淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1107200814521800
中文論文名稱 嵌設有NM區域搜尋法之粒子群聚最佳化法及其在不確定間隔系統數位化再設計之應用
英文論文名稱 Hybrid Particle Swarm Optimizers incorporating an Enhanced NM Simplex Search Method and their Applications in the Digital Redesign of Uncertain Interval Systems
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 高春暉
研究生英文姓名 Chun-Hui Gao
學號 695460617
學位類別 碩士
語文別 中文
口試日期 2008-07-08
論文頁數 87頁
口試委員 指導教授-許陳鑑
委員-王偉彥
委員-盧明智
委員-陳琣{
委員-許陳鑑
中文關鍵字 粒子群聚最佳化法  NM單體搜尋法  中心粒子群聚演算法  不確定間隔系統  數位化再設計 
英文關鍵字 particle swarm optimization  Nelder-Mead simplex search method  center particle swarm optimization  uncertain interval systems  digital redesign 
學科別分類 學科別應用科學電機及電子
中文摘要 本文提出兩種以粒子群聚最佳化法為基礎之混合式演算法,分別與NM單體搜尋法(NM-PSO)以及中心粒子群聚演算法(NM-PSO-C)做結合,針對多階最佳化問題找到最有可能的全域最佳解。
在控制系統方面,我們以PSO演算法為基底,應用在解決不確定間隔系統數位化再設計的問題。作法上係對數位控制器參數作實數編碼後,再與不確定連續時間間隔系統數位化後之模型作結合,以閉迴路數位系統之性能做考慮,並分別以數位再設計系統頻率響應封包圖以及極值系統之增益/相位邊限的相似度為適合度評定機制之指標,藉由與其相對應之類比系統做比較,據以調整數位控制器的參數,使數位化再設計系統之性能能夠接近原類比系統。
英文摘要 This paper proposes hybrid optimization approaches incorporating particle swarm optimization with the use of a center particle in a swarm and an enhanced Nelder-Mead simplex search method to solve multi-dimensional optimization problems.

Thanks to the performance of the proposed optimizer, PSO-based approaches are presented to derive optimal digital controllers for uncertain interval systems based on resemblance of extremal gain/phase margins (GM/PM) and frequency-response, respectively. By combining the uncertain plant and controller, extremal systems of the redesigned digital system having an interval plant and its continuous counterpart can be obtained as the basis for comparison. The design problem is then formulated as an optimization problem of an aggregated error function in terms of deviation on extremal GM/PM and frequency-response between the redesigned digital system and its continuous counterpart, and subsequently optimized by the proposed optimizer to obtain an optimal set of parameters for the digital controller.
論文目次 中文摘要........................................I
英文摘要........................................II
致謝............................................III
目錄............................................IV
圖目錄..........................................VII
表目錄..........................................IX
第一章 前言.....................................1
第二章 演化法則.................................9
2.1 粒子群聚最佳化法.......................9
2.2 NM單體搜尋法...........................13
第三章 改良型NM單體搜尋法.......................18
3.1 擴張程序步驟之改良.....................18
3.1.1 二次擴張..................................18
3.1.2 連續擴張..................................19
3.2 縮小程序步驟之改良.....................20
3.3 改良型NM單體搜尋法之性能評估...........21

第四章 嵌入改良型NM搜尋法之混合型最佳化演算法...25
4.1 嵌入改良型NM搜尋法之粒子群聚最佳化法...26
4.2 混合型NM-PSO-CENTER最佳化法............28
4.3 模擬結果...............................31
4.3.1 比較基準..................................31
4.3.2 混合型最佳化演算法之性能評估..............36
第五章 不確定間隔系統之數位化再設計基於頻率響應之分析.....40
5.1 不確定間隔系統.........................40
5.2 間隔系統之穩定度分析...................41
5.2.1 Kharitonov 定理...........................41
5.2.2 Generalized Kharitonov 定理...............43
5.3 間隔系統之極值增益/相位邊限(GM/PM).....45
5.3.1 極值系統..................................46
5.3.2 求得極值增益/相位邊限之執行步驟...........49
5.4 以PSO演算法為基礎之數位控制器設計......52
5.4.1 以極值系統之增益/相位邊限相似度為評定機制.......52
5.4.2 以頻率響應封包圖相似度為評定機制..........56
5.5 範例...................................60
第六章 結論.....................................69
第七章 未來研究方向.............................71
參考文獻........................................73
附錄............................................81
研究著作........................................86

圖目錄
圖2.1 粒子群聚最佳化法流程圖.................12
圖2.2 NM單體搜尋法之反射程序示意圖...........14
圖2.3 NM單體搜尋法之擴張程序示意圖...........15
圖2.4 (a)NM單體搜尋法之向外收縮程序示意圖....16
圖2.4 (b)NM單體搜尋法之向內收縮程序示意圖....16
圖2.5 (a)當 更好於 時之NM單體搜尋法之縮小程序示意圖..17
圖2.5 (b)當 更好於 時之NM單體搜尋法之縮小程序示意圖..17
圖3.1 二次擴張程序之示意.....................19
圖3.2 連續擴張程序之示意圖...................20
圖4.1 混合式NM-PSO最佳化方法之架構圖.........27
圖4.2 混合式NM-PSO-CENTER最佳化方法之架構圖..30
圖5.1 強健控制之系統方塊圖...................40
圖5.2 具有不確定參數之取樣控制系統...........44
圖5.3 取樣資料系統的閉迴路結構...............45
圖5.4 之Kharitonov矩形......................46
圖5.5 以極值GM/PM為基礎之數位控制器設計方塊圖....53
圖5.6 以頻率響應封包為基礎之數位控制器設計方塊圖..57
圖5.7 經由PSO搜尋得到之數位控制器結合不確定連續時間間隔
系統數位化後之模型之頻率響應封包圖..............62
圖5.8 各種方法所求得之數位控制器結合不確定連續時間間隔系
統數位化後之模型之頻率響應封包圖................67
圖5.9 隨機挑選出在此間隔受控系統內之500組系統參數進行數
位化結合數位控制器之數位系統之頻率響應封包圖....68

表目錄
表3.1 研究比較原始NM及其各種改良型NM的成功率之性能比較23
表3.2 原始NM及其各種改良型NM的平均演化代數之性能比較..24
表4.1 18個測驗函數之格式表............................34
表4.2 演算法控制參數之選取............................35
表4.3 NM、PSO、GA、NM-PSO及NM-PSO-C針對18個測試函數之性
能比較..........................................38
表4.4 各種最佳化方法之列表............................39
表4.5 各種最佳化方法的平均函數評估次數之性能比較......39
表5.1 Extremal GM/PMs of the redesigned digital system
associated with various digital controllers.....62
表5.2 Extremal GM/PMs of the redesigned digital system
associated with various digital controllers.....64
參考文獻 [1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf. Neural Networks, Piscataway, NJ, Vol. 4, 1995, pp. 1942-1948.
[2] K. Deb and R. C. Eberhart, Swarm Intelligence, Academic Press, London, 2001.
[3] Z. L. Gaing, “A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System,” IEEE Transactions on Energy Conversion, Vo1. 19, No. 2, 2004, pp. 384-391.
[4] J. F. Schutte, B. Koh, J. A. Reinbolt, R. T. Haftka, A. D. George, and B. J. Fregly, “Evaluation of a Particle Swarm Algorithm for Biomechanical Optimization,” Journal of Biomechanical Engineering, Vo1. 127, No. 3, 2005, pp. 465-474.
[5] J. F. Schutte and A. A. Groenwold, “A Study of Global Optimization Using Particle Swarms,“ Journal of Global Optimization, Vol. 31, No. 1, 2005, pp. 93-108.
[6] P. N. Suganthan, “Particle swarm optimizer with neighborhood operator,” Proceedings of the 1999 Congress on Evolutionary Computation, Vol. 3, July, 1999, pp. 1958-1962.
[7] J. F. Schutte, J. A. Reinbolt, B. J. Fregly, R. T. Haftka, and A. D. George, “Parallel global optimization with the particle swarm algorithm,” Numerical Methods in Engineering, Vol. 61, No.13, 2004, pp. 2296-2315.
[8] K. E. Parsopoulos and M. N. Vrahatis, “Pecent approaches to global optimization problems through Particle Swarm Optimization,” Natural Computing, Vo1. 1, 2002, pp. 235-306.
[9] Y. Shi and R. C. Eberhart, “ Parameter selection in particle swarm optimization,” in Evolutionary Programming VII: Proc. EP98, New York, Vol. 1447, 1998, pp. 591-600.
[10] Y. Shi, R. Eberhart, “A modified particle swarm optimizer,” Proceedings of the IEEE Conference on Evolutionary Computation, 1998, pp. 69-73.
[11] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization,” Proc. 1999 Congress on Evolutionary Computation, Washington, DC, Vol. 3, 1999, pp. 1951-1957.
[12] H. Yoshida, K. Kawata, Y. Fukuyama, and Y. Nakanishi, “A particle swarm optimization for reactive power and voltage control considering voltage Security Assessment,” IEEE Transactions on Power Systems, Vol. 15, No. 4, 2000, pp. 1232-1239.
[13] N. Shigenori, G. Takamu, Y. Toshiku, and F. Yoshikazu, “A hybrid particle swarm optimization for distribution state estimation,” IEEE Transaction on Power Systems, February, Vol. 18, No. 1, 2003, pp. 60-68.
[14] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm optimization for task assignment problem,” Microprocessors and Microsystems, Vol. 26, No. 8, 2002, pp. 363-371.
[15] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis and parameter selection,” Information Processing Letters, Vol. 85, No. 6, 2003, pp. 317-325.
[16] N. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Computer Journal, Vol. 7, 1965, pp. 308-313.
[17] L. Yu, Q. Zheng, S. Zhewen, and L. Jiang, “Center particle swarm optimization,” Neurocomputing, Vol. 70, No.4-6, 2007, pp. 672-679.
[18] J.S.H. Tsai, C.S. Shieh, and Y.Y. Sun, “Digital modeling and robust digital redesign of sampled-data uncertain systems via the interval tuning bilinear approximation method,” Journal of the Franklin Institute, Vol. 338, 2001, pp. 615-630.
[19] B. Barmish, New Tools for Robustness of Linear Systems, Macmillan Publihing Company, New York, 1994.
[20] C. T. Chen, Analog & digital control system design, Saunders College Publishing, 1993.
[21] K. strom, Computer-controlled systems, Prentice-Hall, 1990.
[22] G. Frank, J. Powell, and M. Workman, Digital Control of Dynamic Systems, Addition-Wesley, 1990.
[23] D. Williamson, Digital control and implementation - Finite wordlength considerations, Prentice Hall, 1991.
[24] R. Middleton and G. Goodwin, Digital control and estimation - A unified approach, Prentice-Hall, 1990.
[25] Doyle JC, Glover K, Khargonekar PP, Francis BA. “State-space solutions to standard H2 and H1 control problems,” IEEE Trans Automatic Control, Vol. 34, No. 8, 1989, pp. 831–847.
[26] Qu Z., Robust control of nonlinear uncertain systems. New York: John Wiley & Sons, 1998.
[27] Geir E. Dullerud, Fernando G. Paganini, A course in robust control theory: a convex approach. New York: Springer, 2000.
[28] H. Hu and C. Hollot, “Robustness of sampled-data control systems having parametric uncertainty: a conic sector approach,” IEEE Transactions on Automatic Control, Vol. 38, pp. 1541-1545, 1993.
[29] S. P. Bhattacharyya, H. Chapellat, and L. Keel, Robust Control – The Parametric Approach, Prentice Hall. 1995.
[30] C. C. Hsu, S. C. Chang, and C. Y. Yu, “Multiobjective Evolutionary Approach to the Design of Optimal Controllers for Interval Plants Based on Parallel Computation,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E89-A, No.9, Sep, 2006, pp.2363-2373.
[31] C. C. Hsu and C. Y. Yu, “Design of optimal controller for interval plant from signal energy point of view via evolutionary approaches,” IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 34, No. 3, June, 2004, pp. 1609-1617.
[32] Y. N. Rosenvasser, K. Yu. Polyakov, and B. P. Lampe, “Application of Laplace Transformation for Digital Redesign of Continuous Control Systems,” IEEE Transactions on automatic control, Vol. 44, No. 4, April, 1999, pp. 883-886.
[33] L. S. Shieh, B. B. Decrocq, and J. L. Zhang, “Optimal digital redesign of cascaded analogue controllers,” in Optimal Control Application and Methods, vol. 12, 1991, pp. 205–219.
[34] L. S. Shieh, J. L. Zhang, and J. W. Sunkel, “A new approach to the digital redesign of continuous-time controllers,” in Control Theory and Advanced Technology, vol. 8, 1992, pp. 37–57.
[35] J. P. Keller and B. D. O. Anderson, “A New Approach to the Discretization of Continuous-Time Controllers,” IEEE Trans. on AC, Vol.37, No.2, 1992, pp. 214-223.
[36] Chen-Chien Hsu, Kai-Ming Tse, and Chi-Hsu Wang, “Digital redesign ofmcontinuous systems with improved suitability using genetic algorithms,” Electronics Letters, Vol. 33, No. 15, 1997, pp. 1345-1347.
[37] Yuichi Chida and Tomoaki Nishimura, “A New Method of Discretization of the Continuous-Time Controllers Based on the Matching of Frequency Response,” SICE-ICASE International Joint Conference 2006, Bexco, Busan, Korea, Oct, 2006, pp. 18-21.
[38] Nadra Rafee, Tongwen Chen, and Om P. Malik, “A Technique for Optimal Digital Redesign of Analog Controllers,” IEEE Transactions on control systems technolgy, Vol. 5, No. 1, January, 1997, pp. 89-99..
[39] M. Clerc and J. Kennedy, “The particle swarm explosion, stability, and convergence in a multidimensional complex space,” IEEE Transaction on Evolutionary Computation, Vol. 6, No. 1, 2002, pp. 58-73.
[40] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle swarm algorithm,” Proceedings IEEE Int’l. Conf. on Systems, Man, and Cybernetics, Vol. 5, 1997, pp. 4104-4108.
[41] R.C. Eberhart, Y. Shi, “Tracking and optimizing dynamic systems with particle swarms,” Proceedings of Congress on Evolutionary Computation, Seoul, Korea, Vol. 1, 2001, pp. 94-100.
[42] S. K. S. Fan and E. Zahara., “A hybrid simplex search and particle swarm optimization for unconstrained optimization,” European Journal of Operational Research, Vol. 181, No.2, 2007, pp. 527-548.
[43] X. Hu, R.C. Eberhart, “Tracking dynamic systems with PSO: Where’s the cheese?” Proceedings of The Workshop on Particle Swarm Optimization, Indianapolis, USA, 2001.
[44] A. Ratnaweera, S. Halgamuge, and H. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients,” IEEE Transaction on System, Man and Cybernetics, Vol. 8, No. 3, 2004, pp. 240-255.
[45] S. K. S. Fan, Y. C. Liang, and E. Zahara, “A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search,” Computers and Industrial Engineering, Vol. 50, No.4, 2006, pp. 401- 425.
[46] C. W. Reynolds, “Flocks, herds, and schools: a distributed behavioral model,” Computer Graphics, Vol. 21, No.4, 1987, pp. 25-34.
[47] F. van den Bergh, An analysis of particle swarm optimizers, Ph. D. dissertation, University of Pretoria, Pretoria, 2001.
[48] J.J. More’, B.S. Garbow, K.E. Hillstrom, “Testing unconstrained optimization software,” ACM Transactions on Mathematical Software, Vol. 7, No. 1, 1981, pp. 17- 41.
[49] S. K. S. Fan, Y. C. Liang, and E. Zahara , “Hybrid simolex search and particle swarm optimization for the global optimization of multimodal functions,“ Engineering Optimization , Vol. 36, No. 4, 2004, pp. 401- 418.
[50] R. Chelouah and P. Siarry, “Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions,” European Journal of Operational Research, Vol. 148, No.2, 2003, pp. 335-348.
[51] R. Chelouah and P. Siarry, “Tabu search applied to global optimization,” European Journal of Operational Research, Vol. 123, No. 2, 2000, pp. 256-270.
[52] R. Chelouah and P. Siarry, “A continuous genetic algorithm designed for the global optimization of multimodal functions,” Journal of Heuristics, Vol. 6, No.2, 2000, pp. 191-213.
[53] P. Siarry, G. Berthiau, F. Durbin, and J. Haussy, “Enhanced simulated annealing for globally minimizing functions of many continuous variables,” ACM Transactions on Mathematical Software, Vol. 23, No. 2, 1997, pp. 209-228.
[54] G. L. Bilbro and W. E. Snyder, “Optimization of functions with many minima,” IEEE Transaction on System, Man and Cybernetics, Vol. 21, No.4, 1991, pp. 840-849.
[55] H. Chapellat and S.P. Bhattacharyya, “A generalization of Kharitonov’s theorem; Robust stability of interval plants,” IEEE Transactions on Automatic Control, Vol.34, No. 3, March, 1989, pp. 306-311.
[56] H. Hu and C. Hollot, “Robustness of sampled-data control systems having parametric uncertainty: a conic sector approach,” IEEE Transactions on Automatic Control, Vol. 38, 1993, pp. 1541-1545.
[57] S. Filali and V. Wertz, “Using genetic algorithms to optimize the design parameters of generalized predictive controllers,” International Journal of Systems Science, Vol. 32, No. 4, 2001, pp. 503-512.
[58] M. Jamshidi, R. Krohling, L. Coelho and P. Flemming, Robust Control Systems with GeneticAlgorithms, CRC Press, 2003.
[59] W. D. Chang, “Nonlinear system identification and control using a real-coded genetic algorithm,” Applied Mathematical Modeling, Vol. 31, No. 3, 2007, pp. 541-550.
[60] N. Tan and D.P. Atherton, “Frequency response of uncertain systems: a 2q-convex parpolygonal approach,” IEE Proc. Control Theory and Appl., Vol. 147, No. 5, 2000, pp.547-555.
[61] Ching-Hung Lee, Yi-Hsiung Lee, “A novel robust PID controllers design by fuzzy neural network,” Proceedings of the American Control Conference, Vol. 2, 2002, pp. 1561-1566.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-18公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信