淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1106200815063800
中文論文名稱 應用於無線感測網路之網格叢集化行動路由協定
英文論文名稱 Mobile Sink Routing Protocol with Row-prime Order Clustering in Wireless Sensor Networks
校院名稱 淡江大學
系所名稱(中) 資訊工程學系資訊網路與通訊碩士班
系所名稱(英) Master's Program in Networking and Communications, Department of Computer Science and Information Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 郭介鑫
研究生英文姓名 Chien-Hsin Kuo
電子信箱 695420157@s95.tku.edu.tw
學號 695420157
學位類別 碩士
語文別 中文
第二語文別 英文
口試日期 2008-06-02
論文頁數 85頁
口試委員 指導教授-王英宏
委員-廖弘源
委員-陳朝欽
委員-許輝煌
中文關鍵字 無線感測網路  行動資料收集節點  行動路由協定  叢集化 
英文關鍵字 Wireless Sensor Network  Mobile Sink  Mobile Routing protocol  Clustering 
學科別分類 學科別應用科學資訊工程
中文摘要 無線感測網路(Wireless Sensor Networks , WSNs)是由資料收集中心以及多個感測節點所組織而成,應用的領域也十分廣泛,其中所使用的無線感測節點,體積小且成本低廉,擁有許多的優點,相對地也有不少的限制,例如:電量、運算能力、儲存容量等等,而其中最直接且困難的問題在於電量的限制,若能減少一些非必要的運算或傳輸,必能減低其耗電量,進而延長網路的存活時間。
故本篇論文提出一個應用於無線感測網路之網格化行動路由協定(Mobile Sink Routing Protocol with Row-prime Order Clustering in Wireless Sensor Networks , ROCP),當整個無線網路利用機器人佈置感測節點後,隨即建構出虛擬的叢集,並依此叢集建置座標系統,再透過行動式資料收集中心(Mobile Sink)直接移動至各個無線感測節點以one-hop的方式收集資料,有效地減少無線感測節點在網路上代傳封包的次數,降低電量消耗以提高整體感測網路的存活時間。
英文摘要 Wireless Sensor Networks (WSNs) are composed of sink node and multiple sensor nodes. The wireless sensor exists several advantages, such as compact size and low cost. Relatively, there are some limitations, including power, computing ability and storage capacity etc. The greatest challenge among all is the constraints on energy. If we can decrease some unnecessary computations and transportations, so that the power consumption is reduced and the life time of whole network will be prolonged.
Therefore, we propose a sequence moving scheme which utilizes concept of cluster-based network with mobile sink, called “Mobile Sink Routing Protocol with Row-prime Order Clustering in Wireless Sensor Networks”(ROCP), at an attempt to resolve the above issue. We perform the clustering process with row-prime order and bring the coordinates system after we dispose sensor nodes by robot. And then the mobile sink move to each cluster directly by a specific routing algorithm and gather sensing data by one-hop routing. Thus, we reduce the frequency of packet forwarding to sink and prolong the life time of whole sensor network in our proposal.
論文目次 目錄 I
圖目錄 III
表目錄 V
第一章 緒論 - 1 -
1-1 研究背景 - 2 -
1-2 研究動機 - 3 -
1-3 研究目的 - 6 -
1-4 論文架構 - 7 -
第二章 相關技術與研究 - 8 -
2-1 無線感測器網路與無線隨意網路之比較 - 10 -
2-2 行動感測器網路 - 12 -
2-3 行動資料收集節點移動方式 - 14 -
2-3-1 固定軌跡式(Predefined Path) - 14 -
2-3-2 隨機路徑式(Random Waypoint) - 18 -
第三章 無線感測網路之網格叢集化行動路由協定 - 19 -
3-1 網路環境及假設 - 22 -
3-2 網路叢集化部份 (Clustering Phase) - 25 -
3-3 資料收集階段(Data Gathering Phase , DGP) - 31 -
3-3-1 資料傳輸協定(Data Transmission Protocol , DTP) - 31 -
3-3-2 行動路由演算法(Moving Scheme Algorithm , MSA) - 35 -
3-3-2-1偶數模式 - 38 -
3-3-2-2 奇數模式 - 42 -
3-4 事件觸發部分(Event Trigger Part , ETP) - 45 -
3-5 特性及優勢 - 48 -
第四章 模擬比較及分析 - 49 -
4-1 模擬環境 - 50 -
4-2 模擬比較及分析 - 51 -
第五章 結論與未來研究方向 - 58 -
5-1 結論 - 58 -
5-2 未來研究方向 - 60 -
參考文獻 - 61 -
附錄一 論文發表 資訊科技理論與應用國際研討會2008 - 65 -
附錄二 論文英文稿 - 76 -

圖目錄
圖1:無線感測器網路架構示意圖 - 1 -
圖2:多跳躍(multi-hop)機制示意圖 - 4 -
圖3:常見的空間填充曲線 - 15 -
圖4:Hilbert 演算法基礎網格 - 16 -
圖5:Hilbert移動方式示意圖 - 17 -
圖6:Random Waypoint移動方式示意圖 - 18 -
圖7:行動路由協定流程圖 - 21 -
圖8:蜂巢式網路示意圖 - 22 -
圖9:規則六邊形佈署示意圖 - 24 -
圖10:網路叢集化流程圖 - 26 -
圖11:網路叢集化完成示意圖 - 29 -
圖12:行動資料接收節點示意圖 - 32 -
圖13:資料傳輸示意圖 - 34 -
圖14:資料收集流程圖 - 36 -
圖15:兩種移動模式 - 38 -
圖16:偶數模式路由流程圖 - 39 -
圖17:偶數模式移動示意圖 - 41 -
圖18:奇數模式路由流程圖 - 43 -
圖19:奇數模式路由示意圖(差異部分) - 44 -
圖20:事件觸發流程示意圖 - 46 -
圖21:剩餘電量分布圖 - 53 -
圖22:感測節點生存個數-運作次數關係圖 - 54 -
圖23:平均等待時間-感測網路面積關係圖 - 56 -

表目錄
表1:MANETs與WSNs比較表 - 11 -
表2:Hilbert遞迴規則表 - 16 -
表3:叢集資訊表 - 25 -
表4:叢集資訊表(範例) - 29 -
表5:感測資料(SD)封包格式表 - 33 -
表6:行動資料收集節點資訊(SI)封包格式表 - 37 -

參考文獻 [1] A. A. Somasundara, A. Kansal, D. D. Jea, D. Estrin, and M. B. Srivastava, “Controllably mobile infrastructure for low energy embedded networks.”, IEEE Transactions on Mobile Computing, Vol. 5, no. 8, pp. 958-973, Aug. 2006.
[2] A. Grilo, M. Macedo and M. Nunes, ” A scheduling algorithm for QoS support in IEEE 802.11E Network.” IEEE Wireless Communications, Vol. 10 , pp. 36-43, Jun. 2003.
[3] Breinholt, G. and Schierz C. “Algorithm 781: Generating Hilbert’s Space-Filling Curves by Recursion.”, ACM Trans. On Mathematical Software, vol. 24, no. 2, pp. 184-189., Jun. 1998.
[4] C. Bettstetter, H. Hartenstein, and X. Perez-Costa, “Stochastic Properties of the Random Waypoint Mobility Mode.l” Wireless Networks: Special Issue on Modeling and Analysis of Mobile Networks, Vol.10, pp.555-567, Sep 2004.
[5] D. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput path metric for multi-hop wireless routing.”, Proc. of ACM MOBICOM, San Diego, California, Sep. 2003.
[6] Edgar H.Callaway, “Wireless Sensor Networks Architectures and Protocols.”, San Francisco California: Morgan Kaufmann, Elsevier Science, 2004.
[7] E. Hyytiä and J. Virtamo, “Random Waypoint Model in n-Dimensional Space.”, Operations Research Letters, Vol. 33, no. 6, pp. 567-571, Nov 2005.
[8] Haeyoog Kim, Yongho Seok, Nakjung Choi, Yanghee Choi, Taekyoung Kwon, “Optimal multi-sink positioning and energy-efficient routing in wireless sensor networks.”, Lecture Notes in Computer Science, Vol. 3391, pp.264-274, Jan. 2005.
[9] Hans Sagan, Space-Filling Curves, Springer-Verlag, New York, 1994.
[10] Heinzelman, W.R., Chandrakasan, A.; Balakrishnan, H, “Energy-efficient communication protocol for wireless microsensor networks”, System Sciences, Proc. of the 33rd Annual Hawaii International Conference, Vol 2, pp. 3005-3014, Jan. 2000.
[11] Hilbert Space-Filling Curves , http://pmlab.iecs.fcu.edu.tw/~chh/PMLAB/Hilbert/ch_hilbert.html.
[12] Himanshu Gupta, Samir R. Das, Quinyi Gu, “Connect Sensor Cover: Self-Organization of Sensor Networks for Efficient Query Execution.”, Proc. of ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 189-200, Jun. 2003.
[13] Honghai Zhang and Jennifer C. Hou, “Maintaining Sensing Coverage and Connectivity in Large Sensor Networks.”, Wireless Ad Hoc and Sensor Networks: An International Journal, Oct. 2004.
[14] Hüseyin Özgür Tan, Ibrahim Körpeoǧlu, “Power Efficient Data Gathering and Aggregation in Wireless Sensor Networks”, ACM SIGMOD Record, Vol 32, Issue 4, pp. 66-71, Dec. 2003.
[15] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “Wireless sensor networks: a survey.”, Computer Networks, Elsevier Journal, pp. 393-422, March 2002.
[16] J. Hill, “System Architecture for Wireless Sensor Networks.”, PhD thesis, UC Berkeley, May 2003.
[17] J.N. Al-Karaki, A.E. Kamal, “Routing techniques in wireless sensor networks: A survey.”, IEEE Wireless Communications, Vol. 11, pp. 6-28, Dec. 2004.
[18] Mokbel, M. F., Aref, W. G., and Kamel, I. “Analysis of Multi-Dimensional Space-Filling Curves.”, GeoInformatica, Vol. 7, no. 3, pp.179-209., Sep 2003.
[19] R. Kershner, “The Number of Circles Covering A Set.”, American Journal of Mathematics, Vol. 61, pp. 665-671, 1939.
[20] Sanjay Shakkottai, R. Srikant, Ness Shroff., “Unreliable Sensor Grids: Coverage, Connectivity and Diameter”, IEEE INFOCOM, pp. 1073-1083, June. 2003.
[21] Shashidhar Rao Gandham, Milind Dawande, Ravi Prakash, and S. Venkatesan, “Energy efficient schemes for wireless sensor networks with multiple mobile base stations.”, Proc. of GLOBECOM 2003, pp.377-381, Dec 2003.
[22] Y. Gu, D. Bozdag, E. Ekici, F. Ozguner, and C. G. Lee, “Partitioning based mobile element scheduling in wireless sensor networks.” Proc. of SECON, Santa Clara, U.S., pp. 386–395, Sep 2005.
[23] Zongheng Zhou, Samir Das, Himanshu Gupta, “Connected K-Coverage Problem in Sensor Networks”, IEEE Computer Communications and Networks, pp. 373-378, Oct. 2004.
[24] Z. M. Wang, S. Basagni, E. Melachrinoudis, and C. Petrioli, “Exploiting sink mobility for maximizing sensor networks lifetime.”, Proc. of 38th Hawaii Int. Conf. on System Sciences (HICSS), pp. 1-9, Jan. 2005.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-06-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-06-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信