淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1107200611253100
中文論文名稱 側向開口端部封閉管流紊流器熱傳及流場效應探討
英文論文名稱 Turbulator Effects on Heat Transfer and Flow Characteristics in Side-open End-sealed Duct Flows
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 郭哲翔
研究生英文姓名 Zhe-Shaun Kuo
學號 693370081
學位類別 碩士
語文別 中文
口試日期 2006-06-26
論文頁數 138頁
口試委員 指導教授-陳增源
委員-李福生
委員-湯敬民
中文關鍵字 側向開口端部封閉管流  熱傳  紊流產生器 
英文關鍵字 Side-open end-sealed duct flow  Heat transfer  Turbulator 
學科別分類 學科別應用科學航空太空
中文摘要 本研究以實驗量測方式利用側向開口端部封閉管道,探討流體側向溢流以及紊流產生器對流場結構與熱傳之關連性,並探討在邊界層內流場對流、二次流及紊流特性影響。本實驗使用一小型風洞系統用來產生均勻流之空氣,流入側向開口端部封閉管道之入口,將紊流產生器置於管道入口,且流場雷諾數介於1500至15000之間。在管道壁面設置一9 × 12 cm*cm 之銅熱傳板當作量測面。在流場量測方面,以都卜勒雷射測速儀(LDV)量測管道斷面、邊界層內三維向穩態之平均速度與擾動速度,並藉以獲得近熱傳表面之對流速度、二次流速度及紊流動能。而在熱傳板之溫度,則以T型之熱電偶線(type T thermocople)量測,藉以獲得Nusselt number。研究結果顯示,管道中央斷面流場有一般衝擊流特性;而靠近管道壁面之流體,受到端板所造成逆向壓力與壁面摩擦力雙重影響,導致逆向流產生,且雷諾數愈小,逆向流較早發生。加裝紊流產生器能提升熱傳效應,且增加近熱傳面之二次流速度及紊流動能。
英文摘要 The research experimentally investigate the turbulator effects on heat transfer and flow characteristics in a side-open, end-sealed duct, which simulates the cooling passages in the fin-type heat sinks of electronic equipments. Specifically, this research investigates the effects of fluid side-leakage and turbulator on the flow structures and near-wall flow characteristics, such as the convective mean velocity, the secondary flow and the turbulent kinetic energy. A wind tunnel system is used to generate a uniform flow at the inlet of the side-open, end-sealed duct. The Reynolds number is between 1500 and 15000. The turbulator have three type, such as a 45 delta-wing turbulator, a 10 delta-wing turbulator and a 90 rectangular-wing turbulator. The turbulator is placed at the inlet of the duct for the turbulator-effect study. The measurements include three-component mean and fluctuating velocities at duct cross-sections and near the duct wall. Results of this study indicate that the flow in the central plane of the duct is similar to an impinging flow. Due to the reverse pressure by the end wall and the friction force by the duct wall, the flow reversal occurs near the duct wall. The reversal flow occurs earlier for smaller Reynolds number than that for larger Reynolds because of the smaller flow kinetic energy. The effects of the turbulator causes lager dead water flow region and, thus, results in worse convective effect. However, the turbulator causes the larger secondary velocity and turbulent kinetic energy and, thus, results in better secondary and turbulent effects on the near-wall flow characteristics.
論文目次 目錄

第一章、 緒論………………1
1-1 研究動機………………1
1-2 文獻回顧………………4
1-3 研究目的………………9

第二章、 實驗設置及量測儀器………………11
2-1 實驗設備………………11
2-1-1 自由流風洞………………11
2-1-2 測試管道………………13
2-1-3 紊流產生器………………16
2-2 實驗量測儀器………………17
2-2-1 雷射都卜勒速度量測系統………………17
2-2-2 熱電偶線及I/O tech溫度擷取系統………………21
2-3 三維向精密位移系統………………24

第三章、 研究原理與實驗方法………………38
3-1 研究原理………………39
3-1-1 熱傳遞之基本型態………………39
3-1-2 基本參數………………42
3-1-3 應用原理………………46
3-2 實驗方法………………50
3-2-1 流場量測方法………………50
3-2-2 熱傳量測方法………………52

第四章、 實驗結果與討論………………59
4-1 穩態流場量測分析………………59
4-2 邊界層內流場量測分析………………64
4-2-1 近壁面流場分佈………………64
4-2-2 對流效應………………65
4-2-3 二次流效應………………67
4-2-4 紊流效應………………68
4-3 熱傳量測結果………………69
4-4 熱傳與邊界層內流場特性之關聯………………71

第五章、 結論………………131

參考文獻………………136

圖 表 目 錄

圖1-1 散熱模組裝置示意圖………………10
圖1-2 散熱鰭片(fin-array)流體側向溢流示意圖………………10
圖2-1 自由流實驗設備示意圖………………25
圖2-2-a 管道測試段結構示意圖(無turbulator) ………………26
圖2-2-b 管道測試段結構示意圖(含turbulator) ………………27
圖2-3熱傳板結構示意圖………………28
圖2-4-a 45三角翼紊流產生器規格圖………………29
圖2-4-b 10三角翼紊流產生器規格圖………………30
圖2-4-c 90長方翼紊流產生器規格圖………………31
圖2-5 雷射都卜勒測速儀(LDV)示意圖………………32
圖2-6 橄攬球狀之干涉區域………………33
圖2-7 熱電效應原理示意圖………………34
圖2-8-a 熱電偶量測原理示意圖………………35
圖2-8-b 熱電偶量測原理修正示意圖………………36
圖2-9 熱電偶線(thermocouple)之位置及I/O Tech溫度擷取系統示意圖………………37
圖3-1熱傳板熱量散失示意圖………………53
圖3-2 三軸座標與速度分量定義………………54
圖3-3-a X-Y斷面速度量測位置示意圖………………55
圖3-3-b Y-Z斷面速度量測位置示意圖………………56
圖3-3-c X-Z斷面速度量測位置示意圖………………57
圖3-4 熱傳板溫度量測位置示意圖………………58
圖4-1雷諾數15000無紊流產生器時,在X= -1.55 cm 處之Y-Z斷面流場分佈圖………………72
圖4-2雷諾數1500無紊流產生器時管道中央(Z= 1.5 cm )X-Y斷面流場分佈圖………………73
圖4-3-a雷諾數15000無紊流產生器時,在X= 1 cm 處之Y-Z斷面流場分佈圖………………74
圖4-3-b雷諾數15000無紊流產生器時,在X= 3.5 cm 處之Y-Z斷面流場分佈圖………………75
圖4-3-c雷諾數15000無紊流產生器時,在X= 6.5 cm 處之Y-Z斷面流場分佈圖………………76
圖4-3-d雷諾數15000無紊流產生器時,在X= 8.5 cm 處之Y-Z斷面流場分佈圖………………77
圖4-4-a雷諾數1500無紊流產生器時,在X= 1 cm 處之Y-Z斷面流場分佈圖………………78
圖4-4-b雷諾數1500無紊流產生器時,在X= 3.5 cm 處之Y-Z斷面流場分佈圖………………79
圖4-4-c雷諾數1500無紊流產生器時,在X= 6.5 cm 處之Y-Z斷面流場分佈圖………………80
圖4-4-d雷諾數1500無紊流產生器時,在X= 8.5 cm 處之Y-Z斷面流場分佈圖………………81
圖4-5-a雷諾數15000加紊流產生器時,在X= 1 cm 處之Y-Z斷面流場分佈圖………………82
圖4-5-b雷諾數15000加紊流產生器時,在X= 3.5 cm 處之Y-Z斷面流場分佈圖………………83
圖4-5-c雷諾數15000加紊流產生器時,在X= 6.5 cm 處之Y-Z斷面流場分佈圖………………84
圖4-5-d雷諾數15000加紊流產生器時,在X= 8.5 cm 處之Y-Z斷面流場分佈圖………………85
圖4-6-a雷諾數1500加紊流產生器時,在X= 1 cm 處之Y-Z斷面流場分佈圖………………86
圖4-6-b雷諾數1500加紊流產生器時,在X= 3.5 cm 處之Y-Z斷面流場分佈圖………………87
圖4-6-c雷諾數1500加紊流產生器時,在X= 6.5 cm 處之Y-Z斷面流場分佈圖………………88
圖4-6-d雷諾數1500加紊流產生器時,在X= 8.5 cm 處之Y-Z斷面流場分佈圖………………89
圖4-7-a雷諾數15000無紊流產生器時,在Y= 0 cm 處之X-Z斷面流場分佈圖………………90
圖4-7-b雷諾數15000無紊流產生器時,在Y= 3.5 cm 處之X-Z斷面流場分佈圖………………91
圖4-7-c雷諾數15000無紊流產生器時,在Y= 5.5 cm 處之X-Z斷面流場分佈圖………………92
圖4-7-d雷諾數1500無紊流產生器時,在Y= 0 cm 處之X-Z斷面流場分佈圖………………93
圖4-7-e雷諾數1500無紊流產生器時,在Y= 3.5 cm 處之X-Z斷面流場分佈圖………………94
圖4-7-f雷諾數1500無紊流產生器時,在Y= 5.5 cm 處之X-Z斷面流場分佈圖………………95
圖4-8-a雷諾數15000加紊流產生器時,在Y= 0 cm 處之X-Z斷面流場分佈圖………………96
圖4-8-b雷諾數15000加紊流產生器時,在Y= 3.5 cm 處之X-Z斷面流場分佈圖………………97
圖4-8-c雷諾數15000加紊流產生器時,在Y= 5.5 cm 處之X-Z斷面流場分佈圖………………98
圖4-8-d雷諾數1500加紊流產生器時,在Y= 0 cm 處之X-Z斷面流場分佈圖………………99
圖4-8-e雷諾數1500加紊流產生器時,在Y= 3.5 cm 處之X-Z斷面流場分佈圖………………100
圖4-8-f雷諾數1500加紊流產生器時,在Y= 5.5 cm 處之X-Z斷面流場分佈圖………………101
圖4-9-a雷諾數15000無紊流產生器時,近管道壁面(Z= 0.2 cm )X-Y斷面流場分佈圖………………102
圖4-9-b雷諾數1500無紊流產生器時,近管道壁面(Z= 0.2 cm )X-Y斷面流場分佈圖………………103
圖4-9-c雷諾數15000加紊流產生器時,近管道壁面(Z= 0.2 cm )X-Y斷面流場分佈圖………………104
圖4-9-d雷諾數1500加紊流產生器時,近管道壁面(Z= 0.2 cm )X-Y斷面流場分佈圖………………105
圖4-10-a雷諾數15000無紊流產生器時,對流速度分佈圖………………106
圖4-10-b雷諾數1500無紊流產生器時,對流速度分佈圖………………107
圖4-10-c雷諾數15000加紊流產生器時,對流速度分佈圖………………108
圖4-10-d雷諾數1500加紊流產生器時,對流速度分佈圖………………109
圖4-11-a雷諾數15000無紊流產生器時,二次流速度分佈圖………………110
圖4-11-b雷諾數1500無紊流產生器時,二次流速度分佈圖………………111
圖4-11-c雷諾數15000加紊流產生器時,二次流速度分佈圖………………112
圖4-11-d雷諾數1500加紊流產生器時,二次流速度分佈圖………………113
圖4-12-a雷諾數15000無紊流產生器時,紊流動能分佈圖………………114
圖4-12-b雷諾數1500無紊流產生器時,紊流動能分佈圖………………115
圖4-12-c雷諾數15000加紊流產生器時,紊流動能分佈圖………………116
圖4-12-d雷諾數1500加紊流產生器時,紊流動能分佈圖………………117
圖4-13在等電壓下,均勻流有無加裝紊流產生器之質量流率隨雷諾數(Nu)之分佈圖………………118
圖4-14-a雷諾數1500時,無紊流產生器之Nusselt number(Nu)………………119
圖4-14-b雷諾數3000時,無紊流產生器之Nusselt number(Nu)………………120
圖4-14-c雷諾數9000時,無紊流產生器之Nusselt number(Nu)………………121
圖4-14-d雷諾數15000時,無紊流產生器之Nusselt number(Nu)………………122
圖4-15-a在等流速下,雷諾數1500時加紊流產生器之Nusselt number (Nu)………………123
圖4-15-b在等流速下,雷諾數3000時加紊流產生器之Nusselt number (Nu)………………124
圖4-15-c在等流速下,雷諾數9000時加紊流產生器之Nusselt number (Nu)………………125
圖4-15-d在等流速下,雷諾數15000時加紊流產生器之Nusselt number (Nu)………………126
圖4-16-a在等流速下,均勻流有無加裝紊流產生器之Nusselt number (Nu)隨雷諾數(Re)之分佈圖………………127
圖4-16-b在等電壓下,均勻流有無加裝紊流產生器之Nusselt number (Nu)隨雷諾數(Re)之分佈圖………………128
圖4-17-a 在等流速下,均勻流有無加裝紊流產生器之Nu/Nuo隨雷諾數(Re)之分佈圖………………129
圖4-17-b 在等電壓下,均勻流有無加裝紊流產生器之Nu/Nuo隨雷諾數(Re)之分佈圖………………130

附錄一 Probe Volume Dimensions………………133
附錄二 熱電偶多項式係數(ai)對照表………………134
附錄三 熱電偶類型對照表………………135
參考文獻 參考文獻

[1] H. Jonsson and B. Palm, “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks Under Varying Bypass Conditions”, InterSociety Conference on Thermal Phenomena, IEEE, 1998, pp.96-103.
[2] M. Fiebig and Institute fur Thermo- und Fluiddynamik, Ruhr-Universitat, Bochum, Germany, “Eebedded Vortices in Internal Flow: Heat Transfer and Pressure Loss Enhancement”, International Journal of Heat and Fluid Flow, Vol. 16, No. 5, 1995 pp.376-388.
[3] J. X. Zhu, N. K. Mitra and M. Fiebig, “Effects of Longitudinal Vortex Generators on Heat Transfer and Flow Loss in Turbulent Channel Flows”, International Journal of Heat and Mass Transfer, Vol. 36, No. 9, 1993, pp.2339-2347.
[4] St. Tiggelbeck, N. K. Mitra and M. Fiebig, “Comparison of Wing-type Vortex Generators for Heat Transfer Enhancement in Channel Flows”, Journal of Heat Transfer, Vol. 116, 1994, pp. 880-885.
[5] M. Fiebig, P. Kallweit, N. K. Mitra and St. Tiggelbeck, “Heat Transfer Enhancement and Drag by Longitudinal Vortex Generators in Channel Flow”, Experimental Thermal and Fluid Science, Vol. 4, 1991, pp.103-114.
[6] St. Tiggelbeck, N. K. Mitra and M. Fiebig, “Experimental Investigations of Heat Transfer Enhancement and Flow Losses in a Channel with Double Rows of Longitudinal Vortex Generators”, International Journal of Heat and Mass Transfer, Vol. 36, No. 9, 1993, pp.2327-2337.
[7] St. Tiggelbeck, N. K. Mitra and M. Fiebig, “Flow Structures and Heat Transfer in a Channel with Multiple Longitudinal Vortex Generators”, Experimental Thermal and Fluid Science, Vol. 5, 1992, pp.425-436.
[8] P. A. Eibeck and J. K. Eaton, “Heat Transfer Effects of a Longitudinal Vortex Embedded in a Turbulent Boundary Layer”, Journal of Heat Transfer, Vol. 109, 1987, pp.16-24.
[9] G. Biswas, P. Deb and S. Biswas, “Generation of Longitudinal Streamwise Vortices―A Device for Improving Heat Exchanger Design”, Journal of Heat Transfer, Vol. 116, 1994, pp.588-597.
[10] G. Biswas, K. Torii, D. Fujii and K. Nishino, “Numerical and Experimental Determination of Flow Structure and Heat Transfer Effects of Longitudinal Vortices in a Channel Flow”, International Journal of Heat and Mass Transfer, Vol. 39, No. 16, 1996, pp.3441-3451.
[11] T. Y. Chen, M. J. Suen, Y. J. Wang and M. H. Lin, “Triangular-plate Turbulator Effects on Near-wall Flow Characteristics and Heat Transfer in Fan Flows”, Department of Aerospace Engineering TamKang University, Taiwan, R. O. C. 2003.
[12] T. Y. Chan and Y. H. Chen, “Turbulator Effects on Heat Transfer in Fan-driven Flows”, AIAA Journal of Thermophysics and Heat Transfer, Vol. 10, No. 3, 2004, pp.413-415.
[13] T. Y. Chen and H. T. Shu, “Flow Structures and Heat Transfer Characteristics in Fan Flows With and Without Delta-wing Vortex Generators”, Experimental Thermal and Fluid Science, Vol. 28, 2004, pp.273-282.
[14] T. Y. Chen and Y. H. Chen, “Rectangular-plate Turbulator Effects on Heat Transfer and Near-wall Flow Characteristics in Fan Flows”, Journal of Mechanics, Vol. 20, No. 1, 2004, pp.33-41.
[15] T. M. Liou, C. C. Chen, Y. Y. Tzeng and T. W. Tsai, “Non-intrusive Measurement of Near-wall Fluid Flow and Surface Heat Transfer in a Serpentine Passage”, International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp.3233-3244.
[16] M. Y. Wen and K. J. Jang, “An Impingement Cooling on a Flat Surface by Using Circular Jet with Longitudinal Swirling Strips”, International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp.4657-4667.
[17] S. Sathe, K. M. Kelkar, K. C. Karki, C. Tai, C. Lamb, S. V. Patankar, “Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink”, Journal of Electronic Packaging, Vol. 119, No. 1, 1997, pp.58-63.
[18] 李嘉慶、陳增源,“衝擊流中紊流產生器對熱傳及流場特性探討”,92年12月,中國航空太空學會學術研討會。
[19] A. Y. Tong, “On the Impingement Heat Transfer of an Oblique Free Surface Plane Jet”, International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp.2077-2085.
[20] A. T. Morrison, “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convention”, 1992. I-THERM III, InterSociety Conference on Thermal Phenomena in Electronic Systems, IEEE, 1992, pp.145-148.
[21] S. W. Chnag, L. M. Su, T. L. Yang and S. F. Chiou, “Enhanced Heat Transfer of Forced Convective Fin Flow with Transverse Ribs”, International Journal of Thermal Science, Vol. 43, 2004, pp. 185-200.
[22] K. F. Chiang, S. W. Chang and P. H. Chen, “Forced Convective Heat Transfer of 45  Rib-roughened Fin Flows”, Experimental Thermal and Fluid Science, Vol. 29, 2005, pp.743-754.
[23] H. Z. Cummins, N. Knable, and Y. Yeh, “Observation of Diffusion Broadening of Rayleigh Scattered Light”, Physical Review Letters, Vol. 12, 1964, pp.150-153.
[24] TSI Incorporated User’s Instruction Manual, 1985
[25] National Institute of Standards and Technology 1993. Temperature- Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS90. NIST Monograph 175. Washington, D. C.
[26] TempScan / MultiScan User’s Manual, High-speed Temperature & Voltage Systems, p/n 446-0901 Rev. 1.0, IO Tech , inc., 1998
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-07-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-07-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信