§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1107200615351700
DOI 10.6846/TKU.2006.00249
論文名稱(中文) Bacillus cereus TKU006所生產幾丁質酶及蛋白酶之純化與定性
論文名稱(英文) Purification and Characterization of Chitinases and Proteases from Bacillus cereus TKU006
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 生命科學研究所碩士班
系所名稱(英文) Graduate Institute of Life Sciences
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 趙家興
研究生(英文) Chia-Hsing Chao
學號 693290503
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-06-08
論文頁數 101頁
口試委員 指導教授 - 王三郎
共同指導教授 - 陳曜鴻
委員 - 王三郎
委員 - 陳銘凱
委員 - 王全祿
關鍵字(中) Bacillus cereus
蝦殼粉
幾丁質酶
蛋白酶
關鍵字(英) Bacillus cereus
shrimp shell powder
chitinase
protease
第三語言關鍵字
學科別分類
中文摘要
由台灣北部土壤篩選到Bacillus cereus TKU006這株以蝦殼粉(shrimp shell powder;簡稱SSP)為主要碳源之蛋白酶和幾丁質酶生產菌。B. cereus TKU006生產蛋白酶和幾丁質酶之較適培養條件為2 %SSP、0.1 %K2HPO4、0.05 %MgSO4.7H2O,在25℃、pH 7之25 mL液體培養基,於250mL的三角錐型瓶中震盪培養2天,得最大之蛋白酶和幾丁質酶活性。B. cereus TKU006發酵上清液經硫酸銨沉澱、DEAE Sepharose、CM Sepharose、Phenyl-Sepharose、Sephacryl S-200和Sephacryl S-100可分離純化出蛋白酶和幾丁質酶。蛋白酶之回收率與比活性為0.07%與0.03 U/mg,而幾丁質酶的為11 %與0.62 U/mg。蛋白酶於經Sephacryl S-100純化步驟,活性幾已消失殆盡。蛋白質酶最適反應溫度與pH為50℃、9;熱穩定性及pH安定性分別為<50℃與pH 3~11。幾丁質酶最適反應溫度與pH為40℃、5;熱穩定性及pH安定性分別為<60℃與pH 3~11。幾丁質酶活性受Fe2+和Mn2+所抑制;蛋白酶活性受EDTA所抑制。幾丁質酶在丙酮、DMF或異戊醇存在下完全失活;蛋白酶在乙醇、正丁醇、二甲基甲醯胺(DMF)、異丙醇或乙酸乙酯存在下,只剩約20 %的殘餘活性。利用SDS-PAGE和膠體過濾層析法測得蛋白酶及幾丁質酶的分子量分別為39 kDa及35 kDa。
英文摘要
The protease-chitinase-producing by Bacillus cereus TKU006 was isolated from soil of northern of Taiwan. Shrimp shell powder (SSP) was used to be the carbon souse. The optimized culture condition for protease and chitinase production was composed of 2% SSP, 0.1 % K2HPO4 , 0.05 % MgSO4.7H2O, there have the maximum activated shaken in 250 mL Erlenmyer flask containing 25mL of above liquid medium at 25 ℃ and pH 7 for two days. The protease and chitinase of Bacillus cereus TKU006 were purified by ammonium sulfate precipitation, ionic exchange of DEAE-sepharose, CM-Sepharose, Phenyl-Sepharose, and sephadex S-200 and sephadex S-100 gel filtration . The overall activity yield of the purification protease were 0.07%,with specific protease activities of 0.03(U/mg). And, the overall activity yield of the purification chitinase were 11%,with specific chitinase activities of 0.62(U/mg). After purified by sephadex S-100, the protease was almost lost activity. The optimum pH, optimum temperature, pH stability, and thermal stability of protease were pH 9, 50℃, pH 3~11 and <50℃. The optimum pH, optimum temperature, pH stability, and thermal stability of chitinase were pH 5, 40℃, pH 3~11 and <60℃.The chitinase was inactivated by Fe2+ and Mn2+;the protease was inhibited completely by EDTA. The chitinase was inactivated by acetone, DMF and isoamyl alcohol; the protease in the presence of water-insoluble organic solvent such as ethyl alcohol, n-butyl alcohol, DMF, isopropyl alcohol and ethyl acetate, it retained only 20% of its activity. The molecular weight of the protease and the chitinase determined by SDS-PAGE and gel chromatography was approximately 39 kDa and 35 kDa, respectively.
第三語言摘要
論文目次
封面內頁
簽名頁
授權書
誌謝………………………………………………………………………i
中文摘要………………………………………………………………ii
英文摘要………………………………………………………………iii
目錄………………………………………………………………………v
圖目錄……………………………………………………………………x
表目錄…………………………………………………………………xii

第一章 緒言……………………………………………………………1
第二章 文獻回顧………………………………………………………2
2.1 幾丁質與幾丁聚醣…………………………………………………2
2.1.1 幾丁質……………………………………………………………2
2.1.2 幾丁聚醣…………………………………………………………3
2.1.3 幾丁質與幾丁聚醣之應用………………………………………3
2.2 幾丁質酶……………………………………………………………8
2.3 蛋白酶……………………………………………………………10
2.4 蛋白酶於工業上之應用…………………………………………11
2.5  Bacillus cereus之特性………………………………………12
2.6 酵素純化…………………………………………………………13
2.6.1 硫酸銨沉澱……………………………………………………13
2.6.2 離子交換層析法………………………………………………13
2.6.3 疏水性層析法…………………………………………………13
2.6.4 膠體過濾層析法………………………………………………14
2.7 酵素之生化特性…………………………………………………15
2.8 酵素在有機溶劑中的應用………………………………………15
第三章 材料與方法……………………………………………………17
3.1 菌株………………………………………………………………17
3.2 培養基(液)……………………………………………………17
3.3 化學材料…………………………………………………………17
3.4 儀器………………………………………………………………18
3.5 菌株之篩選與分離純化…………………………………………19
3.6 菌種鑑定…………………………………………………………19
3.7 酵素最適培養條件探討…………………………………………20
3.7.1 不同碳源的影響………………………………………………20
3.7.2 碳源濃度的影響………………………………………………20
3.7.3 培養液pH………………………………………………………20
3.7.4 培養溫度………………………………………………………20
3.7.5 培養體積………………………………………………………21
3.7.6 培養時間………………………………………………………21
3.8 蛋白質定量分析…………………………………………………21
3.9 蛋白酶活性之測定………………………………………………22
3.10 幾丁質酶活性之測定……………………………………………22
3.11 蛋白酶酵素與幾丁質酶酵素之純化分離………………………23
3.11.1 大量培養………………………………………………………23
3.11.2 硫酸銨沉澱……………………………………………………23
3.11.3 離子交換樹脂層析法…………………………………………24
3.11.3.1 DEAE-Sepharose……………………………………………24
3.11.3.2 CM-Sepharose………………………………………………24
3.11.4 疏水性膠層析法………………………………………………25
3.11.5 膠體過濾層析法………………………………………………25
3.12 蛋白質電泳分析…………………………………………………26
3.13 蛋白酶酵素與幾丁質酶酵素之特性分析………………………28
3.13.1 最適反應溫度測定……………………………………………28
3.13.2 酵素熱安定的測定……………………………………………28
3.13.3 最適反應pH的測定……………………………………………28
3.13.4  pH安定性的測定……………………………………………29
3.13.5 金屬離子與抑制劑對酵素活性的影響………………………29
3.13.6 酵素之失活與復性……………………………………………30
3.13.7 有機溶劑對酵素之活性及安定性的影響……………………30
3.13.8 界面活性劑對酵素活性的影響………………………………30
3.14 基質特異性………………………………………………………31
第四章 結果與討論……………………………………………………32
4.1 生產蛋白酶與幾丁質酶之菌的篩選……………………………32
4.2 蛋白酶與幾丁質酶生產菌之鑑定………………………………32
4.3 較適酵素生產條件探討…………………………………………39
4.3.1 培養體積………………………………………………………39
4.3.2 碳源選擇………………………………………………………40
4.3.3 碳源濃度………………………………………………………40
4.3.4 培養pH…………………………………………………………40
4.3.5 培養溫度………………………………………………………41
4.3.6 培養時間………………………………………………………41
4.3.7 總結……………………………………………………………42
4.4 酵素之純化分離…………………………………………………51
4.4.1 大量粗酵素液之製備…………………………………………51
4.4.2 離子交換樹脂層析法…………………………………………51
4.4.3 疏水性層析法…………………………………………………53
4.4.4 膠體過濾層析法………………………………………………54
4.4.5 結果整合………………………………………………………54
4.5 酵素之生化特性分析……………………………………………64
4.5.1 酵素之最適反應溫度…………………………………………64
4.5.2 酵素之熱安定性………………………………………………64
4.5.3 酵素之最適反應pH……………………………………………64
4.5.4 酵素之pH安定性………………………………………………65
4.5.5 金屬離子及抑制劑對酵素之影響……………………………65
4.5.6 蛋白酶之復性…………………………………………………66
4.5.7 有機溶劑對酵素活性及安定性之影響………………………66
4.5.8 界面活性劑對酵素活性之影響………………………………67
4.6 純化後酵素之儲藏穩定性………………………………………81
4.7 酵素之基質特異性………………………………………………84
4.8 酵素之分子量判定………………………………………………86
第五章 結論……………………………………………………………91
參考文獻………………………………………………………………93
附錄……………………………………………………………………100

圖 目 錄
圖2.1幾丁質結構之三種型態	6
圖2.2幾丁質與幾丁聚醣之構造	7
圖4.1  Bacillus cereus TKU006之菌體內生孢子顯微照片………..34
圖4.2  Bacillus cereus TKU006之脂肪酸組成分析鑑定系統分析結                    
      果….………………..…………….…………………………...36
圖4.3 培養體積對酵素活性之影響………………………………...43
圖4.4 溶氧量對酵素活性之影響(50 rpm)……………………….44
圖4.5 溶氧量對酵素活性之影響(150 rpm)……………………..45
圖4.6 不同來源之碳源對酵素活性的影響………………………...46
圖4.7 碳源濃度對酵素活性之影響…………………………….…..47
圖4.8  pH對酵素活性之影響…………………………………...…..48
圖4.9 溫度對酵素活性之影響……………………………………...49
圖4.10 培養時間對酵素活性之影響…..…………………………...50
圖4.11 Bacillus cereus TKU006所生產酵素之純化分離流程圖…..56
圖  4.12       DEAE-Sepharose CL-6B之酵素層析圖譜………………....57
圖4.13           CM-Sepharose之酵素層析圖譜…………………………….58
圖4.14            Phenyl-Sepharose之酵素層析圖譜…………………………59
圖4.15           Sephacryl S-200之酵素層析圖譜……...…………………..60
圖4.16            Sephacryl S-100之酵素層析圖譜…………………………..61
圖4.17 酵素之最適反應溫度………………………….……………68
圖4.18 酵素之熱安定性…………………………………………….69
圖4.19 酵素之最適反應pH………………………………………...70
圖4.20 酵素之pH安定性…………………………………………..71
圖4.21 不同之有機溶劑(最終濃度20%,v/v)對蛋白酶活性之影        
       響……………………………………………………………77
圖4.22 不同之有機溶劑(最終濃度20%,v/v)對幾丁質酶活性之  
       影響…………………………………………………………78
圖4.23 不同之有機溶劑(最終濃度20%,v/v)對蛋白酶安定性之
       影響…………………………………………………………79
圖4.24 不同之有機溶劑(最終濃度20%,v/v)對幾丁質酶安定性
       之影響………………………………………………………80
圖4.25 酵素純化後在4℃下儲存安定性…………………………..82
圖4.26 酵素純化後在25℃下儲存安定性…………………………83
圖4.27 12.5%之SDS-PAGE檢測純化效果(DEAE-Sepharose後)        
       ………………………………………………………………88
圖4.28 12.5%之SDS-PAGE檢測純化效果(gel chromatography後)   
       ………………………………………………………………89
圖4.29 12.5%之SDS-PAGE檢測純化效果(不同通氣量與碳源濃度 
       之粗酵素液)………………………………………………..90

表 目 錄
表3.1 製備SDS-PAGE膠體溶液配方……………………………...27
表4.1  Bacillus cereus TKU006之16S rDNA部分鹼基序列………35
表4.2  Bacillus cereus TKU006之脂肪酸組成分析鑑定系統分析結
       果...............................................................................................37
表4.3  Bacillus cereus TKU006之VITEK鑑定套組分析系統…….38
表4.4 較適酵素生產條件…………………………………………...42
表4.5  Bacillus cereus TKU006蛋白酶純化概要…………………..62
表4.6  Bacillus cereus TKU006幾丁質酶純化概要………………..63
表4.7 各種物質對蛋白酶活性之影響……………………………...72
表4.8 各種物質對幾丁質酶活性之影響…………………………...73
表4.9 蛋白質酶之復性……………………………………………...74
表4.10 不同界面活性劑對蛋白酶活性之影響…………………….75
表4.11 不同界面活性劑對幾丁質酶活性之影響………………….76
表4.12 各種基質對蛋白酶活性之影響…………………………….85
參考文獻
1.王三郎。1996。水產資源利用學。高立圖書出版社。台北,台灣。
2.王三郎。1999。海洋未利用生物資源之回收再利用。生物資源 生物技術。1 (1):1-8。
3.王三郎。2002。應用微生物學。高立圖書出社。台北,台灣。
4.林咨吟。2003。Bacillus subtilis W-118 所產幾丁質酶之研究:第       9-10頁。大葉工學院食品工程研究所碩士論文。彰化。
5.高德一。2005。Bacillus sp.TKU004所生產耐有機溶劑蛋白酶之純化及定性。第63-64頁。大葉工學院食品工程研究所碩士論文。彰化。
6.楊政國。1999。利用枯草菌進行蝦蟹殼去蛋白之研究:第99頁。大葉工學院食品工程研究所碩士論文。彰化。
7.莊榮輝。2000。酵素化學實驗。國立台灣大學農業化學系。台北。
8.陳俊位。2000。生物農藥枯草桿菌在植物病害防治上之應用。台中區農業改良場。
9.陳國誠。1989。微生物酵素工程學。藝軒出版社。台北。
10.蔡國珍。2000。幾丁質、幾丁聚醣與幾丁寡醣之生理活性。保健食品學術研討會,中華保健食品學會。台北,pp. 1-34。
11.賴威安。2000。Bacillus sp. P-6中蛋白酶的生產與性質分析。國
立中興大學食品科學研究所碩士論文。台中。
12.蕭介夫。1988。酵素的新功能與有機溶劑中之生物催化作用。國科會生命科學推動中心專刊第十六集:221~234頁。
13. Allan CR , Hadiger LA (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental mycology., 3:285-287.
14. Arora N, Ahmad T, Rajagopal R, Bhatnagar RK(2003) A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochemical and Biophysical Research Communications 307:620–625.
15. Austin PR , Brine CJ , Castle JE , Zikakis JP (1981)Chitin:New facets of research. Science 212:749-753.
16. Banik RM, Prakash M (2004) Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiological Research 159:135-140.
17. Basma G, Alya SK , Moncef N (2003) Stability studies of protease from Bacillus cereus BG1. Enzyme and Microbial Technology. 32:513–518.
18. Bhushan B (2000) Production and characterization of a thermostable chitinase from a new alkalophilic Bacillus sp. BG-11. Journal of Applied Microbiology. 88:800-808.
19. Cody RM (1989)Disdtribution of chitinase and chitobiase in Bacillus. Current Microbiol. 19:201-205.
20. Dill KA (1990)Dominant forces in protein folding. Biochemistry 29:7133-7155.
21. Fang F , Aguilar MI , Hearn MTW (1996) Temperature-induced changes in the bandwidth behaviour of proteins separated with cation-exchange adsorbents. Journal of Chromatography A. 729:67-79.
22. Godfrey T (1986) Comparison of key characteristics of industrial enzyme by type and source. Industrial Enzymology. 466-557. 
23. Gupta MN (1992) Enzyme function in organic solvents. European Journal of Biochemistry. 203:25-32.
24. Imoto T and Yagishita K (1971) A simple activity measurement by lysozyme. Agricultural and Biological Chemistry. 35:1154-1156.
25. Jadwiga KS (1998) Purification and partial characterization of a neutral protease from a virulent stain of Bacillus cereus. The International Journal of Biochemistry&Cell Biology. 30:579-595.
26. Juang RH, Chang YD, Sung HY , Su JC (1984) Oven-drying method for polyacrylamide gel slab packed in cellophane sandwich. Analytical Biochem. 141:348-350.
27. Karadzic I, Masui A and Fujiwara N (2004) Purification and Characterization of a protease from Pseudomonas aeruginosa grown in cutting oil. Journal of Bioscience and Bioengineering. 98:145-152.
28. Kazan D, Denizci AA, Oner MN, Erarslan A (2005) Purification and characterization of a serine alkaline protease from Bacillus clausii GMBAE 42. Journal of Industrial Microbiology and Biotechnology. 32:335-344.
29. Kim SS, Kim YJ , Rhee IK (2001) Purification and characterization of a novel extracellular protease from Bacillus cereus KCTC 3674. Archives of microbiology. 175:458-461.
30. Knorr D (1982) Functional properties of chitin and chitosan, Journal of Food Science. 47:593-595.
31. Koga D, Sueshige N, Orikono K, Utsumi T, Tanaka S,Yamada Y and Ide A (1988) Efficiency of chitinolytic enzyme in the formation of trico-loma matsutake protoplasts. Agricultural and Biological Chemistry. 52:2091-2094.
32. Koga D, Sueshige N, Usumi T and Ide A (1989) Kinetics of chitinase from yam, Dioscorea oppsita thumb. Agricultural and Biological Chemistry. 53:3121-3127.
33. Lechner S, Mayr R, Francis KP, Prüß BM, Kaplan T, WieBner-Gunkel E, Stewart GSAB, Scherer S (1998) Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. International Journal of Systematic Bacteriology. 48:1373-1382.
34. Matta H , Punj V (1998) Isolation and partial characterization of a thermostable extracellular protease of Bacillus polymyxa B-17. International Journal of Food Microbiology. 42:139-145.
35. Nagano H , To K (2000) Purification of collagenase and specificity of its related enzyme from Bacillus subtilis FS-2. Bioscience, Biotechnology, and Biochemistry. 64:181-183.
36. Nduwimana J, Guenet L, Dorval I, Blayau M, Le Gall JY , Le Treut A (1995) Protease. Annals Biology Clinical, 53:251-264.
37. Nongporn HT, Anongnat P , Prasery S (1999) Purification and characterization of an extracellular protease from alkaliphilic and thermophilic Bacillus sp. PS719. Journal of Bioscience and Bioengineering. 87:581-587.
38. Queiroz JA, Tomaz CT, Cabral JMS (2001) Hydrophobic interaction chromatography of proteins. Journal of Biotechnology, 87:143-159.
39. Robert WK , Selitrennidkoff CP (1988) Plant and bacterial chitinase differ in antifungal activity. Journal of Biological Chemistry. 134:169-176.
40. Singh J, Batra N, Sobti RC (2001) Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Process Biochemistry 36:781-785.
41. Stanley WL, Watters GG, Chan BG , Mercer JM (1975) Lactose and other enzyme bound to chitin with glutaraldehyde. Biotechnology and Bioengineering. 17:315-326.
42. Takayanagi T, Ajisaka K, Takiguchi Y, Shimahara K (1991) Isolation and characterization of thermostable chitinases from Bacillus licheniformis X-7u. Biochimica et biophysica acta. 1078 :404-410.
43. Tauc P, Cochet S, Algiman E, Callebaut I, Cartron JP, Brochon JC , Bertrand O (1998) Ion-exchange chromatography of proteins: modulation of selectivity by addition of organic solvents to mobile phase-application to single-step purification of a proteinase inhibor form corn and study of the mechanism of selectivity modulation. Journal of Chromatography. 825:17.
44. Tsai GJ, Su WH , Chen SC (2002) Antimicrobial activity of shrimp chitin and chitosan from different treatments and application to fish preservation. Fisheries Science. 68:170-177.
45. Tsai YS, Lin FY, Chen WY , Lin CC (2002) Isothermal titration microcalorimetric studies of the effect salt concentrations in the interaction between proteins and hydrophobic adsorbents, Colloids and Surfaces. 197:111-118.
46. Usui T, Hayashi Y, Nanjo F, Sakai K , Ishido Y (1987) Transglycosylation reaction of a chitinase purified from Nocardia orientalis. Biochimica et Biophysica acta. 923 : 302-309.
47. Van Boven A, Tan PST , Koning WN (1988) Purification and Characterization of a Dipeptidase from Streptococcus cremoris Wg2. Applied and Environmental Microbiology. 54: 43-49.
48. Wang S, Moyne A, Thottappilly G, Wu S, Locy RD, Singh NK (2001) Purification and characterization of a Bacillus cereus exochitinase. Enzyme and Microbial Technology 28:492-498.
49. Wiggins PM (1997) Hydrophobic hydration , hydrophobic forces and protein folding , Physica. 238:113-128.
50. Yang JK, Shih IL, Tzeng YM , Wang S L (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme and Microbial Technology. 26:406-413.
51. Zakaria MB, Muda WMW , Abdullah MP (1995) Chitin and chitosan the versatile environmentally friendly modern materials. Penerbit University Kebangsaan Malaysia. 123:275-282.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信