§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1107200614150100
DOI 10.6846/TKU.2006.00247
論文名稱(中文) 沉浸式薄膜過濾系統中蛋白質結垢之探討
論文名稱(英文) A Study on Protein Fouling of Submerged Membrane Filtration System
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 蔡焙
研究生(英文) Pei-fu Tsai
學號 693360090
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-06-20
論文頁數 93頁
口試委員 指導教授 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 葉和明(hmyeh@mail.tku.edu.tw)
委員 - 蔡少偉(tsai@mail.cgu.edu.tw)
關鍵字(中) 沉浸式薄膜
傾斜
蛋白質
通氣
結垢
關鍵字(英) Submerged
Membrane bioreactor
Protein
Aeration
Fouling
第三語言關鍵字
學科別分類
中文摘要
本研究針對操作參數對平板沉浸式薄膜過濾BSA溶液之影響進行探討,討論的變數包括有曝氣量、抽濾壓力、薄膜特性及模組傾斜角度等。本研究得出: (1)過濾BSA溶液,使用親水性薄膜有較高的濾速值。(2)在過濾BSA系統中,相同曝氣量下,薄膜傾斜160度時之濾速大於傾斜90度時之濾速。(3)薄膜的阻塞方式不是依據標準阻塞、完全阻塞、中間阻塞及濾餅過濾等逐漸發生,而是同時發生。(4)進料濃度的改變,不會改變阻塞方式。(5)從阻塞模式分析發現,曝氣量能有效降低濾餅過濾阻塞阻力。
英文摘要
In this study, the influences of operating parameters on flat-membrane submerged filtrations of BSA solution were investigated. The operating parameters included aeration rate, suction pressure, membrane characteristics and module inclination angle. The experimental results were summarized as follows: (1) During the operation of single-liquid phase filtration of BSA solution, hydrophilic membrane has a higher flux than hydrophobic one; (2) The flux of 1600 membrane inclination is higher than that of 900 inclination at the same aeration rate; (3) The way of blocking of the membrane does not happen step by step from standard blocking, complete blocking, intermediate blocking to cake filtration, but occurs coincidently; (4) The change of feed concentrate does not influence the way of blocking; (5) Aeration can effectively reduce the filtration resistance of cake filtration according to the blocking mechanism analysis.
第三語言摘要
論文目次
目錄
圖索引	                                IV
表索引	                              VIII
第一章 緒論	                        1
1.1 前言	                                 1
1.2 薄膜分離	                        1
1.3 薄膜之特性	                        2
1.4 濃度極化與結垢現象	               3
  1.4.1 濃度極化                          4
  1.4.2 結垢                              5
1.5 本研究之目標                          6
第二章 文獻回顧	                        9
2.1 薄膜生物反應器	                        9
2.2 沉浸式薄膜生物反應槽	              11
  2.2.1 SMBR污水處理設備之原理           11
  2.2.2 SMBR污水處理設備之操作特性       12
  2.2.3 SMBR與傳統活性污泥法之比較       14
2.3  BSA溶液分離之相關研究	             16
2.4 影響濾速的因素          	17
2.5 提高濾速的方法                 	19
2.6 掃流超過濾濾速分析模式	             23   
第三章 實驗裝置與方法	             34
3.1 實驗裝置                             34
3.2 實驗藥品及薄膜                       34
3.3 操作條件                             35
3.4 實驗方法與步驟                       35
 3.4.1 操作參數對濾速的影響              35
 3.4.2 濾速回復測試                      36
 3.4.3 長時間觀測濾速行為                36
第四章 結果與討論	                       42
 4.1 薄膜結構與純水濾速	               42
 4.2 操作參數對濾速之影響	               43
 4.2.1單一液相系統                        43
 4.2.2 薄膜特性及阻隔分子量的影響         44
 4.2.3 濃度的影響                         46
 4.2.4 曝氣量及傾斜角的影響               46
4.3 過濾阻力                              48
 4.3.1 薄膜特性之影響                     48
 4.3.2 曝氣之影響                         49
 4.4 阻塞模式                             50
 4.4.1 阻塞模式之驗證                     50
 4.4.2 曝氣量的影響                       52
第五章 結論	                        75
符號說明                                  77
參考文獻                                   79

圖索引

圖1.1 濾餅過濾及掃流過濾示意圖	         8
圖2.1 回收水處理設備比較圖       	         27
圖2.2傳統活性污泥設備及SMBR處理流程圖	28
圖2.3  Fixed TMP實驗下Critical flux之發生	29
圖2.4  Fixed Flux實驗下壓力隨時間之變化	30
圖2.5 Fixed Flux實驗下壓力隨時間之變化	30
圖2.6 粒子阻塞機制	                            31
圖2.7 提高濾速方法之流程圖	                   32
圖2.8 氣液兩相之流動形態	                   33
圖3.1平板型沉浸式薄膜過濾系統裝置圖	          38
圖3.2平板型沉浸式薄膜模組示意圖	         39
圖4.1新鮮薄膜(S10-CE)濾速對透膜壓差作圖	53
圖4.2新鮮薄膜(S50-CE)濾速對透膜壓差作圖	53
圖4.3新鮮薄膜(A10-PES)濾速對透膜壓差作圖	54
圖4.4新鮮薄膜(A50-PS)濾速對透膜壓差作圖	54
圖4.5新鮮薄膜(A1-CFP)濾速對透膜壓差作圖	55
圖4.6單一液相溶質大小的影響(A50-PS)	         55
圖4.7單一液相溶質大小的影響(S50-CE)	         56
圖4.8單一液相溶質大小的影響(A10-PES)	         56
圖4.9單一液相溶質大小的影響(S10-CE)	         57
圖4.10 薄膜材質的影響(BSA, A50-PS, S50-CE)	57
圖4.11 薄膜材質的影響(BSA, A10-PES, S10-CE)	58
圖4.12 薄膜材質的影響(T70, A50-PS, S50-CE)	58
圖4.13 薄膜材質的影響(T70, A10-PES, S10-CE)    59
圖4.14 MWCO的影響(BSA, S50-CE, S10-CE)	  59
圖4.15 MWCO的影響(T70, S50-CE, S10-CE)	60
圖4.16濃度的影響(A50-PS)	                  60
圖4.17濃度的影響(S10-CE)	                   61
圖4.18濃度的影響(A10-PES)	                   61
圖4.19曝氣量的影響(A50-PS, 90度)	          62
圖4.20曝氣量的影響(A50-PS, 160度)	          62
圖4.21曝氣量的影響(S10-CE, 160度)	          63
圖4.22曝氣量的影響(A1-CFP, 90度)	          63
圖4.23曝氣量的影響(A1-CFP, 160度)	          64
圖4.24薄膜材質對於Rfp的影響(BSA, A50-PS, S50-CE) 64
圖4.25薄膜材質對於Rfp的影響(BSA, A10-PES,S10-CE) 65
圖4.26薄膜材質對於Rfp的影響(T70, A50-PS, S50-CE) 65
圖4.27薄膜材質對於Rfp的影響(T70, A10-PES, S10-CE) 66
圖4.28曝氣量對 Rfp的影響(A50-PS, 90度)	    66
圖4.29曝氣量對 Rfp的影響(A50-PS, 160度)	 67
圖4.30曝氣量對 Rfp的影響(S10-CE, 160度)	 67
圖4.31曝氣量對 Rfp的影響(A1-CFP, 90度)	 68
圖4.32曝氣量對 Rfp的影響(A1-CFP, 160度)	 68
圖 4.33 BSA在不同薄膜下V與lnt之關係(3000 ppm)  69   
圖 4.34 BSA在不同薄膜下t/V與t之關係(3000 ppm)     69       
圖 4.35 BSA在不同薄膜下t/V與V之關係 (3000 ppm)   70        
圖 4.36 BSA在不同薄膜下V與lnt之關係(1000ppm)     70        
圖 4.37 BSA在不同薄膜下t/V與t之關係(1000 ppm)     71       
圖 4.38 BSA在不同薄膜下t/V與V之關係(1000ppm)      71       圖4.39曝氣量的影響(S10-CE, 中間阻塞模式)	72
圖4.40曝氣量的影響(S10-CE, 標準阻塞模式)	72
圖4.41曝氣量的影響(S10-CE, 濾餅過濾模式)	73
圖4.42曝氣量的影響(A1-CFP, 中間阻塞模式)	73
圖4.43曝氣量的影響(A1-CFP, 濾餅過濾模式)	74

表索引

表3.1 牛血清蛋白特性說明                        40        
表3.2 薄膜性質表                                41
參考文獻
Aimar, P., J. A. Howell, M. J. Clifton, and V. Sanchez, “Concentration Polarization Build-up in Hollow Fibers: A Method of Measurement and its Modelling in Ultrafiltration,” J. Membrane Sci., 59, 81 (1991)
Arnot, T. C., J. A. Howell, H. C. Chua, “In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history,” J. Membrane Sci., 242, 13 (2004)
Bowen, W. R., J. I. Calvo and A. Hernandez, “Steps of membrane blocking in flux decline during protein microfiltration,” J. Membrane Sci., 101, 153 (1995)
Cheng, T. W., H. M. Yeh, J. H. Wu, “Effects of Gas Slugs and Inclination Angle on the Ultrafiltration Flux in Tubular Membrane Module,” J. Membrane Sci., 158, 223 (1999)
Cheng, T. W., “Influence of Inclination on Gas-sparged Cross-flow Ultrafiltration through an Inorganic Tubular Membrane,” J. Membrane Sci., 196, 103 (2002)
Cheryan, M., “Ultrafiltration HandBook,” Technomic Publishing Inc., Pennsylvania (1986)
Chong. R., P. Jelen, and W. Wang, “The Effect of Cleaning Agents on a noncellulosic Ultrafiltration Membrane,” Sep. Sci. Technol., 20, 393 (1985)
Cui, Z. F , and K. I. T. Wright, “Gas-Liquid Two-Phase Crossflow Ultrafiltration of BSA and Dextran Solution,” J. Membrane Sci., 90, 183 (1994)
Defrance, L and M. Y.Jaffrin, ”Comparison between Filtrations at Fixed Transmembrane Pressure and Fixed Permeate Flux:Application to a Membrane Bioreactor used for Wastewater Treatment,” J. Membrane Sci., 152, 203 (1999)
Fane, A. G., C. J. D. Fell, and K. J. Kim, “The Effect of Surfactant Pretreatment on Ultrafiltration of Proteins,” Desalination, 53, 37 (1985)
Fane, A. G., B.D.Cho, “Fouling Transients in Nominally Sub-Critical Flux Operation of a Membrane Bioreactor,” J.Membrane Sci., 209, 391 (2002)
Flemming, H. C., G. Schaule, T. Griebe, J. Schmitt and A. Tamachkiarowa, “Biofoulung-the Achilles Hill of Membrane Process,” Desalination., 113, 215 (1997)
Field, R. W., D. Wu, J. A. Howell, and B. B. Gupta, “Critical Flux Concept for Microfiltration Fouling,” J. Membrane Sci., 100, 259 (1995)
Ghosh, R., Z. F. Cui., “Mass Transfer in Gas-sparged Ultrafiltration: Upward Slug Flow in Tubular Membranes,” J. Membrane Sci., 162, 91 (1999)
Gill, W. N., D. E. Wiley, C. J. D. Fell, and A. G. Fane, “Effect of Viscosity on Concentration Polarization in Ultrafiltration,” AIChE J., 34, 1563 (1988)
Gomez-Gotor. A., P. Susial, A. Guerra, and B. Ibarra, “Experimental Data and Behavior of Starch/Water Solution with an Ultrafiltration Module,” Sep. Sci. Technol., 31, 173 (1996)
Grieves, R. B., D. Bhattacharyya, W. G. Schomp, and J. L. Bewley, “Membrane Ultrafiltration of a Nonionic Surfactant,” AIChE J., 34, 1563 (1988)
Gupta, B. B., J. A. Howell, D. Wu, and R. W. Field, “A Helical Baffle for Cross-Flow Microfiltration,” J. Membrane Sci., 99, 33 (1995)
Goosen, M. F. A., S. S. Sablani, H. Al-Hinai, S. Al-Obeidani, R., Al-Belushi, and D. Jackson, “Fouling of Revrse Osmosis and Ultrafiltration Membranes: A Critical Review,” Separation Science and Technology, 39, 2261 (2004)
Hermia, J. “Constant pressure blocking filtration laws- Application to power-law non-newtonian fluids,” Trans. Inst. Chem. Engrs., 60, 183 (1982)
Huang, Xia, Rui Liu, Chengwen Wang, Lvjun Chen, Yi Qian, “Study on hydraulic characteristics in a submerged membrane bioreactor process,” Process biochemistry, 36, 249 (2000)
Huang, Xia, Rui Liu, You Feng Sun, Yi Qian, “Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor,” Process biochemistry, 39, 157 (2003)
Iritani, E., Y. Mukai, Y. Tanaka and T. Murase, “Flux decline behavior in dead-end microfiltration of protein solutions,” J Membrane Sci., 103, 181 (1995)
Jacob, J., P. Pradanos, J. I. Calvo, A. Hernandez and G. Jonsson, “Fouling kinetics and associated dynamics of structural modifications,” Colloids and Surfaces A:Physicochemical and Eng. Aspects, 138, 173 (1998)
Kelly, S. T., and A. L. Zydney, “Effects of intermolecular thiol-disulfide interchange reactions on BSA fouling during microfiltration,” Biotechnol. Bioeng., 44, 972 (1994)
Kelly, S. T., and A. L. Zydney, “Mechanisms for BSA fouling during microfiltration,” J Membrane Sci., 107, 115 (1995)
Kim, B. S., H. N. Chang, “Effects of Periodic Backflushing on Ultrafiltration Performance,” Bioseparation, 2, 23 (1991)
Kim, K. J., V. Chen, and A. G. Fane, “Some factors determining protein aggregation during ultrafiltration,” Biotechnol. Bioeng., 42, 260 (1993)
Lee, D. J., “Perspectives of Membrane Bioreactor in Municipal Wastewater Treatment,” The 2nd Membrane Conference in Taiwan., 17 
Matthiasson. E., and B. Sivik, “Concentration Polarization and Fouling,” Desalination, 35, 59 (1980)
Mercier, M., C. Fonade, and C. Lafforgue-Delorme, “How slug Flow can enhance the ultrafiltration flux in mineral tubular membrance,” J. Membrane Sci., 128, 103 (1997)
Michaels. A. S., “New Separation Technique for the CPI,” Chem. Eng Prog., 64, 31 (1968)
Mir L., “Positive-charged Ultrafiltration Membrane for the Seperation of Cathodic/electrodeposition Paint Cimposition,” U. S. Patent, 4, 412 (1983)
Nakao, S., T. Nomura, and S. Kimura, “Characteristics of Macromolecular Gel Layer Formed on Ultrafiltration Tubular Membrane,” AIChE J., 25, 615 (1979)
Nagaoka, H., S. Yamanishi and A. Miya, “Modeling of Biofouling by Extracellular Polymers in a Membrane Separtion Activated Sludge System,” Wat. Sci. Tech., 38, 497 (1998)
Nagaoka, H., S. Ueda, A. Miya, “Influence of bactraial extracellular polymers on the membrane separation activated sludge process,” Water Sci. Technol., 34, 165 (1996)
Nuengjamnong C., J. H. Kweon , J. Cho, C. Polprasert, K. H. Ahn, “Membrane Fouling Caused by Extracellular Polymeric Substances during Microfiltration Processes,” Desalination., 179, 117 (2005)
Ping, G., X. Huang., Y. Chan and Y. Quin, “Effect of Operational Parameters on Sludge Accumulation on Membrane Surfaces in a Submerged Membrane Bioreactor,” Desalination., 151, 185 (2002)
Porter, M. C., “Membrane Filtration,” Handbook of Separation Techniques for Chemical Engineer, Sec. 2.1, P. A. Schweitzer, ed., McGraw-Hill, New York, (1979)
Rishi, S and R. Bhave, “Role of Backpulsing in Fouling Minimization in Crossflow Filtration with Ceramic Membranes,” J. Membrane Sci., 186, 41 (2001)
Sherwood T. K., P. L. T. Brian, R. E. Fisher, and L. Dresner, “Salt Concentration at Phase Boundaries in Desalination by Reverse Osmosis,” I & EC Fundam., 4, 113 (1965)
Shimizu, Y., Y. I. Okuno and K. Uryu, “Filtration Characteristics of Hollow Fiber Microfiltration Membrane used in Membrane Bioreactor for Domestic Wastewater Treatment,” Wat. Res., 30, 2385 (1996)
Taylor G. I., “Stability of a Viscous Liquid Contained Between Two Rotating Cylinders,” Phil. Trans. Roy. Soc., A233, 298 (1923)
Ueda, T., K. Hata., Y. Kikuoka and O. Seino, “Effect of Aeration on Suction Pressure in a Submerged Membrane Bioreactor,” Wat. Res.J., 31, 489 (1996)
Van Der Weal, M. J., and I. G. Racz, “Mass Transfer in Corrugated-Plate Membrane Modules. 1. Hyperfiltration Experiments,” J. Membrane Sci., 40, 243 (1989)
Winzeler, H. B., and G. Belfort, “Enhanced Performance for Pressure-Driven Membrane Processes: The Argument for Fluid Instabilities,” J. Membrane Sci., 80, 35 (1993)
Wen, X., Yu, K., Bu, Q., Xia H., “Critical flux enhancements with air sparging in axial hollow fibers cross-flow microfiltration of biologically treated wastewater,” J. Membrane Sci., 224, 69 (2003)
Wontae Lee , S. Kang, H. Shin, “Sludge Characteristics and Their Contribution to Microfiltrationin Submerged Membrane Bioreactors,” J. Membrane Sci., 216, 217 (2003)
Yeh, H. M., and T. W. Cheng, “Resistance-in –Series for Membrane Ultrafiltration in Hollow-Fibers of Tube-and-Shell Arrangement,” Sep. Sci. Technol., 28, 1341(1993)
Youm, K. H., A. G. Fane, D. E. Wiley, “Effects of Natural Convection Instability on Membrane Performance in Dead-end and Cross-flow Ultrafiltration,” J. Membrane Sci., 116, 229 (1996)
Geankoplis, J., ”Transport Process and Unit Operation” 3th .pp.475
林志達, “巨分子懸浮液之薄膜超過濾”, 淡江大學化學工程研究所碩士論文, 2001
李力男, “傾斜氣-液兩相平板式薄膜超過濾之研究”, 淡江大學化學工程研究所碩士論文, 2002
邱志成, “以生物濾床與浸水式生物濾膜槽作為水回收處理設備之探討”,東海大學環境科學研究所碩士論文,2000 
林東宥, “微過濾程序中蛋白質結垢行為之探討”,台灣大學化學工程研究所碩士論文, 2000
茹志剛, “廢水防治工程”,26(1993)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信