (2001), 8785–8789.
16.	X.D. Xu, J. Zhang, L.J. Chen, Q. Luo, N.W. Wu, D.X. Wang, X.L.Zhao, and H.B. Yang, 'Platinum Acetylide Complexes Containing Iptycene as Cores: A New Family of Unexpected Efficient Organometallic Gelators',  Organometallics, 15 (2011), 4032–4038.
17.	I. Yoshikawa, K. Araki, 'Nucleobase-Containing Gelators', Topics in Current Chemistry, 256 (2005), 133–165.
18.	S. Murdan, G. Gregoriadis, A. T. Florence, 'Novel Sorbitan Monostearate Organogels',Journal of Pharmaceutical Sciences, 88 (1999), 608–614.
19.	陳建助, '利用加入膠化劑製備聚乙二醇膠態電解質及應用於染料敏化電池', 淡江大學化學工程與材料工程學系碩士論文 (2011).
20.	A. R. Hirst, D. K. Smith, 'Dendritic Gelators',Topics in Current Chemistry, 256 (2005), 237–273.
21.	D.J. Abdallah,S. A. Sirchio,and R. G. Weiss, 'Hexatriacontane Organogels. The First Determination of the Conformation and Molecular Packing of a Low-Molecular-Mass Organogelator in Its Gelled State', Langmuir, 16 (2000), 7558–7561.
22.	S. Shinkai, O. Gronwald, 'Sugar-Integrated Gelators of Organic Solvents', Chemistry 7(2001), 4328–4334.
23.	H. Tsutsumi ,S.Yamasaki, 'The Thermal Behavior of 1,3:2,4-Di-O-Benzylidene-D-Sorbitol / Ethylene Glycol Gel',  Bulletin of the Chemical Society of Japan , 69(1996), 561–564.
24.	B. L. Feringa , J. H. van Esch, 'New Functional Materials Based on Selfassembling Organogels: From Serendipity Towards Design', Angewandte Chemie International Edition, 39 (2000), 2263–2266.
25.	M. Colomes , J. P. Desvergne , Frederic Placin, 'A New Example of Small Molecular Non-Hydrogen Bonding Gelators for Organic Solvents', Tetrahedron Letters, 38 (1997), 2665–2668.
26.	H.F. Chowa, J. Zhanga, C.M. Loa, S.Y. Cheunga, K.W. Wong, 'Improving the Gelation Properties of 3,5-Diaminobenzoate-Based Organogelators in Aromatic Solvents with Additional Aromatic-Containing Pendants', Tetrahedron Letters, 63 (2007), 363–373.
27.	Y. Nakatani, M. Watase, H. Itagaki, 'On the Origin of the Formation and Stability of Physical Gels of Di-O-Benzylidene-D-Sorbitol',Journal of Physical Chemistry B , 103 (1999), 2366–2373.
28.	A. Brizard,R. Oda,I. Huc, 'Chirality Effects in Self-Assembled Fibrillar Networks', Topics in Current Chemistry, 256 (2005), 167–218.
29.	Y. Ohashi, S.Yamasaki , H. Tsutsumi, K. Tsujii, 'The Aggregate High-Structure of 1,3:2,4-Di-O-Benzylidene-D-Sorbitol in Organic Gels',  Bulletin of the Chemical Society of Japan,  68(1995), 146–151.
30.	V. K. Potluri, U. Maitra, 'Helical Aggregates from a Chiral Organogelator',Tetrahedron: Assymetry, 12 (2001), 477–480.
31.	H. Tsutsumi ,S. Yamasaki, 'The Phase Transition in the Gel State of the 1,3:2,4 -Di-O-Benzylidene-D-Sorbitol/Ethylene Glycol System', Bullentin of the Chemical Society of Japan (1994), 2053–2056.
32.	A. Brizard, R. Oda, I. Huc, 'Chirality Effects in Self-Assembled Fibrillar ', Topics in Current Chemistry, 256 (2005), 167–218.
33.	K. Yoshida, J.H. Jung, and T. Shimizu, 'Creation of Novel Double-Helical Silica Nanotubes Using Binary Gel System', Langmuir, 18 (2002), 8724–8727.
34.	F.J. Davis, S. Wangsoub, G. R. Mitchell, Robert H. Olley, 'Enhanced Templating in the Crystallisation of Poly(E-Caprolactone) Using 1,3:2,4-Di(4- Chlorobenzylidene) Sorbitol', Macromolecular Rapid Communications, 29(2008), 1861–1865.
35.	M. Werner, M. Kristiansen, T. Tervoort, and P. Smith, 'The Binary System Isotactic Polypropylene/Bis(3,4-Dimethylbenzylidene)Sorbitol: Phase Behavior, Nucleation, and Optical Properties', Macromolecules, 36(2003), 5150–5156.
36.	H. Tsutsumi ,S.Yamasaki , 'Microscopic Studies of 1,3:2,4-Di-O-Benzylidene-D-Sorbitol in Ethylene Glycol', Bulletin of the Chemical Society of Japan 67(1994), 906–911.
37.	H. Tsutsumi ,S. Yamasaki , 'The Dependence of the Polarity of Solvents on 1,3:2,4-Di-O-Benzylidene-D-Sorbitol Gel', Bulletin of the Chemical Society of Japan 68(1995), 123–127.
38.	H. Itagaki , M. Watase , 'Thermal and Rheological Properties of Physical Gels Formed from Benzylidene-D-Sorbitol Derivatives',  Bulletin of the Chemical Society of Japan, 71 (1998), 1457–1466.
39.	C.H. Wu,W. C. Lai, 'Studies on the Self-Assembly of Neat DBS and DBS/PPG Organogels', 'Effect of Hydrophobicity of Monomers on the Structures and Properties of 1,3:2,4-Dibenzylidene-D-Sorbitol Organogels and Polymers Prepared by Templating the Gels', Journal of Applied Polymer Science, 115 (2009), 1113–1119.
40.	S.J. Tseng, W. C. Lai , and Y. S. Chao, 'Effect of Hydrophobicity of Monomers on the Structures and Properties of 1,3:2,4-Dibenzylidene-D-Sorbitol Organogels and Polymers Prepared by Templating the Gels', Langmuir, 27 (2011), 12630–12635.
41.	R. J. Spontak, J. R. Ilzhoefert , 'Effect of Polymer Composition on the Morphology of Self-Assembled Dibenzylidene Sorbitol',Langmuir (1995), 3288–3291.
42.	Socrates, G., & Socrates, G. (2001). Infrared and Raman characteristic group frequencies: tables and charts (pp. 107-113). Chichester: Wiley.
43.	M. O. Sinnokrot , A. L. Ringer, R. P. Lively, andC . D. Sherrill, 'The Effect of Multiple Substituents on Sandwich and T-Shaped Π-Π Interactions',  Chemistry - A European Journal, 12 (2006), 3821–3828.
44.	Mutasem Omar Sinnokrot , Edward F. Valeev , and C. David Sherrill , 'Estimates of the Ab Initio Limit for Π-Π Interactions: The Benzene Dimer', Journal of American Chemical Society, 36 (2002), 10887–10893.
45.	C. Janiak, Journal of the Chemical Society, 'A Critical Account on Π–Π Stacking in Metal Complexes with Aromatic Nitrogen-Containing Ligands', Dalton Transactions, 21(2000), 3885–3896.
46.	K. Domoto , H. Yao, T. Isohashi, and K. Kimura , 'In Situ Detection of Birefringent Mesoscopic H and J Aggregates of Thiacarbocyanine Dye in Solution', Langmuir, 21 (2005), 1067–1073.
47.	G. E. Bennett and K. P. Johnston’, 'Uv-Visible Absorbance Spectroscopy of Organic Probes in Supercritical Water', Journal of Physical and Chemical , 98 (1994), 441–447.
48.	T. Tervoort, K. Bernland, P. Smith, 'Phase Behavior and Optical- and Mechanical Properties of the Binary System Isotactic Polypropylene and the Nucleating/Clarifying Agent 1,2,3-Trideoxy-4,6:5,7-Bis-O-[(4-Propylphenyl) Methylene]-Nonitol',  Polymer , 50(2009), 2460–2464.
49.	G. Portale, L. Balzano, G. W. M. Peters,S. Rastogi, 'Thermoreversible Dmdbs Phase Separation in Ipp: The Effects of Flow on the Morphology',  Macromolecules , 41(2008), 5350–5355.
50.	B. Maigret , C. Chipot, R. Jaffe, D. A. Pearlman, and P. A. Kollman, 'Benzene Dimer: A Good Model for Π-Π Interactions in Proteins? A Comparison between the Benzene and the Toluene Dimers in the Gas Phase and in an Aqueous Solution', Journal of American Chemical Society, 118 (1996), 11217–11224.
51.	B. M. Farrell, W. B. Jennings, J. F. Malone, 'Attractive Intramolecular Edge-to-Face Aromatic Interactions in Flexible Organic Molecules', Accounts of Chemical Research , (2001), 885–894.
52.	B. Marelli, C. E. Ghezzi, J. E. Barraletb, S. N. Nazhat, ' Collagen gel fibrillar density dictates the extent of mineralization in vitro ',Soft Matter, 7( 2011), 9898-9907
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信