淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1107200614484500
中文論文名稱 不同階梯形狀之背向階梯流場特性探討
英文論文名稱 Numerical Simulation of Flow over a Backward-Facing Step with Different Configurations
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 李奕賢
研究生英文姓名 I-Hsien Lee
學號 692370470
學位類別 碩士
語文別 中文
口試日期 2006-06-19
論文頁數 76頁
口試委員 指導教授-陳慶祥
委員-李福生
委員-陳增源
中文關鍵字 背向階梯、再接觸點、迴流區 
英文關鍵字 backward-facing step, reattachment point, recirculation 
學科別分類 學科別應用科學航空太空
中文摘要 背向階梯流場構造簡單,局部特性明顯,運用範圍廣泛,因此對於不同外在條件改變流場的研究是值得探討的。本論文針對改變階梯形狀,利用數值方法模擬其流場狀況,並觀察其再接觸點長度的變化。當再接觸長度增加,迴流區跟著增加,若是應用在燃燒室內,駐焰效果也會跟著增加。
本論文數值方法為採用控制體積法來離散統御方程式,配合k-ε 紊流模式來閉合統御方程式,靠近壁面之計算域使用牆函數來計算,並採用六面體網格,經過網格獨立測試後採用45 萬網格數,使用商業軟體fluent 作為求解器。計算邊界條件:進口條件為流速3.8m/s 之均勻流,出口條件為環境壓力一大氣壓。針對五種不同的階梯形狀做計算,發現再接觸點長度會因為階梯形狀改變而改變。
將計算結果和實驗結果比對會發現差異甚鉅,主因為進口速度過小,雷諾數位於過渡區內,而計算時是假設為紊流,造成了誤差的出現。另外對於使用不同的紊流模式,計算出來的結果是否相同,本論文也加以探討,發現背向階梯流場適用k-ε 紊流模式。將來可進一步針對改變階梯形狀對於熱效應之影響,或是加入冷卻噴流對冷卻系統的影響加以研究。
英文摘要 Backward-facing step flow is a simple configuration with distinctlocal characters. It is quite useful in many fields. Five different shapeswere simulated numerically. We compared the change of the length of the reattachment point in each shape and find that the recirculation zone increases with the length of the reattachment point. This will enhance the flame holding effect in a combustion chamber.
The flow field was calculated by a finite volume method, and a k-ε turbulence model was used to simulate the turbulent flow. A near wall function was used to compute the near wall area. The commercial software package, FLUENT, was used to simulate the flow field. Four hundred and fifty thousands hexahedron cells were used in the numerical simulations according to the grid independence study. The lengths of the reattachment points of five different shapes were compared with the experimental data.
The agreement is not good. This is because the Reynolds numbers are in the transition zone, and we used a turbulence model to compute them. We also discussed the effects of different turbulence models on the solutions. We found that the k-ε turbulent model is most suitable for thebackward-facing step flows.
論文目次 目錄
第一章 前言...............................................1
第二章文獻回顧............................................3
2-1 基本背向階梯流場研究..................................3
2-2 具壁面噴流背向階梯流場研究............................6
2-3 暫態的背向階梯流場研究................................7
第三章 理論分析..........................................10
3-1 統御方程式...........................................10
3-2 紊流模...............................................12
3-2-1 k-ε雙方程式模式...................................13
3-2-2 牆函數.............................................15
3-3 邊界條件.............................................16
第四章 數值方法與結果討論................................18
4-1 數值方法.............................................18
4-1-1 網格獨立測試.......................................18
4-1-2 邊界條件...........................................19
4-1-3 壓力修正方程式.....................................20
4-1-4 鬆弛係數...........................................20
4-1-5 收斂條件...........................................21
4-1-6 計算程序...........................................21
4-1-7 計算結果處理.......................................23
4-2 結果討論.............................................23
4-2-1 幾何外型...........................................23
4-2-2 計算結果...........................................23
4-2-3 結果討論...........................................27
第五章 結論..............................................31
參考文獻.................................................33

圖目錄
圖1- 1 背向階梯流場示意圖................................38
圖4- 1 CASE 1 計算幾何外型...............................39
圖4- 2 CASE 1 Z=0.1m 處X-Y 剖面速度向量圖 黃興閎[23].....40
圖4- 3 CASE 1 Z=0.1m 處X-Y 剖面速度向量圖................40
圖4- 4 CASE 1 Z=0.05m 處X-Y 剖面速度向量圖...............41
圖4- 5 CASE 1 Z=0.15m 處X-Y 剖面速度向量圖...............42
圖4- 6 CASE 1 分離點後方0.5h 處Y-Z 剖面速度向量圖........43
圖4- 7 CASE 1 分離點後方1h 處Y-Z 剖面速度向量圖..........44
圖4- 8 CASE 1 分離點後方1.5h 處Y-Z 剖面速度向量圖........45
圖4- 9 CASE 2 計算幾何外型...............................46
圖4- 10 CASE 2 Z=0.1m 處X-Y 剖面速度向量圖 黃興閎[23]....47
圖4- 11 CASE 2 Z=0.1m 處X-Y 剖面速度向量圖...............47
圖4- 12 CASE 2 Z=0.05m 處X-Y 剖面速度向量圖..............48
圖4- 13 CASE 2 Z=0.15m 處X-Y 剖面速度向量圖..............49
圖4- 14 CASE 2 分離點後方0.5h 處Y-Z 剖面速度向量圖.......50
圖4- 15 CASE 2 分離點後方1h 處Y-Z 剖面速度向量圖.........51
圖4- 16 CASE 2 分離點後方1.5h 處Y-Z 剖面速度向量圖.......52
圖4- 17 CASE 3 計算幾何外型..............................53
圖4- 18 CASE 3 Z=0.1m 處X-Y 剖面速度向量圖 黃興閎[23]....54
圖4- 19 CASE 3 Z=0.1m 處X-Y 剖面速度向量圖...............54
圖4- 20 CASE 3 Z=0.05m 處X-Y 剖面速度向量圖..............55
圖4- 21 CASE 3 Z=0.15m 處X-Y 剖面速度向量圖..............56
圖4- 22 CASE 3 分離點後方0.5h 處Y-Z 剖面速度向量圖.......57
圖4- 23 CASE 3 分離點後方1h 處Y-Z 剖面速度向量圖.........58
圖4- 24 CASE 3 分離點後方1.5h 處Y-Z 剖面速度向量圖.......59
圖4- 25 CASE 4 計算幾何外型..............................60
圖4- 26 CASE 4 Z=0.1m 處X-Y 剖面速度向量圖 黃興閎[23]....61
圖4- 27 CASE 4 Z=0.1m 處X-Y 剖面速度向量圖...............61
圖4- 28 CASE 4 Z=0.05m 處X-Y 剖面速度向量圖..............62
圖4- 29 CASE 4 Z=0.15m 處X-Y 剖面速度向量圖..............63
圖4- 30 CASE 4 分離點後方0.5h 處Y-Z 剖面速度向量圖.......64
圖4- 31 CASE 4 分離點後方1h 處Y-Z 剖面速度向量圖.........65
圖4- 32 CASE 4 分離點後方1.5h 處Y-Z 剖面速度向量圖.......66
圖4- 33 CASE 5 計算幾何外型..............................67
圖4- 34 CASE 5 Z=0.1m 處X-Y 剖面速度向量圖 黃興閎[23]....68
圖4- 35 CASE 5 Z=0.1m 處X-Y 剖面速度向量圖...............68
圖4- 36 CASE 5 Z=0.05m 處X-Y 剖面速度向量圖..............69
圖4- 37 CASE 5 Z=0.15m 處X-Y 剖面速度向量圖..............70
圖4- 38 CASE 5 分離點後方0.5h 處Y-Z 剖面速度向量圖.......71
圖4- 39 CASE 5 分離點後方1h 處Y-Z 剖面速度向量圖.........72
圖4- 40 CASE 5 分離點後方1.5h 處Y-Z 剖面速度向量圖.......73
圖4- 41 Spalart-Allmaras 紊流模式........................74
圖4- 42 k-ω紊流模式.....................................75
圖4- 43 Reynolds stress 紊流模式.........................76

表目錄
表3- 1 紊流模式常數表....................................14
表4- 1 網格獨立測試......................................19
表4- 2 空氣性質..........................................20
表4- 3 鬆弛係數..........................................21
表4- 4 背向階梯幾何外型..................................23
表4- 5 再接觸點位置......................................27
表4- 6 紊流模式誤差表....................................29
參考文獻 [1] Bradshaw, P. F., and Wong Y. F., "The Reattachment and
Relaxation of a Turbulent Shear Layer",J. Fluid
Mechanics, Vol.52, 113-135, 1972.
[2] De Brederode, V., and Bradshaw, P., "Three-Dimensional
Flow in Normally Two-Dimensional Separation Bubbles : I.
Flow Behind a Reward-Facing Step", Aeronautical
Report,72-19, Imperial College, 1972.
[3] Etheridge, D. W., and Kemp, P. H., “Measurement of
Turbulent Flow Downstream of a Reaward-Facing Step", J.
Fluid Mechanics, Vol.86, 545-566, 1978.
[4] Eaton, J. K., and Johnson, J. P., “Low Frequency
Unsteadyness of a Reattaching Turbulent Shear Layer",
Turbulent Shear Flow 3, 162-170, 1981.
[5] Kim, J., Kline, S. J., and Jonston, J. P.,
“Investigation of a Reattaching Turbulent Shear Layer :
Flow Over a Backward-Facing Step", J. Fluids
Engineering, Vol. 102, 302-308, 1980.
[6] Symth, R., “Turbulent Flow Over a Plane Symmetric Sudden
34
Expansion," ASME J. Fluid Engineering, Vol. 101, No. 3,
348-353, 1979.
[7] Adams, E. W., and Johnston, J. P., “Flow Structure in
the Near-Wall Zone of a Turbulent Separated Flow", AIAA
J.,Vol. 26, 932-939, 1988.
[8] Isomoto, K., and Honami, S., “The Effect of Inlet
Turbulence Intensity on the Reattachment Process Over a
Backward-Facing Step", J. Fluids Engineering, Vol. 111,
87-92, 1989.
[9] Papadolos, G., and Otugen, M. V., “Separating and
Reattaching Flow Structure in a Suddenly Expansion
Rectangular Duct", J. Fluids Engineering, Vol. 117,
17-23, 1995.
[10] Pinho, F. T., Oliveira, P. J., and Miranda J. P.,
“Pressure Losses in the Laminar Flow of Shear-thinning
Power-law Fluids Across a Sudden Axisymmetric
Expansion", International J. Heat and Fluid Flow, Vol.
24, 744- 761, 2002.
[11] Olson, R. M., and Eckert, E. R. G., “Experimental
35
Studies of Turbulent Flow in a Porous Circular Tube with
Uniform Fluid Injection through the Tube Wall", J.
Applied Mechanics, Vol. 33, 7-17, 1966.
[12] Eckert, E. R. G., and Cho, H. H., “Transition from
Transpiration to Film Cooling", International J. Heat
and Mass Transfer, Vol. 37, Suppl. 1, 3-8, 1994.
[13] Yang, J. T., Gu J. D., and Ma W. J., “Transient Cooling
Effect by Wall Mass Injection After Backstep in High
Temperature Flow Field", International J. Heat and Mass
Transfer, Vol. 44, 843-855, 2001.
[14] Brown, G. L., and Roshko, A., “On Density Effects and
Large Structure in Turbulent Mixing Layers", J. Fluid
Mechanics, Vol. 64, Part 4, 775-816, 1974.
[15] Ganji, A. R., and Sawyer, R. F., “Experimental Study of
the Flowfield of a Two-Dimensional Premixed Turbulent
Flame", AIAA J., Vol. 18, No. 7, 817-824, 1980.
[16] Abbott, D. E., and Kline, S. J., “Experimental
Investigation of Subsonic Turbulent Flow Over Single and
Double Backward-Facing Steps", ASME J. Basic
36
Engineering, Vol. 84D, 317- 325, 1962.
[17] Driver, D. M., and Seegmiller, H. L., “Time Dependent
Behavior of a Reattaching Shear Layer", AIAA J., Vol.
25, 914-919, 1987.
[18] Hasan, M. A. Z., “The Flow over a Backward-Facing Step
under Controlled Perturbation : Laminar Separation", J.
Fluid Mechanics, Vol. 238, 73-96, 1992.
[19] Chiang, T. P., and Tony, W. H. Sheu, “A Numerical Revisit
of Backward-Facing Step Flow Problem", Physics of
Fluids, Vol. 11, No. 4, 862-874, 1999.
[20] Spazzini P. G., Iuso, G., Oronato, M., and Mole, A.,
“DPIV Analysis of Turbulent Flow Over a Back-Facing
Step", Proceedings of the 8th International Symposium on
Flow Visualization, Paper 238, Sorrento, Italy, 1998.
[21] Launder, B. E., and Spalding, D. B., “The Numerical
Computation of Turbulent Flows", Computer Methods in
Applied Mechanics, Vol. 3, 269-289, 1974.
[22] 蔡國騰,楊玉姿,2002, “背向階梯具壁面噴流的高溫紊流
場暫態冷卻效應之數值模擬",國立成功大學機械工程學系碩
37
士論文
[23] 黃興閎,楊鏡堂,2004, “背向階梯流場之剪流層非穩態特
性研究",國立清華大學動力機械工程學系碩士論文
[24] An Introduction to Computational Fluid Dynamics The
Finite Volume Method, H K Versteeg and W Malalasekera,
1995.
[25] Computational Fluid Dynamics, T. J. Chung, 2002.
[26] Numerical Methods For Engineers and Scientists, Joe D.
Hoffman, 1992.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-07-19公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信