淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1107200519201500
中文論文名稱 啤酒酵母菌基因ALD2與ALD3之選殖、同源表現、純化,與催化活性之探討
英文論文名稱 Cloning, homologous expression, purification, and catalytic characterization of ALD2 and ALD3 of Saccharomyces cerevisiae.
校院名稱 淡江大學
系所名稱(中) 生命科學研究所碩士班
系所名稱(英) Graduate Institute of Life Sciences
學年度 93
學期 2
出版年 94
研究生中文姓名 李慧玲
研究生英文姓名 Hui-Lin Lee
學號 692290108
學位類別 碩士
語文別 中文
口試日期 2005-06-10
論文頁數 77頁
口試委員 指導教授-陳銘凱
委員-陳曜鴻
委員-官宜靜
中文關鍵字 醛類脫氫酶  真核細胞  同源表現  親和性層析法  凝血酶 
英文關鍵字 aldehyde dehydorgenase  eukaryotic  homologious expression  affinity chromatography  thrombin 
學科別分類 學科別醫學與生命科學生物學
中文摘要 啤酒酵母菌(Saccharomyces cerevisiae)之ALD2 (YMR170C )及ALD3 (YMR169C),是以二縱排重覆(two tandem-repeated)的ORFs存在其第13號染色體中。這兩個蛋白質,在胺基酸序列的比較上,呈現出87%的同等性及91%的相似性,同時此二蛋白在特徵上被認為是屬於細胞質壓力誘導型(cytoplasmic stress-inducible )-醛類脫氫酶(aldehyde dehydorgenase, ALD)之同功異構酶(isoforms)。根據Navarro-Avino等學者的研究指出,ALD3p可藉由NAD+當輔酶(coenzyme),並具有以acetaldehyde及betaine aldehyde為受質之酵素活性 (Navarro-Avino et al., 1999),但是至目前為止,其尚無詳細的酵素動力學被測定出來;此外ALD2p的酵素活性亦尚未被表達與分析之。本研究為了產生具有酵素活性的ALD2p及ALD3p,我們利用真核細胞同源表現系統,將ALD2與ALD3基因構築到具有Glutathione S – Trans ferase (GST)基因的表現載體pEG-KT,利用4 % galactose誘導此二重組蛋白(GST-ALD2、GST-ALD3)在Saccharomyces cerevisiae (BJ2168)中大量表現,並利用GST親合性層析法純化此二蛋白。研究結果得知,我們所建構表現的重組型GST-ALD2、GST-ALD3具有催化propioaldehyde、γ-aminobutyraldehyde、3-aminopropioaldehyde,及betaine aldehyde等不同醛類受質之酵素活性。
英文摘要 Saccharomyces cerevisiae ALD2 (YMR170C) and ALD3 (YMR169C) are two tandem-repeated ORFs on Chromosome XIII. The amino acid sequence comparison of these two proteins shows significant similarity with 87% identities and 91% positives, and they were characterized as the cytoplasmic stress-inducible isoforms of aldehyde dehydorgenase (ALD). In the previous studies, assays with over-expressed Ald3p showed that this protein is NAD+ linked and active with acetaldehyde and betaine aldehyde. However, none of detailed kinetics has been determined. Neither has ALD2p been expressed and assayed. In this thesis, in order to produce large amount of biologically active Ald2p and Ald3p, the eukaryotic homologous expression system was applied, and the full-length of ALD2 and ALD3 gene was constructed into pEG-KT expression vector. Then the vector was transformed into Saccharomyces cerevisiae (BJ2168), and the transformants were able to over-express recombinant GST-ALD2 and GST-ALD3 by 4% galactose. To study the purified ALD2p and ALD3p, GST affinity chromatography strategy was used. The activity of clarified cell extract was examined by propioaldehyde. And the recombinant protein was characterized by betaine aldehyde, γ-aminobutyraldehyde and 3-aminopropioaldehyde.
論文目次 謝誌 I
中文摘要 II
英文摘要 III
縮寫表 IV
目錄 V
圖、表目錄 VIII
第一章 緒論 1
第二章 ALD2、ALD3之基因選殖及重組基因之次選殖(subcloning)13
第一節 檢體來源與聚合酶鏈反應(PCR)複製處理 13
2.1.1菌種來源 13
2.1.2萃取酵母菌(S. cerevisiae)genomic DNA 13
2.1.3聚合酶鏈反應(PCR)複製ALD2及ALD3基因 14
2.1.4 PCR產物之限制酶切割確認 15
2.1.5洋菜膠體電泳 16
2.1.6 PCR產物的純化 16
2.1.7 PCR產物之3’末端補“A”鹼基 16
第二節 ALD2與ALD3之基因選殖(TA- cloning) 17
2.2.1 DNA的接合(DNA ligation) 18
2.2.2大腸桿菌之質體轉型 (E. coli - DH5α) 19
2.2.3 Colony PCR及電泳分析 20
2.2.4少量質體DNA的備製 20
2.2.5 DNA定序分析 21
第三節 重組基因之次選殖(subcloning) 24
2.3.1建構選殖基因之BamHI及SmaI限制酶切割位 24
2.3.2純化Target DNA fragment 25
2.3.3 ALD2、ALD3選殖基因與pEG KT 載體的接合 26
2.3.4大腸桿菌之質體轉型 (E. coli-DH5α) 26
2.3.5 Colony PCR及電泳分析 26
2.3.6少量質體DNA的備製 26
2.3.7 DNA定序分析 27
2.3.8大量質體DNA的快速備製 27
第四節 實驗結果與討論 27
2.4.1 PCR產物與限制酶切割確認 27
2.4.2 Transformed大腸桿菌之colony PCR確認 28
2.4.3 定序分析 28
2.4.4 選殖基因之限制酶BamHI及SmaI切割位的建構 30
2.4.5 重組基因次選殖之Cloning -PCR及限制酶切割之確認 30
第三章 同源表現與純化重組蛋白 37
第一節 同源表現(homologous expression) 38
3.1.1酵母菌之細胞轉型(Electroporation method, Bio-Rad) 38
3.1.2表現載體之誘導 40
第二節純化重組之GST - ALD2與GST - ALD3蛋白 42
3.2.1提取酵母菌粗抽液蛋白 42
3.2.2蛋白純化-GST親合性吸附法 43
3.2.3 SDS-PAGE蛋白質電泳分析 44
3.2.4 Coomassie Blue染色 46
3.2.5蛋白質定量 (Bradford protein-binding assay) 47
第三節實驗結果與討論 48
3.3.1 啤酒酵母菌之pEG KT-ALD transformation efficiency 48
3.3.2 表現載體誘導時間之檢測 49
3.3.3 融合蛋白之純化 50
第四章 酵素活性之分析 54
第一節 Ald2p與Ald3p活性之分析 54
第二節 實驗結果與討論 55
第五章 綜合討論與結論 63
參考文獻 66
附表(一) 實驗用的DNA引子 73
附表(二) 實驗用的菌種及質體 74
附錄(一) ALD2與ALD3蛋白質胺基酸序列之比較 75
附錄(二) pGEM®-T Easy Vector DNA圖示 76
附錄(二) pEG-KT (shuttle vector)載體之圖譜 77
圖1-1 Betain – Choline Pathway 4
圖2-1 ALD2-PCR產物與限制酶切割之結果 31
圖2-2 ALD3-PCR產物與限制酶切割之結果 32
圖2-3 TA cloning-PCR之電泳結果 33
圖2-4 選殖基因與表現質體以限制酶BamHI、SmaI切割後之結果 34
圖2-5 重組基因次選殖之colony PCR電泳結果 35
圖2-6 重組基因(pEG KT-ALD2、pEG KT-ALD3)以限制酶BamHI、SmaI切割後之結果 36
圖3-1 pEG KT-ALD2與pEG KT-ALD3表現載體誘導時間之檢測 52
圖3-2 pEG KT-ALD2及pEG KT-ALD3在酵母菌BJ2168中,經
4% galactose誘導表現後,以10% SDS-PAGE分析純化
recombinantGST-ALD3、GST-ALD3各步驟之結果 53
圖4-1 純化前、後的ALD2蛋白,以丙醛為受質之活性分析 59
圖4-2 純化前、後的ALD3蛋白,以丙醛為受質之活性分析 60
圖4-3 比較ALD2及ALD3 crude lysate於不同pH值之緩衝液系統中,以四種醛類、NAD+為受質之反應後,NADH的生成量 61
圖4-4 比較ALD2及ALD3 crude lysate於不同pH值之緩衝液系統中,以四種醛類、NADP+為受質之反應後,NADPH的生成量 62
表4-1 ALD2與ALD3之融合蛋白以丙醛為受質之比活性 58
參考文獻 Arakawa, K., Katayama, M. and Takabe, T. (1990). Levels of betaine and betaine aldehyde dehydrogenase activity in the green leaves, and etiolated leaves and roots of barley. Plant Cell Physiol. 31, 797-807.

Boch, J., Nau-Wagner, G., Kneip, S., and Bremer, E. (1997). Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol 168, 282-289.

Canovas, D., Vargas, C., Kneip, S., Moron, M.J., Ventosa, A., Bremer, E., and Nieto, J.J. (2000). Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043, USA. Microbiology 146 (Pt 2), 455-463.

Chern, M.K., and Pietruszko, R. (1995). Human aldehyde dehydrogenase E3 isozyme is a betaine aldehyde dehydrogenase. Biochem Biophys Res Commun 213, 561-568.

Claudine T., Bala R., and Andrew D.H. (1997) Transgenically expressed betaine aldehyde dehydrogenase efficiently catalyzes oxidation of dimethylsulfoniopropionaldehyde and ω–aminoaldehydes. Plant Physiol. 113, 1457-1461.

Cline, J., Braman, J.C., and Hogrefe, H.H. (1996). PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 24, 3546-3551.

Craig, S.A. (2004). Betaine in human nutrition. Am J Clin Nutr 80, 539-549.

Dragolovich, J. and Pierce, S. K. (1994) Characterization of partially purified betaine aldehyde dehydrogenase from horseshoe crab (Limulus polyphemus) cardiac mitochondria. J. Exp. Zool. 270, 417–425

Falkenberg, P., and Strom, A.R. (1990). Purification and characterization of osmoregulatory betaine aldehyde dehydrogenase of Escherichia coli. Biochim Biophys Acta 1034, 253-259.

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11, 4241-4257.

Galibert F., Alexandraki D., Baur A., Boles E., Chalwatzis N., Chuat J.C., Coster F., Cziepluch C., De Haan M., Domdey H., Durand P., Entian K.D., Gatius M., Goffeau A. (1996) Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X. EMBO J. 9, 2031-2049.

Guan, K.L., and Dixon, J.E. (1991). Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem 192, 262-267.

Hempel, J., Nicholas, H., and Lindahl, R. (1993). Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci 2, 1890-1900.

Ikuta, S., Imamura, S., Misaki, H., and Horiuti, Y. (1977). Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem (Tokyo) 82, 1741-1749.

Kurys, G., Ambroziak, W., and Pietruszko, R. (1989). Human aldehyde dehydrogenase. Purification and characterization of a third isozyme with low Km for gamma-aminobutyraldehyde. J Biol Chem 264, 4715-4721.

Landfald, B., and Strom, A.R. (1986). Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol 165, 849-855.

Mager, W.H., and Varela, J.C. (1993). Osmostress response of the yeast Saccharomyces. Mol Microbiol 10, 253-258.

Miralles, V.J., and Serrano, R. (1995). A genomic locus in Saccharomyces cerevisiae with four genes up-regulated by osmotic stress. Mol Microbiol 17, 653-662.

Mitchell, D.A., Marshall, T.K., and Deschenes, R.J. (1993). Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9, 715-722.

Mori, N., Kawakami, B., Hyakutome, K., Tani, Y. & Yamada, Y. (1980) Characterization of betaine aldehyde dehydrogenase from Cylindrocarpon didymum M-1. Agric. Biol. Chem. 44, 3015–3016.

Nakamura, T., Yokota, S., Muramoto, Y., Tsutsui, K., Oguri, Y., Fukui, K., and Takabe, T. (1997). Expression of a betaine aldehyde dehydrogenase gene in rice, a glycinebetaine nonaccumulator, and possible localization of its protein in peroxisomes. Plant J 11, 1115-1120.

Navarro-Avino, J.P., Prasad, R., Miralles, V.J., Benito, R.M., and Serrano, R. (1999). A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15, 829-842.

Norbeck, J., and Blomberg, A. (2000). The level of cAMP-dependent protein kinase a activity strongly affects osmotolerance and osmo-instigated gene expression changes in Saccharomyces cerevisiae. Yeast 16, 121-137.

Pan, S., Moreau, R. A., Yu, C. and Huang, A. H. C. (1981). Betaines accumulation and betaine-aldehyde dehydrogenase in spinach leaves. Plant Physiol. 67, 1105-1108.

Perrino, L.A., and Pierce, S.K. (2000). Betaine aldehyde dehydrogenase kinetics partially account for oyster population differences in glycine betaine synthesis. J Exp Zool 286, 238-249.

Petronini, P. G. M., De Angelis, E., Borghetti, P., Borghetti, A. F. and Wheeler, K. P. (1992). Modulation by betaine of cellular responses to osmotic stress. Biochem. J. 282, 69-73.

Rathinasabapathi, B., Burnet, M., Russell, B.L., Gage, D.A., Liao, P.C., Nye, G.J., Scott, P., Golbeck, J.H., and Hanson, A.D. (1997). Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning. Proc Natl Acad Sci U S A 94, 3454-3458.

Rothschild, H.A., and Barron, E.S. (1954). The oxidation of betaine aldehyde by betaine aldehyde dehydrogenase. J Biol Chem 209, 511-523.

Russell, B.L., Rathinasabapathi, B., and Hanson, A.D. (1998). Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol 116, 859-865.

Russell, R., and Scopes, R.K. (1994). Use of hydrophobic chromatography for purification of the membrane-located choline dehydrogenase from a Pseudomonas strain. Bioseparation 4, 279-284.

Saccharomyces Genome Database (SGD; http://gnome-www.stanford.edu/ Saccharomyces/)

Schuller, C., Brewster, J.L., Alexander, M.R., Gustin, M.C., and Ruis, H. (1994). The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. Embo J 13, 4382-4389.

Tsuge, H., Y. Nakano, H. Onishi, Y. Futamura, and K. Ohashi. 1980. A novel purification and some properties of rat liver mitochondrial choline dehydrogenase. Biochim. Biophys. Acta 614:274-284

Ueda, A., Kathiresan, A., Inada, M., Narita, Y., Nakamura, T., Shi, W., Takabe, T., and Bennett, J. (2004). Osmotic stress in barley regulates expression of a different set of genes than salt stress does. J Exp Bot 55, 2213-2218.

Valenzuela-Soto, E. M. and Munoz-Clares, R. A. (1994). Purification and properties of betaine aldehyde dehydrogenase extracted from detached leaves of Amaranthus hypochondriaacus L. subjected to water deficit. J. Plant Physiol. 143, 145-152.

Vaz, F.M., Fouchier, S.W., Ofman, R., Sommer, M., and Wanders, R.J. (2000). Molecular and biochemical characterization of rat gamma-trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis. J Biol Chem 275, 7390-7394.

Weretilnyk, E.A., and Hanson, A.D. (1988). Betaine aldehyde dehydrogenase polymorphism in spinach: genetic and biochemical characterization. Biochem Genet 26, 143-151.

Weretilnyk, E. A. and Hanson, A. D. (1989). Betaine aldehyde dehydrogenase from spinach leaves. Purification, in vitro translation of the mRNA, and regulation by salinity. Arch. Biochem. Biophys. 271, 56-63.

White, W.H., Skatrud, P.L., Xue, Z., and Toyn, J.H. (2003). Specialization of function among aldehyde dehydrogenases: the ALD2 and ALD3 genes are required for beta-alanine biosynthesis in Saccharomyces cerevisiae. Genetics 163, 69-77.

論文使用權限
  • 不同意紙本論文無償授權給館內讀者為學術之目的重製使用。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信