淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1107200516002100
中文論文名稱 操作條件對酵母菌/牛血清蛋白雙成份懸浮液之掃流微過濾性能之影響
英文論文名稱 Effects of Operating Conditions on the Performance of Cross-Flow Microfiltration of Yeast/BSA Binary Suspension
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 黃信杰
研究生英文姓名 Hsin-Chieh Hwang
學號 692360364
學位類別 碩士
語文別 中文
口試日期 2005-06-23
論文頁數 116頁
口試委員 指導教授-黃國楨
委員-李篤中
委員-莊清榮
委員-鄭東文
委員-童國倫
中文關鍵字 掃流微過濾  蛋白質純化  pH值  分離效率 
英文關鍵字 cross-flow microfiltration  protein purification  pH value  separation efficiency 
學科別分類
中文摘要 本研究以酵母菌(Yeast)來模擬生物發酵槽中之培養菌,再加入牛血清蛋白(BSA)配置成雙成份之懸浮液,來探討酵母菌與牛血清蛋白懸浮液的掃流微過濾特性。我們以適當薄膜阻擋懸浮溶液中的酵母菌,而部分牛血清蛋白質則可通過薄膜,以達到分離的效果。藉由量測不同的pH值及操作條件下的濾液通量,以及牛血清蛋白質的阻擋率,並分析濾餅的性質,以期找出懸浮液性質對分離效率的影響。
由實驗結果發現,由於酵母菌等電位點接近pH = 3.0,所以在此條件下,酵母菌會發生聚集現象,使得其穩定濾速比pH = 5.0和pH = 7.0高出很多,但是對牛血清蛋白的阻擋率卻是最低的。而pH = 5.0和pH = 7.0環境之下,pH = 5.0濾速稍偏低一點、阻擋率則偏高一些,這是由於pH = 5.0時,BSA有凝聚的現象發生,使得濾餅或膜孔被BSA聚集團所阻塞,造成有比較低的濾液流量和比較高的阻擋率。由實驗得知pH=3.0之懸浮液,在高掃流速度、低過濾壓差下會有最好的分離效率。
本研究藉由過濾基本公式和力平衡方程式,推導一擬穩定濾速與操作條件的關係式。並根據濃度極化模式、深層過濾之粒子標準捕獲方程式,再考慮剪應力對巨分子運動的影響,進而得到一理論式,藉由此理論式子來估計巨分子之阻擋率,所得到的估計值符合實驗趨勢。
英文摘要 In this study, yeast cells are used to simulate the microbes in a fermentation tank. Yeast cell and BSA are suspended in a de-ionized water to prepare the binary suspension used in experiments. Yeast cells are retained by the filter membrane during a filtration, while some BSA molecules may permeate through the filter cake and the membrane into filtrate. The filtration rate, the retention of BSA and the cake properties under various operating conditions are measured and discussed.
The experimental results show that an aggregation of yeast cells occurs at pH 3 (near its isoelectric point), and the steady filtration rate is therefore quite higher than those at pH 5 and pH 7. However, the retention of BSA is the lowest at pH 3. Since BSA molecules coagulate with each other at pH 5, the BSA aggregates may foul in the cake or in the membrane pores. Therefore, the filtration rate is lower and the retention is higher at pH 5 than those at pH 7. A suspension at pH 3 under high cross-flow velocity and low filtration pressure can be concluded as the optimum operating condition.
Based on the basic filtration equation and the force balance equation, the relationships among the pseudo-steady filtration rate and operating conditions can be derived and used for flux prediction. The estimated filtration rate agrees fairly well with experimental data. Furthermore, according to the concentration polarization model, the standard capture equation for depth filtration and the effect of shear stress on the protein migration, a theoretical equation is obtained to estimate the retention of protein. The protein retentions under various conditions can be estimated accurately.
論文目次 目錄

中文摘要 Ⅰ
英文摘要 Ⅱ
目 錄 IV
圖表目錄 VIII

第一章 緒論 1
第二章 文獻回顧 4
2-1 雙成份懸浮液之過濾的特性 4
2-2 粒子間之作用力 8
2-3 濾餅的性質 11
2-4 pH值與電解質濃度對粒子間作用力的影響 13
2-5 聚集團內含水率之量測 16
第三章 理論 20
3-1 掃流過濾機內粒子之受力解析 20
3-2 粒子間之摩擦係數 29
3-3 粒子附著之臨界摩擦角度 29
3-4 濾餅的過濾比阻、孔隙度和固體壓縮壓力的關係 35
3-5 雙成份掃流微過濾之模式探討 36
3-6 模擬穩定濾速之預測 38
3-7 巨分子過濾分析 39
3-7.1 巨分子阻擋率的定義:(retention
coefficient) 39
3-7.2 濃度極化層 39
3-7.3 巨分子之阻擋機構 40
3-7.4 巨分子穿透濾餅之模擬分析 42
3-7.5 巨分子回收率 43
第四章 實驗裝置與步驟 45
4-1 掃流過濾實驗裝置、物料與濾膜 45
4-1.1 掃流過濾實驗裝置 45
4-1.2 實驗物料與濾膜 46
4-2 分析儀器 47
4-3 實驗步驟 48
4-3.1 懸浮液性質的配法 48
4-3.2 清洗Yeast的步驟 48
4-3.3 掃流過濾步驟 48
4-4 BSA濃度之測量方法 50
第五章 實驗結果與討論 52
5-1 pH值對粒子平均粒徑與界達電位的影響 52
5-2 雙成份懸浮液Yeast+BSA之掃流過濾特性 55
5-2.1 掃流速度與pH值對掃流微過濾的影響 55
5-2.2 過濾壓差與pH值對掃流微過濾的影響 58
5-2.3 離子濃度對掃流微過濾的影響 62
5-3 過濾阻力分析 64
5-3.1 不同操作條件下過濾阻力分析 65
5-3.2 不同pH值對過濾阻力的影響 67
5-4 粒子在濾面上之受力分析 69
5-4.1粒子在濾面上所受到之流體拉曳力與粒子間之
作用力之關係 70
5-4.2 分子間作用力之探討 71
5-4.3 粒子間的摩擦係數 72
5-5 不同操作條件對BSA阻擋率的影響 73
5-5.1 掃流速度與pH值對BSA阻擋率的影響 74
5-5.2 過濾壓差與pH值對BSA阻擋率的影響 75
5-5.3 離子濃度對BSA阻擋率的影響 76
5-5.4 BSA回收率之探討 77
5-6 估計理論濾速和阻擋率 82
第六章 結論 87
符號說明 90
參考文獻 96
附錄 103
附錄A 實驗物料的種類及物性 103
附錄B 實驗數據計算式 107
附錄C 濾餅壓縮性分析 111
附錄D 吸附效應 113
附錄E 濾餅中粒子之內外部孔隙度的關係 114

圖目錄

第二章
Fig.2-1 A conceptual visualization of the moisture distribution in sludge(Tsang & Vesilind,1990) 18
Fig.2-2. The Drying Apparatus (Tsang & Vesilind,1990) 18
Fig 2-3 Drying curve for identifying four different types of water in sludge(Tsang & Vesilind,1990) 19
第三章
Fig 3-1 Force exerted on a depositing particle in the cross-flow Microfiltration 22
Fig 3-2 Interaction energy of Van der Walls force and electrical double layer repulsive force under different distance 26
Fig 3-3 The resistance of microfiltration 37
Fig 3-4 A schematic diagram around the cake membrane surface in a cross-flow microfiltration 42
第四章
Fig.4-1 A schematic diagram of cross-flow filtration system 46
Fig.4-2 The calibration curve of BSA concentration of 0~0.2 wt% at various pH values 51
第五章
Fig.5-1 The average size of Yeast、Yeast/BSA and BSA particle under different pH values 53
Fig.5-2 The size distribution of Yeast/BSA binary suspension under different pH values 54
Fig.5-3 The zeta potential of Yeast、Yeast/BSA and BSA particle under different pH values 55
Fig.5-4 The pseudo-steady filtration rate during cross-flow microfiltration under various cross-flow velocities for different pH values 57
Fig.5-5 Effect of cake mass under different cross-flow velocities for different pH values 57
Fig.5-6 Effect of average specific filtration resistances under different cross-flow velocities for different pH values 58
Fig.5-7 The pseudo-steady filtration rate during cross-flow microfiltration under various filtration pressures for different pH values 59
Fig.5-8 Effect of average specific filtration resistances under various filtration pressures for different pH values 60
Fig.5-9 Effect of cake mass under various filtration pressures for different pH values 60
Fig.5-10 Effect of external porosity of cake under various filtration pressures for different pH values 61
Fig.5-11 The calculation compressibility coefficient n under different pH values 62
Fig.5-12 The pseudo-steady filtration rate during cross-flow microfiltration under various ion concentration for different cross-flow velocity 63
Fig.5-13 The zeta potential and average size of Yeast/BSA particle under different ion concentration when pH=7.0 64
Fig.5-14 Filtration resistances in cross-flow filtration under different cross-flow velocities with pH=7.0 66
Fig.5-15 Filtration resistances in cross-flow filtration under different filtration pressures with pH=7.0 67
Fig.5-16 Filtration resistances in cross-flow filtration with different pH Values 68
Fig.5-17 Effect of filtration rates on the values of Fi and F2 71
Fig.5-18 Interaction force Fi to distance of separation De with different pH values 72
Fig.5-19 The factor of fc under various operating condition 73
Fig.5-20 Effect of cross-flow velocity on the rejection of BSA with different pH values 75
Fig.5-21 Effect of filtration pressure on the rejection of BSA with different pH values 76
Fig.5-22 Effect of ion concentration on the rejection of BSA under various cross-flow velocities 77
Fig.5-23 Effect of cross-flow velocity on the BSA recovery under different pH values 79
Fig.5-24 Effect of cross-flow velocity on the efficiency under different pH values 79
Fig.5-25 Effect of filtration pressure on the BSA recovery under different pH values 81
Fig.5-26 Effect of filtration pressure on the efficiency under different pH Values 81
Fig.5-27 Comparison of calculated results and experimental data of the pseudo-steady filtration rates during cross-flow filtration under different cross-flow velocities with different pH values 83
Fig.5-28 A plot of ln{[exp(qs/k)]×[Rrej/(1-Rrej)+1]} to Lc under different cross-flow velocity 84
Fig.5-29 A plot of 1- to γ0/qs 85
Fig.5-30 Comparison of calculated results and experimental data of the pseudo-steady rejections under different cross-flow velocity 86

附錄

Fig.A-1 The SEM picture of yeast(10,000X) 104
Fig.A-2 Particle size distribution of Yeast/BSA under pH=7.0 104
Fig.A-3 The top view of the mixed cellulose ester
membrane by SEM(30,000X) 106
Fig.A-4 The side view of the mixed cellulose ester membrane by SEM(30,000X) 106
Fig.B-1 The effect of pressure drop on the membrane Resisitance 108
Fig.C-1 The calculation compressibility coefficient n under different pH values 111
Fig.C-2 The calculation compressibility coefficient β under different pH values 112
Fig.D-1 The saturated BSA adsorption amount per Yeast weight at different pH values 113
Fig.E-1 The drying curve for the filtration cake of yeast / BSA 114

表目錄

Table 4-1 The operating conditions used in this study 50
Table 5-1 The magnitude of each force typical operation conditions 69
Table B-1 The value of Rm under different operation conditions 107
Table C-1 Compressibility factor 112
Table D-1 The saturated BSA adsorption amount per Yeast weight at different pH values 113
參考文獻 Ansell , G.C. and Dickinson E. , “Brownian Dynamic Simulation of the Fragmentation of a Large Colloidal Floc in Simple Shear Flow” , J. Colloid Interface Sci. , 110(1) , 73-81 (1986).
Arora , N. , R.H. Davis, “Yeast Cake Layers as Secondary Membranes in Dead-End Microfiltration of Bovine Serum Albumin” , J. Membr. Sci. , 92 , 247–256 (1994).
Bagchi , P. and Birnbaum S.M. , “Effect of pH on the Adsorption of Immunoglobulin G on Anionic Poly(Vinyltoluene) Model Latex Particles” , J. Colloid Interface Sci. , 83(2) , 460-477 (1981).
Bailey , S. M. and Meagher M. M. , “Separation of Soluble Protein from Inclusion Bodies in Escherichia Coli Lysate Using Crossflow Microfiltration” , J. Membr. Sci. , 166 , 137-146 (2000).
Bossis , G. and J. F. Brady , “Dynamic Simulation of Sheared Suspensions:I. General Method” , J. Chem. Phys. , 80(10) , 5141-5154 (1984).
Chan , R. and V. Chen , “The Effects of Electrolyte Concentration and pH on Protein Aggregation and Deposition:Cirtical Flux and Constant Flux Membrane Filtration” , J. Membr. Sci. , 185 , 177-192 (2001).
Chen , D. and M. Doi , “Simulation of Aggregating Colloids in Shear Flow. II” , J. Chem. Phys. , 91(4) , 2656-2663 (1989).
Cheryan , M. , “Ultrafiltration and Microfiltration Handbook” , 113-130 , Technomic Publishing Co. , Pennsylvania , USA (1998).
Choi , S. W. , J. Y. Yoon , S. Haam , J. K. Jung , J. H. Kim and W. S. Kim , “Modeling of the Permeate Flux during Microfiltration of BSA-Adsorbed Microspheres in a Stirred Cell|” , J. Colloid and Interface Sci. , 228 , 270-278 (2000).
Doi , M. and D. Chen , “Simulation of Aggregating Colloids in Shear Flow” , J. Chem. Phys. , 901(10) , 5271-5279 (1989).
Drew , D. A. , J. A. Schonberg and G. Belfort , “Lateral Inertial Migration of a Small Sphere in Fast Laminar Flow through a Membrane Duct” , Chem. Eng. Sci. , 46 , 3219-3224 (1991).
Dumont , F. , Warlus J. and Watillon A. , “Influence of the Point of Zero Charge of Titanium Dioxide Hydrosols on the Ionic Adsorption Sequences” , J. Colloid Interface Sci. , 138(2) , 543-554 (1990).
Fillaudeau , L. and H. Carrere , “Yeast Cell , Beer Composition and Mean Pore Diameter Impacts on Fouling Retention During Cross-Flow Filtration of Beer with Ceramic Membranes”, J. Membr. Sci. , 196 , 39-57 (2002).
Fischer , E. and J. Raasch , “Cross-Flow Filtration” , Ger. Chem. Eng. , 8 , 211-216 (1985).
Gesan-Guiziou , G. , R.J. Wakeman and G. Daufin , “Stability of Latex Cross-Flow Filtration : Cake Properities and Critical Conditions of Deposition” , Chem. Eng. J. , 85 , 27-34 (2002).
Goren , C. and R. H. Davis , “Membrane Fouling during Mircofiltration of Protein Mixtures” , J. Colloid Interface Sci. , 69 , 78-85 (1979).
Guell , C. , P. Czekaj and R.H. Davis , “Microfiltration of Protein Mixtures and the Effects of Yeast on Membrane Fouling” , J. Membr. Sci. , 155 , 113-122 (1999).
Guell , C. , R.H. Davis , “Membrane Fouling during Microfiltration of Protein Mixtures” , J. Membr. Sci. , 119 , 269-284 (1996).
Happel , J. and Brenner H. , “Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media” , chap. 8 , Prentice-Hall , Englewood Cliffs , New Jersey , 2nd ed. (1965).
Hunter , R.J. , “Foundations of Colloid Science” , I , Clarendon Press. , Oxford (1987).
Hwang , K. J. , Y. H. Cheng and K. L. Tung , “Modeling of Cross-Flow Microfiltration of Fine Particle/Macromolecule Binary Suspension” , J. of Chemical Engineering of Japan , 36(12) , 1488-1497 (2003).
Hwang , K. J. , W. M. Lu and M. C. Yu , “Migration and Deposition of Submicron Particle in Cross-Flow Microfiltration” , Sep. Sci. Technol. , 32(17) , 2723-2347 (1997).
Hwang , K. J. and C.L. Hsueh , “Cross-Flow Microfiltration of Dual-Sized Submicron Particles” , Sep. Sci. Technol. , 37 , 2231-2249 (2002).
Hwang , K. J. , H. C. Liu and W. M. Lu , “Local Properties of Cake in Cross-Flow Microfiltration of Submicron Particles” , J. Membr. Sci. , 138 , 181-192 (1998).
Iritani , E. , Y. Mukai and T. Murase , “Properties of Filter Cake in Dead-End Ultrafiltration of Binary Protein Mixtures with Retentive Membranes” , IChemE , Part A , Chemical Engineering Research and Design , 73 , 551-558 (1995a).
Iritani , E. , Y. Mukai and T. Murase , “Upward Dead-End Ultrafiltration of Binary Protein Mixtures” , Sep. Sci. Technol. , 30(3) , 369-382 (1995b).
Iritani , E. , Y. Mukai and T. Murase , “Separation of Binary Protein Mixtures by Ultrafiltration” , Filtration and Separation , 34(9) , 967-973 (1997).
Iritani , E. , Y. Mukai and T. Murase , “Fractionation Characteristic of Binary Protein Mixtures by Ultrafiltration” , Sep. Sci. Technol. , 33(2) , 169-185 (1998).
Iwasaki , T. , “Some Notes on Sand Filtration” , J. Am. Water Works Assoc. , 29 , 1591-1602 (1937).
Krstic , D. M. , S. L. Markov and M. N. Tekic , “Membrane Fouling during Cross-Flow Microfiltration and the Significance of Enzyme/Cell Debris Interaction” , J. Membr. Sci. , 21 , 219-232 (2001).
Kuberkar , V. T. and R. H. Davis , “Effects of Added Yeast on Protein Transmission and Flux in Cross-Flow Membrane Microfiltration” , Biotechnol. Prog. , 15 , 472-479 (1999).
Kuberkar , V. T. and R. H. Davis , “Microfiltration of Protein-Cell Mixtures with Crossflushing or Backflushing” , J. Membr. Sci. , 183 , 1-14 (2001).
Leu , W. M. , M. H. Lee and F. M. Tiller , “Cake Compressible-A rigorous Definition” , Proc. Of the 6th World Filtration Congress , Nagoya , Japan , 148 (1993).
Lu , W. M. , C. J. Chung and S. J. Yu , “On Line Filtration Test System” , Proc. Symposium on Transport Phenomena Applications(Chinese) , Taipei , June , 41 (1987).
Lu , W. M. and K. J. Hwang , “Mechanism of Cake Formation in Constant Pressure Filtrations” , Sep. Technol. , 3 , 122-132 (1993).
Lu , W. M. and K. J. Hwang , “Cake Formation in 2-D Cross-Flow filtration” , A.I.Ch.E. J. , 41(6) , 1443-1458 (1995).
Lu , W. M. , Tung K. L. , Pan C. H. , Shih C. P. and Hwang K. J. , “Crossflow Mircofiltration of Deformable Particles” , Proc. Symposium on Transport Phenomena and Applications , 41-44 (1998).
McDonogh , R.M. , Fane A.G. and Fell C.J. D. , ”Charge Effects in the Cross-Flow Filtration of Colloids and Particulates” , J. Membr. Sci. , 43 , 69-85 (1989).
Mignard , D. and D. H. Glass , “A Mass-Transfer Model for Fouling during the Cross-Flow Ultrafiltration of Protein:Influence of pH and Ion Strength” , World filtration conference , Brighton , UK , Session 24 (2000).
Murase , T. , E. Irtani , J. H. Cho , S. Nakanomori and M. Shirato , “Determination of Filtration Characteristics due to Sudden Reduction in filtration Area of Filter Cake Surface” , J. Chem. Eng. Japan , 20 , 246-251 (1987).
O’Neill , M. E. , “A Sphere in Contact with a Plane Wall in a Slow Linear Flow” , Chem. Eng. Sci. , 23 , p.1293 (1968).
Persson , A. , A. Jonsson and Zacchi G. , “Transmission of BSA during Cross-Flow Microfiltration:Influence of pH and Salt Concentration” , J. Memr. Sci. , 223 , 11-21 (2003).
Smith , M. H. , “Handbook of Biochemistry” , 2nd ed. , Ed. By H.A. Sober , CRC Press , Cleveland , OH. (1970).
Sonntag , H. and Strengn K. , “Coaulation Kinetics and Structure Formation” , Plenum Press , New York (1987).
Stanley , J.M. and Barry W.N. , “Competition for Adsorption Sites by Hydrated Ions” , J. Colloid Interface Sci. , 134(2) , 305-311 , (1990).
Su , T. J. , J. R. Lu , Z. F. Cui and R. K. Thomas , “Fouling of Ceramic Membranes by Albumins under Dynamic Filtration Conditions” , J. Membr. Sci. , 173 , 167-178 (2000).
Suzuki , M. and T. Oshima , “Estimation of the Co-ordination Number in a Two-Component Mixture of Cohesive Spheres” , Powder Technol. , 36(2) , 181-188 (1983).
Tiller , F.M , S. Haynes and W. M. Lu , “The Role of Porosity in Filtration VII:Effect of Side-Wall Friction in Compression Permeability Cells” , A.I.Ch.E J. , 18 , 13-20 (1972).
Tsang , K. R. and P. A.Vesilind , “Moisture Distribution in Sludge” , Wat. Sci. Technol. , 22 , 135-142 (1990).
Wiesner , M.R. , Clark M.M. and Mallevialle J. , “Membrane Filtration of Coagulated Suspensions” , J. Environmental Eng. , 115(1) , 20-40 (1989).

呂維明和呂文芳編,「過濾技術」第十二章,第294頁~365頁,高立圖書,台北(1994)。
劉顯成,「次微米粒子之表面性質對其掃流過濾之影響」碩士論文,淡江大學化工系(1996)。
童國倫,「可變形粒子之過濾與濾布阻塞機構之研究」,博士論文,台灣大學化工系(1998)。
程永雄,「雙成份懸浮液之掃流微過濾」,碩士論文,淡江大學化工系(2001)。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-07-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信