淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1106201001015600
中文論文名稱 資料採礦應用於通路區隔與產品區隔之研究
英文論文名稱 The study of data mining approach implements on the channel and product segmentation
校院名稱 淡江大學
系所名稱(中) 管理科學研究所碩士班
系所名稱(英) Graduate Institute of Management Science
學年度 98
學期 2
出版年 99
研究生中文姓名 楊小微
研究生英文姓名 Hsiao-Wei Yang
學號 697621091
學位類別 碩士
語文別 中文
口試日期 2010-05-24
論文頁數 111頁
口試委員 指導教授-廖述賢
委員-劉基全
委員-陳水蓮
中文關鍵字 通路區隔  產品區隔  資料採礦  關聯法則  集群分析 
英文關鍵字 channel segmentation  product segmentation  Data mining  Association Rule  Cluster Analysis 
學科別分類 學科別社會科學管理學
中文摘要   過去二十年來,企業皆以利用多通路的策略來行銷,多通路的策略可增加企業的範圍,並擴大與消費者的接觸,達成消費者的多種需求,選擇他們喜好的通路,讓消費者使用企業所安排好的通路組合;亦可增加產品進入市場的機會增加廠商的範圍;其目標是將通路做資源分配,以滿足消費者和利潤極大化。

  隨著多通路的分配越來越普遍,消費者不斷地面臨購買與產品選擇,且偏好不同的通路。本研究以資訊3C產品為例,採用資料採礦(data mining)分析之相關應用技術,以集群分析與關聯法則探討消費者在購買過程中,哪些因素會造成消費者對通路與產品有所區隔,而不同區隔的消費者,偏好在何種通路型態下購買的產品項目以及品牌名稱。

  研究結果發現,不同集群的消費者在各自以通路及產品做為選擇因素的區隔前提下,所重視的通路屬性與產品屬性確實各不相同,並具有不同的消費行為,且購買某些特定產品時,會有所偏好的通路型態,以及產品組合、品牌之間的關聯性,均有其顯著的差異。製造商與通路商可藉此了解不同集群與行銷組合方式,使業者能在前期的行銷策略上,推出更吸引顧客的方案及服務。
英文摘要  In the last two decades, the firm all use the multichannel strategy makes a product available to the market through two or more channels of distribution. Multichannel strategies allow firms to reach customers in multiple ways, increasing the firms' reach. In addition, multiple channels allow customers to reach businesses by using their preferred channel, and using a mix of channel formats, as a multichannel marketer's objectives are to distribute resources across the channel mix to satisfy customers and maximize profits.

 As multichannel distribution becomes increasingly prevalent, customers face an expanding array of purchase and communication options. This study take 3C product for example, used data mining technology of the Cluster Analysis and Association Rule to look for the reason that customer approach channel and product segmentation, and the different segment’s customer prefer what kind of product, brand in the differ by channel type. Understand the different clusters and marketing mix, release the plan and service to attract customers in the early marketing strategy. The results showed that different clusters of customers placed importance on different channel, product quality and consumer behavior under valued by the segment. Also had preference channel type on purchase of specific products and the correlation between product portfolio and brand has obvious differences.
論文目次 目錄 I
表目錄 IV
圖目錄 V
第一章 緒論 1
  1.1 研究背景與動機 1
  1.2 研究問題與目的 3
  1.3 研究流程 3

第二章 文獻探討 5
  2.1 通  路 5
    2.1.1 通路之定義 5
    2.1.2 通路之功能 7
    2.1.3 通路之結構 8
    2.1.4 實體與虛擬通路之特性 10
    2.1.5 多通路之特性 12
  2.2 區隔理論 14
    2.2.1 市場區隔之定義 15
    2.2.2 市場區隔之變數 17
    2.2.3 通路區隔 18
    2.2.4 產品區隔 20
  2.3 資料採礦 22
    2.3.1 資料採礦之定義 23
    2.3.2 資料採礦之功能 25
    2.3.3 資料採礦之流程 27
    2.3.4 資料採礦之應用 28
  2.4 小結 29

第三章 研究方法 30
  3.1 研究設計 30
  3.2 系統架構圖與資料庫設計 31
    3.2.1 系統架構與流程 31
    3.2.2 資料庫的建立與設計 33
  3.3 問卷設計與發放 39
    3.3.1 問卷設計 39
    3.3.2 抽樣方法 40
    3.3.3 問卷發放 41
    3.3.4 信度與效度分析 41
  3.4 關聯法則與集群分析 42
    3.4.1 關聯法則 42
    3.4.2 Apriori演算法 44
    3.4.3 集群分析 46
  3.5 資料分析軟體 SPSS Clementine 48

第四章 資料採礦與實證分析 51
  4.1 回收樣本結構描述 51
  4.2 市場區隔與消費者輪廓之探勘 53
  4.3 通路區隔之探勘 56
  4.4 產品區隔之探勘 60
  4.5 通路與產品組合之探勘 63
  4.6 通路與產品輔以考量品牌之探勘 66

第五章 結論與建議 70
  5.1 管理意涵 70
    5.1.1 單一產品多通路行銷 73
    5.1.2 新產品上市與多通路服務 75
    5.1.3 通路與產品組合之搭售 76
    5.1.4 品牌與製造商聯盟 78
  5.2 結論 80
  5.3 研究限制 82
  5.4 後續研究之建議 83

參考文獻 84
  一、中文資料 84
  二、英文資料 85
  三、網路資料 96

附錄 97
  前測問卷 97
  正式問卷 104

表目錄
  表2.1 通路之定義 6
  表2.2 市場區隔之定義 16
  表2.3 資料採礦之定義 24
  表2.4 資料採礦之功能 26
  表2.5 資料採礦之流程 27
  表3.1 實體、關聯與屬性的概述 33
  表3.2 實體-屬性一覽表 35
  表3.3 資料探勘軟體之使用頻率調查 49
  表4.1 問卷回收統計表 51
  表4.2 基本資料統計表 51
  表4.3 Two-Step分群結果 55
  表4.4 集群一之通路區隔關聯法則 57
  表4.5 集群二之通路區隔關聯法則 59
  表4.6 集群一之產品區隔關聯法則 60
  表4.7 集群二之產品區隔關聯法則 62
  表4.8 集群一之通路與產品組合關聯法則 63
  表4.9 集群二之通路與產品組合關聯法則 64
  表4.10 集群一之品牌與製造商聯盟關聯法則 67
  表4.11 集群二之品牌與製造商聯盟關聯法則 68
  表5.1 集群與關聯之整合分析表 71

圖目錄
  圖1.1 研究流程圖 4
  圖2.1 通路階層圖 8
  圖3.1 研究設計圖 30
  圖3.2 系統架構圖 32
  圖3.3 概念性資料庫設計 E-R圖 34
  圖3.4 邏輯性資料庫 37
  圖3.5 資料庫轉換圖 38
  圖3.6 實體資料庫關聯圖 39
  圖3.7 問卷架構圖 40
  圖3.8 Apriori演算法之架構圖 44
  圖3.9 Apriori演算法產生之後選項目集合與高頻項目集合 46
  圖3.10 集群分析方法架構圖 48
  圖4.1資料節點串流圖 53
  圖4.2 Two-Step集群分佈圖 54
  圖4.3 集群一蛛網圖(調整後) 58
  圖4.4 集群二蛛網圖(調整後) 59
  圖4.5 集群一蛛網圖(調整後) 61
  圖4.6 集群二蛛網圖(調整後) 62
  圖4.7 集群一蛛網圖(調整後) 64
  圖4.8 集群二蛛網圖(調整後) 65
  圖4.9 集群一蛛網圖(調整後) 67
  圖4.10 集群二蛛網圖(調整後) 69
  圖5.1 集群分析之行銷地圖 72
  圖5.2 通路區隔之行銷地圖 74
  圖5.3 產品區隔之行銷地圖 75
  圖5.4 通路與產品組合之行銷地圖 77
  圖5.5 品牌與製造商聯盟之行銷地圖 79

參考文獻 一、中文資料
尹相志(民93)。資料採礦-網際網路應用與顧客價值管理。台北市:維科。
尹相志(民98)。SQL Server 2008 Data Mining 資料採礦。台北市:悅知文化
王仁傑(2000)。有效找出較長資料項目型樣的關聯法則之研究。逄甲大學資訊工程研究所碩士論文。台中市
王天佑、何雍慶、羅萱 (民93)。類神經網路在行銷應用上之探討。科技管理學刊,第9卷第1 期,頁223-262。
周善瑜、楊欣怡(2002)。以網際網路區別消費者之最適通路設計。管理學報,19 卷2 期:209-241。
林建煌 (民97)。行銷管理(第四版)。台北市:華泰文化
林慶德譯(民92)。資料庫管理與應用。台北市:培生。
韋端(民92)。Data Mining 概述以Clementine7.0 為例。台北縣新莊市:中華資料採礦協會。
張沛元(譯) (1999)。Harry Webber著。市場區隔戰法。台北市:城邦文化。
陳澤義(民94)。服務管理。台北市:華泰
曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯(民94)。資料探勘Data mining。台北市:旗標。
黃文隆(民97)。抽樣方法。台中:滄海。
楊逢杰(民97)。以本體論為基礎的資料採礦方法於飲料產業的產品光譜及品牌光譜之研究。淡江大學管理科學研究所碩士論文。未出版。台北縣。
廖述賢(民97)。知識管理。台北市:雙葉書廊。
劉典嚴(民90)。顧客稀有化下的市場區隔對策,品質月刊,P35-38
蔡明珊(譯) (2005)。Lawrence G. friedman著。直搗市場最佳策略。台北市:臉譜出版。
蔡東峻、李奇勳(民88)。消費者特性與網際網路購物意願關係之研究。管理學報,16 卷4 期:557-580。
蕭仁傑(譯) (2008)。Anne T. Coughlan等著。行銷通路。台北市:華泰文化。
戴國良(民97)。產品管理。台北市:南五圖書出版社。

二、英文資料
Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association Rules. Proceeding of the 20th International Conference on Very Large Database, 487-499.
Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. ACM SIGMOD Conference, Washington DC, USA, 254-259.
Ahlert, D., & Schröder, H. (1990). Erlebnisorientierung im stationä ren Einzelhandel. Marketing, 12 (4), 221-228.
Akaah, I. P., Korgaonkar, P. K., & Lund, D. (1995). Direct marketing attitudes. Journal of Business Research, 34 (3), 211-219.
Alba, J., Lynch, J., Weitz, B., Janiszewski, C., Lutz, R., Sawyer, A., & Wood, S. (1997). Interactive home shopping, consumer, retailer and manufacturer incentives to participate in electronic marketplaces. Journal of Marketing, 61 (July), 38-53.
Alfred, S. B. (1981). Market Segmentation by Personal Values and Salient Product Attributes, Journal of Advertising Research, 21(1), 29-35.
Amaratunga, D., & Cabrera, J. (2004). Mining data to find subsets of high activity. Journal of Statistical Planning and Inference, 122(1), 23-41.
Anderson, E. (1985). The Salesperson as Outside Agent or Employee: A Transaction Cost Analysis. Marketing Science, 4, 234-254.
Armstrong, G., & Kotler, P. (2005). Marketing: An Introduction. Pearson education Inc, Upper Saddle River, New Jersey 07458, Prentice Hall.
Arnold, M. J., & Reynolds, K. E. (2003). Hedonic shopping motivations. Journal of Retailing, 79 (Summer), 77-95.
Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or fun, measuring hedonic and utilitarian shopping value. Journal of Consumer Research , 20 (March), 644-656.
Bagozzi, R. P., Rosa, J. A., Celly, K. S., Coronel, F., & Coronel, F. F. (1998). Marketing Management. New Jersey: Prentice-Hall.
Bailey, J. P. (1998). Electronic commerce: prices and consumer issues for three products: books, compact discs, and software. Organisation for Economic Co-Operation and Development, OECD/GD, 4.
Balasubramanian, S., Raghunathan, S., & Mahajan, V. (2005). Consumers in a multichannel environment: product utility, process utility, and channel choice. Journal of Interactive Marketing, 19 (Spring, Special Issue), 12-30.
Bauer, H. H., Fischer, M., & Sauer, N. E. (2000). Barrieren des elektronischen Einzelhandels. Eine empirische Studie zum Kaufverhalten im Internet. Zeitschrift fü r Betriebswirtschaft, 70, 1133-1156.
Bendoly, E., Blocher, J. D., Bretthauer, K. M., Krishnan, S., & Venkataramanan, M. A. (2005). Online/in-store integration and customer retention. Journal of Service Research, 7 (4), 313-327.
Berenguer, G., Gil, I., & Ruiz, M. E. (2009). Do upscale restaurant owners use wine lists as a differentiation strategy? International Journal of Hospitality Management, 28, 86-95.
Berkowitz, E. N., Roger, A. K., Steven, W. H., & William R. (1992), Marketing, 3rd ed., Homewood, IL.
Berry, M. J., & Linoff, G. (1997). Data Mining Techniques for marketing, sales, and customer support. NY:John Wiley and Sons Inc.
Bert, R. (2007). Multi-channel strategy in business-to-business markets: Prospects and problems. Industrial Marketing Management, 36. 4-9
Bitner, M. J., Brown, S. W., & Meuter, M. L. (2000). Technology infusion in service encounters. Journal of the Academy of Marketing Science, 28 (Winter), 138-149.
Blattberg, R. C., Thomas, B., Peter, P., & Subrata, S. (1978). Identifying the Deal-Prone Segment. Journal of Marketing Research, 15 (August), 369-77.
Brynjofsson, E., & Smith, M. D. (2000). Frictionless commerce? A comparison of Internet and conventional retailers. Management Science, 46 (4), 563-585.
Bucklin, L. P. (1966). A Theory of Distribution Channel Structure, Institude of Business and Economic Research, University of California, Berkeley
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. (1998). Discovering data mining from concept to implementation. NJ: Prentice Hall Press.
Campanelli, M. (2001). A Return to Retail - physical retail stores - Industry Overview - Brief Article. Entrepreneur September.
Chamberlin, E. H. (1965). The Theory of Monopolistic Competition. Cambridge, MA: Harvard University Press
Chen, Y. L., & Shen, C. C. (2005). Mining generalized knowledge from ordered data through attribute-oriented induction techniques. European Journal of Operational Research, 166(1), 221-245.
Childers, T. L., Carr, C. L., Peck, J., & Carson, S. (2001). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of Retailing, 77 (Winter), 511-535.
Coenen, F., Goulbourne, G., & Leng, P. (2004). Tree Structures for Mining Association Rules. Data Mining and Knowledge Discovery, 8(1), 25-51.
Comery, A. L. (1973). A First Course in Factor Analysis. NY: Academic Press. Cooper.
Coughlan, A. T., Anderson, E., Stern, L. W., & El-Ansary, A. I. (2001). Marketing Channels. Upper Saddle River. NJ: Prentice Hall.
Darian, J. C. (1987). In home shopping: are there consumer segments? Journal of Retailing, 63 (Summer), 163-185.
Deleersnyder, B., Inge G., Katrijn G., & Marnik G. D. (2002), How Cannibalistic is the Internet Channel? A Study of the Newspaper Industry in the United Kingdom and The Netherlands. International Journal of Research in Marketing, 19 (4), 337-48.
Devlin, J. (1995). Technology and innovation in retail banking distribution, International Journal of Bank Marketing, 13 (4). 19-25
Dholakia, R., Zhao, M., & Dholakia, N. (2005). Multichannel retailing: a case study of early experiences. Journal of Interactive Marketing, 19 (Spring, Special Issue), 63-74.
Dickson, R. P., & Ginter J. L. (1987). Market Segmentation Product Differentiation and Marketing Strategy. Journal of Marketing, 5(11), 1-10
Diehl, S. (2002). Erlebnisorientiertes Internetmarketing, Analyse, Konzeption und Umsetzung von Internetshops aus verhaltenswissenschaftlicher Perspektive, Wiesbaden: Deutscher Universitäts-Verlag.
Dolnicar, S., Crouch, G. I., Devinney, T., Huybers, T., Louviere, J. J., & Oppewal, H. (2008). Tourism and discretionary income allocation. Heterogeneity among households. Tourism Management, 29, 44-52.
Donthu, N., & Gilliland, D. I. (1996). The infomercial shopper. Journal of Advertising Research, 36 (Summer), 69-76.
Easingwood, C., & Storey, C. (1996). The value of multi-distribution systems in the financial services sector. Service Industries. Journal, 16 (2), 223-41
Eastlick, M. A., & Feinberg, R. A. (1999). Shopping motives for mail catalog shopping. Journal of Business Research, 45 (3), 281-290.
Fayyad, U. M., Gregory, P. S., & Smyth, P. (1996). Form data mining to  knowledge discovery in database. AI Magazine, 17(3), 37-54.
Fayyad, U., & Stolorz, P. (1997). Data mining and KDD:promise and challenges. Future Generation Computer Systems , 13, 99-103.
Frawley, W., Piatesky, G. S., & Matheus, C. (1991). Knowledge Discovery in Database:An Overview, Knowledge Discovery in Database. AAAI/MIT Press.
Gassenheimer, J. B., Hunter, G. L., & Siguaw, J. A. (2006). An evolving theory of hybrid distribution: taming a hostile supply network. Industrial Marketing Management , 36, 604-616
Guirdham, M. (1972). The Management of Distribution Channels. Oxford, N.Y.: Program Press, 106.
Hendrik, S., & Silvia, Z. (2008). Linking multi-channel customer behavior with shopping motives: An empirical investigation of a German retailer. Journal of Retailing and Consumer Services, 15 , 452-468
Hirschmann, E. C., & Holbrook, M. B. (1982). Hedonic consumption, emerging concepts, methods and propositions. Journal of Marketing, 46 (Summer), 92-101.
Hui, S. C., & Jha, G. (2000). Data mining for customer service support. Information and Management , 38(1), 1-13.
Johns, N., & Gyimothy, S. (2005). Market segmentation and the prediction of tourist behavior: The case of Bornholm, Denmark. Journal of Travel Research, 43(3), 277-293.
Kahle, L. R., & Kennedy, P. (1989). Using the list of values (LOV) to understand consumers. The Journal of Consumer Marketing, 2 (4), 49-56.
Kantardzic, M. (2003). Data mining: concepts, models, methods and algorithms. NJ: Wiley Press.
Kaufman-Scarborough, C., & Lindquist, J. D. (2002). E-shopping in a multiple channel environment. Journal of Consumer Marketing, 19 (4), 333-350.
Keima, D. A., Pansea, C., Sipsa, M., & Northb, S. C. (2004). Pixel based visual data mining of geo-spatial data. Computers and Graphics, 28, 327-344.
Koppelman, F., Salomon, I., & Proussaloglou, K. (1991). Teleshopping or store shopping? A choice model for forecasting the use of new telecommunications-based services. Environment and Planning B: Planning and Design, 18, 473-489.
Kotabe, M., Martin, X., & Domoto, H. (2003). Gaining from vertical partnerships: Knowledge transfer, relationship duration, and supplier performance development in the U.S and Japanese automotive industries. Strategic Management Journal, 24(4), 293-316.
Kotler, P. (1996). Marketing Management, Englewood cliffs, NJ, Prentice Hall International.
Kotler, P. (1997). Marketing Management: Analysis, Planning, Implementation, and Control, 8th ed. Englewood Cliffs, N.J: Prentice-Hall, Inc.
Kouris, I. N., Makris, C. H., & Tsakalidis, A. K. (2005). Using Information Retrieval techniques for supporting data mining. Data and Knowledge Engineering, 52(3), 353-383.
Lee, T. S., Chiu, C. C., Chou, Y. C., & Lu, C. J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics and Data Analysis, 50(4), 1113-1130.
Li, H., Kuo, C., & Russell, M. G. (1999). The impact of perceived channel utilities, shopping orientations, and demographics on the consumer’s online buying behavior. Journal of Computer-Mediated Communication 5 (2), 1-20
Liang,T. P., & Huang, J. S. (1998), An Empirical Study on Consumer Acceptance of Products on Electronic Market: A Transaction Cost Model. Decision Support Systems, 24 (1), 29-43.
Lin, X. (1997). Map displays for information retrieval. Journal of the American Society for Information Science, 48, 40-54
Berry, M. J., & Linoff, G. (1997). Data Mining Technique Techniques for Marketing, Sales and Customer Support. N.Y.:Wiley Computer Publishing.
Birgelen, M., Jong, A., & Ruyter, K. (2006). Multi-channel service retailing: The effects of channel performance satisfaction on behavioral intentions. Journal of Retailing 82 (4), 367-377
Mathwick, C., Malhotra, N. K., & Rigdon, E. (2002). The effect of dynamic retail experiences on experiential perceptions of value, an Internet an catalog comparison. Journal of Retailing, 78 (Spring), 51-60.
McCarthy, J. E. (1981). Basic Marketing: A Managerial Approach, Haomewood, Illionis: Richatd D. Irwin.
Moriarty, R., & Moran, U. (1990). Managing hybrid marketing systems. Harvard Business Review, 68 (6), 146-155.
Moriarty, R. T., & Moran, U. (1990). Managing hybrid marketing systems. Harvard Business Review, (November-December), 146-155.
Morrison, P. D., & Roberts, J. H. (1998). Matching Electronic Distribution Channels to Product Characteristics: The Role of Congruence in Consideration Set Formation. Journal of Business Research, 41 (3), 223-29.
Nagle, T. (1984). Economic Foundation for Pricing. Journal of Business, 57, 3-26.
Nicholson, S. (2006). The basis for bibliomining:Frameworks for bringing together usage-based data mining and bibliometrics through data warehousing in digital library services. Information Processing and Management, 42(3), 785-804.
Nunes, P. F., & Cespedes, F. V. (2003). The Customer Has Escaped. Harvard Business Review. 96-105.
Peter, R. D., & James L. (1987). Market Segmentation, Product Differentiation, and Marketing Strategy. The Journal of Marketing, 51, (2), 1-10
Peterson, R. A., Balasubramanian, S., & Bronnenberg, B. J. (1997). Exploring the Implication of Internet for Customer Marketing. Journal of the Academy of Marketing Science, 25, 329-346.
Porter, M. E. (2001). Strategy and the Internet. Harvard Business Review, 79(1), 62-78.
Porter, M. E. (1976). Inter brand Choice, Strategy and Bilateral Market Power. Cambridge, MA: Harvard University Press.
Purushottam, P., & Amit, B. (2002). Shopping style segmentation of consumers. Marketing Letters, 13 (2), 91-107.
Rangaswamy, A., & Van Bruggen, G. (2005). Opportunities and challenges in multichannel marketing: an introduction to the special issue. Journal of Interactive Marketing, 19 (Spring, Special Issue), 5-11.
Rao, A. R., & Ruekert, R. W. (1994). Brand Alliances as Signals of Product Quality. Sloan Management Review, 36, 87-97.
Reynolds, F. D. (1974). An analysis of catalog buying behaviour. Journal of Marketing, 38 (July), 47-51.
Rick, L. A., Michael, J. B., & Imran S. C. (2010). Amalgamation of partitions from multiple segmentation bases: A comparison of non-model-based and model-based methods. European Journal of Operational Research, 201, 608-618
Rindfleisch, A., & Moorman, C. (2001). The acquisition and utilization of information in new product alliances: A strength-of-ties perspective. Journal of Marketing, 65(2), 1-18.
Roiger, R. J., & Geatz, M. W. (2003). Data mining: a tutorial-based primer. Boston: Addison-Wesley Press.
Sa Vinhas, A., & Anderson, E. (2005). How potential conflict drives channel structure: concurrent (direct and indirect) channels. Journal of Marketing Research, 42 (4), 507-515.
Santos, M. Y., & Amaral, L. A. (2004). Mining geo-referenced data with qualitative spatial reasoning strategies. Computers and Graphics , 28 (3), 371-379.
Schröder, H., & GroXweischede, M. (2002). Sortimentsgestaltung in Mehrkanal- Systemen des Einzelhandels. Der markt, 41 (16), 81-97.
Shankar, V., Smith, A., & Rangaswamy, A. (2003). The Relationship Between Customer Satisfaction and Loyalty in Online and Offline Environments. International Journal of Research in Marketing, 20 (2), 153-75.
Shih, C. F., & Venkatesh. A. (2004). Beyond adoption: Development and application of a use-diffusion model. Journal of Marketing, 68, 59-72.
Smith, W. R. (1956), Product Differentiation and Market Segmentation as Alternative Marketing Strategies, Journal of Marketing, 21(3), 3-8.
Stern, L. W., & El-Ansary, A. I. (1992). Marketing Channel. New Jersey: Prentice-Hall, Englewood Cliffs.
Stewart, D. W., & Pavlou, P. A. (2002). From consumer response to active consumer: Measuring the effectiveness of interactive media. Journal of the Academy of Marketing Science, 30 (4), 376-396.
Tapscott, D., & Ticoll, D. (2003). The Naked Corporation: How the Age of Transparency will Revolutionize Business. Free Press, New York, NY.
Tauber, E. M. (1972). Why do people shop? Journal of Marketing, 36 (October), 46-59.
Thelen, S., Mottner, S., & Berman, B. (2004). Data mining:On the trail to marketing gold. Business Horizons, 47(6), 25-32.
Thomas S. R., & Howard, B. (1992). A Successful Approach to Segmenting Industrial Markets. Planning Review, 6, 4-11
Toroslua, I. H., & Yetisgen-Yildiz, M. (2005). Data mining in deductive databases using query flocks, Expert Systems with Applications, 28(3), 395–407.
Van Baal, S., & Dach, C. (2005). Free riding and customer retention across retailers’ channels. Journal of Interactive Marketing, 19 (Spring, Special Issue), 75-85.
Venkatesan, R., Kumar, M., & Bapna, R. (2007). Do Market Characteristics Impact the Relationship between Retailer Characteristics and Online Prices. Journal of Retailing, 83 (3), 309-24.
Verhoef, P. C., & Langerak, F. (2001). Possible determinants of consumer’s adoption of electronic grocery shopping in the Netherlands. Journal of Retailing and Consumer Services, 8 (5), 275-285.
Wagner, A. K. & Gary J. (1989). A Probabilistic Choice Model for Market Segmentation and Elasticity Structure Russell Source. Journal of Marketing Research, 26(4), 379-390
Wallace, D. W., Giese, J. L., & Johnson, J. L. (2004). Customer Retailer Loyalty in the Context of Multiple Channel Strategies. Journal of Retailing, 80 (4), 249-63.
Webb, K. L., & Hogan, J. E. (2002). Hybrid channel conflict: causes and effects on channel performance. Journal of Business and Industrial Marketing , 17 (5), 338-356.
Weinstein, A. (2006). A strategic framework for defining and segmenting markets. Journal of Strategic Marketing, 14(2), 115-127.
Wind, Y. (1978). Issues and Advances in Segmentation Research. Journal of Marketing Research, 15 (August), 317- 37.
Yankelovich, D., & Meer, D. (2006). Rediscovering Market Segmentation. Harvard BusinessnReview, 84 (2), 122-131
Zettelmeyer, F. (2000). Expanding to the Internet: Pricing and Communications Strategies When Firms Compete on Multiple Channels. Journal of Marketing Research, 37 (3), 292-308.

三、網路資料
AMA, American Marketing Association
http://www.marketingpower.com/content24159.php
Kdnuggets網站(2009)最常使用的資料探勘技術
http://www.kdnuggets.com/polls/2009/data-mining-tools-used.htm
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-07-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信