淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1106200717085500
中文論文名稱 三層介質中掩埋雙軸性複雜物體之電磁成像
英文論文名稱 Electromagnetic Imaging of Inhomogeneous Biaxial Dielectric Cylinders Coated on a Conductor Buried in a Slab Medium
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 林信宏
研究生英文姓名 Shin Hung Lin
學號 694350074
學位類別 碩士
語文別 中文
口試日期 2007-06-06
論文頁數 54頁
口試委員 指導教授-丘建青
委員-李慶烈
委員-陳富強
委員-余金郎
委員-林丁丙
中文關鍵字 逆散射  無關聯照射法  三層空間  雙軸性複雜物體 
英文關鍵字 Inverse scattering  Three space  Biaxial dielectric cylinders  Complex object 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文擬模擬研究雙軸性掩埋在三層空間中複雜柱體(即包含雙軸性介質物體與完全導體)的電磁影像重建。設一未知的不均勻雙軸性介質複雜物體掩埋在其中一空間中,吾人可在另外的空間中適當的安排一組具有不同入射和極化方向的無關聯波照射物體並量測在此之散射場,利用簡單的矩陣運算,我們就可以克服非線性和不良情況的發生的困擾,進而重建雙軸性複雜物體的介電常數分佈。在理論部份,主要是根據邊界條件導出一組非線性的積分方程組,接著利用以動差法與無關聯照射法計算其散射場,再根據電磁成像法則,重建出介質物體內部的介電常數。在數值結果方面,將證明理論部份的正確性。此結果亦顯示即使物體的介電常數很大時,我們能成功的重建介電常數的分佈。而且即使在在量測的散射場中有高斯雜訊的存在,依然可以得到良好的重建結果。除此之外,我們也會在文中探討雜訊對重建結果的影響程度。
英文摘要 The inverse scattering of buried inhomogeneous biaxial dielectric cylinders is investigated. Dielectric cylinders of unknown permittivities are buried in a slab scatters a group of unrelated incident waves from outside. The scattered field is recorded outside the slab. By proper arrangement of the various unrelated incident fields, the difficulties of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructed through simple matrix operations. The algorithm is based on the moment method and the unrelated illumination method. Numerical results show that satisfactory reconstruction has been obtained. Good reconstruction is obtained even in the presence of additive Gaussian random noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.
論文目次 第一章 簡介 ………………………………………………………1
1.1 研究動機與相關文獻……………………………………1
1.2 本研究之貢獻……………………………………………6
1.3 內容簡述…………………………………………………7
第二章 電磁成像理論………………………………………………8
2.1 理論推導………………………………………………………8
2.2 數值方法………………………………………………………16
2.2.1 動差法於積分方程式之應用……………………16
2.2.2 無關聯照射法……………………………………19
2.2.3 應用無關聯照射法於逆散射問題………………20
第三章 數值模擬結果………………………………………………26

第四章 結論…………………………………………………………37

附錄一 計算三層空間格林函數的方法……………………………38
附錄二 矩陣[G1]~[G19]元素的計算………………………………44
參考文獻………………………………………………………………49

圖目錄


圖2-1 在三層空間中,雙軸性複雜物體在X,Y平面上的示意圖…24
圖2-2 無關聯照射法之波束聚焦法示意圖 ………………………25
圖3-1第一個例子(長方形)的介電常數 分佈
(a) 原始介電常數 (b) 重建介電常數……………………………29
圖3-2第一個例子(長方形)的介電常數 分佈
(a) 原始介電常數 (b) 重建介電常數……………………………30
圖3-3第一個例子(長方形)的介電常數 分佈
(a) 原始介電常數 (b) 重建介電常數……………………………31
圖3-4第二個例子(正方形)的介電常數 分佈
(a) 原始介電常數 (b) 重建介電常數……………………………32
圖3-5第二個例子(正方形)的介電常數 分佈
(a) 原始介電常數 (b) 重建介電常數……………………………33
圖3-6第二個例子(正方形)的介電常數 分佈
(a) 原始介電常數 (b) 重建介電常數……………………………34
圖3-7 第一個例子(長方形)介電常數的重建誤差對雜訊階的模擬結果………………………………………………………………………35
圖3-8 第二個例子(正方形)介電常數的重建誤差對雜訊階的模擬結果………………………………………………………………………36

參考文獻 [1] T. J. Cui and W. C. Chew, “Novel diffraction tomographic algorithm for imaging two-dimensional targets buried under a lossy earth,” IEEE Trans. Geosicence and Remote sensing, Vol. 38, pp. 2033 -2041, July 2000.
[2] T. J. Cui and W. C. Chew, “Diffraction tomographic algorithm for the detection of three-dimensional objects buried in a lossy half-space,” IEEE Transactions on Antennas and Propagation, Vol. 50, pp. 42 -49, Jan. 2002
[3] P. Meincke, “Linear GPR inversion for lossy soil and a PlanarAir–soil interface,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, pp.2713-2721, Dec. 2001.
[4] G. Leone and F. Soldovieri, “Analysis of the distorted born approximation for subsurface reconstruction: truncation and uncertainties,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, pp.66-74, Jan. 2003.
[5] I. T. Rekanos and T. D. Tsiboukis, “An inverse scattering techniques for microwave imaging of binary objects,” IEEE Transactions on Microwave Theory and Techuiques, Vo. 50, pp. 1439-1441, May 2002.
[6] D. Franceschini and A. Massa, “On the enhancement of the reconstruction accuracy obtained with a multisource/multi-illumination inverse scattering technique,” IEEE Antennas and wireless Propagation Letters, Vol. 4, pp. 194-197, 2005.
[7] M. J. Akhtar, and A.S. Omar, “Reconstructing permittivity profiles using integral transforms and improved renormalization techniques”, IEEE Transactions on Microwave Theory and Techniques, Vol. 48, pp.1385 - 1393, Aug. 2000
[8] H. Zhou, M. Sato, T. Takenaka, and G. Li, “Reconstruction from antenna-transformed radar data using a time-domain reconstruction method,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, NO. 3, pp. 2527 -2538, Mar. 2007.
[9] I. T. Rekanos and A. Raisanen, “Microwave imaging in the time domain of buried multiple scatterers by using an FDTD-Based optimization technique,” IEEE Transactions on Magnetics, Vol. 39, pp. 1381-1384, May 2003.
[10] T. Huang and A. S. Mohan, “A microparticle swarm optimizer for the reconstruction of microwave images,” IEEE Transactions on Antennnas and Propagation, Vol. 55, NO. 3, pp. 568-576, Mar. 2007
[11] E.L. Miller, M. Kilmer and C. Rappaport, “A new shape-based method for object localization and characterization from scattered field data,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, pp. 1682 -1696, July 2000
[12] M. Benedetti, M. Donelli, and A. Massa, “Multicrack detection in tow-dimensional structures by means of GA-based strategies,” IEEE Transactions on Antennas and Propagation, Vol. 55, NO. 1, pp. 205-215, Jan. 2007.
[13] G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-newton method within the second-order born approximation to buried objects,” IEEE. Geoscience and Remote Sensing Letters, Vol. 4, NO. 1, pp. 51-55, Jan. 2007.
[14] F. Soldovieri and R. Persico, “Reconstruction of an embedded slab from multifrequency scattered field data under the distorted born approximation,” IEEE Transactions on Antennas and Propagation, Vol. 52,NO. 9, pp. 2348-2356, Sep. 2004.
[15] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I, ” Inverse Problems, vol. 6, pp. 635-641, Aug.1990.
[16] R. F. Harrington, “Field computation by moment methods,” New York: Macmillan, 1968.
[17] M. M. Ney, A. M. Smith, and S. S. Stuchly, “A solution of electromagnetic imaging using pseudoinverse transformation,“ IEEE Trans. Med. Imag., Vol. MI-3, pp. 155-162, Dec. 1984
[18] R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[19] N. N. Bojarski, “A survey of the physical optics inverse scattering identity,” IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982.
[20] T. H. Chu and N. H. Farhat, “Polarization effects in microwave diversity imaging of perfectly conducting cylinders,” IEEE Trans. Antennas Propagat., vol.37, pp. 235-244, Feb. 1989.
[21] D. B. Ge, “A study of Lewis method for target-shape reconstruction,” Inverse Problems, vol. 6, pp. 363-370, June 1990.
[22] T. H. Chu and D. B. Lin, “Microwave diversity imaging of perfectly conducting objects in the near-field region,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[23] A. Roger, “Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Trans. Antennas Propagate., vol. AP-29,pp.232-238, Mar. 1981.
[24] W. Tobocman, “Inverse acoustic wave scattering in two dimensions from impenetrable targets,” Inverse Problems, vol. 5,pp. 1131-1144,Dec. 1989.
[25] C. C. Chiu and Y. M. Kiang, “Electromagnetic imaging for an imperfectly conducting cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1631- 1639, Sept. 1991.
[26] G. P. Otto and W. C. Chew, “Microwave inverse scattering-local shape function imaging for improved resolution of strong scatters,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. I, Jan.1994.
[27] D. Colton and P. Monk, “Anovel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region D,” SIAMJ. Appl. Math., vol. 46, pp. 506-523, June 1986.
[28] A. Kirsch, R. Kress, P. Monk and A. Zinn, “Two methods for solving the inverse acoustic scattering problem,” Inverse Problems, vol. 4, pp.749-770, Aug. 1988.
[29] F. Hettlich, “Two methods for solving an inverse conductive scattering problem,” Inverse Problems, vol. 10, pp. 375-385, 1994.
[30] R. E. Kleinman and P. M. van den Berg, “Two-dimensional locationand shape reconstruction,” Radio Science, vol. 29, pp. 1157-1169, July-Aug. 1994.
[31] S. Caorsi, G. L. Gragnani, and M. Pastorina, “An approach to microwave imaging using a multiview moment method solution for a two-dimensional infinite cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1062-1067, June 1991.
[32] S. Caorsi, G. L. Gragnani, and M. Pastorino, “Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 581-589, May 1994.
[33] S. Caorsi, G.L. Gragnani, and M. Pastorino, “Numerical electromagnetic inverse-scattering solution for two-dimensional infinite dielectric cylinders buried in a lossy half-space,” IEEE Trans. Antennas Propagat., Vol. AP-41, pp. 352-356, Feb. 1993.
[34] Z. Xiong and A. Kirsch, “Three-dimensional earth conductivity inversion,” J. omput. Appl. Math., vol. 42, pp. 109-121, 1992.
[35] T. M. Habashy and M. L. Oristaglio, “Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity,” Radio Science, vol. 29, pp. 1101-1118, July-Aug., 1994.
[36] W. Wang and S. Zhang, “Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies,” IEEE Trans. Antennas Propagat., Vol. AP-40, pp. 1292-1296, Nov. 1992.
[37] N. Joachimowicz, C. Pichot, and J. P. Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Trans. Antennas Propagat., vol. 39, pp. 1742-1752, Dec. 1988.
[38] Y. M. Wang and W. C. Chew, “An iterative solution of the two- dimensional electromagnetic inverse scattering problem,” Int. J. Imag. Syst. Technol., vol. I, pp.100-108, Nov. 1989.
[39] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method,” IEEE Trans. Med. Imaging, vol. 9, pp. 218-225, June 1990.
[40] D. Colton and P. Monk, “A modified dual space method for solving the electromagnetic inverse scattering problem for an infinite cylinder,” Inverse problems, vol. 10, pp. 87-107,1994.
[41] R. E. Kleinman and P. M. van den Berg, “A modified gradient method for two-dimensional problems in tomography,” J. Comput. AppL Math., vol. 42, pp. 17- 35, 1992.
[42] S. Barkeshli and R. G. Lautzenheiser, “An iterative method for inverse scattering problems based on an exact gradient search,” Radio Science, vol. 29, pp. 1119- 1130, July-Aug., 1994.
[43] J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. Antennas Propagat. Vol. 13, pp. 334-341, May 1965.
[44] A. Ishimaru, “Electromagnetic wave propagation, radiation and scattering,” Englewood Cliffs, NJ: Prentice-Hall,1991
[45] C. C. Chiu and Y. M. Kiang, “Inverse scattering of a buried conducting cylinder,” Inv. Prob., Vol.7, pp. 187-202, April 1991.
[46] M. J. Hagmann, O. P. Gandh, and C. H. Durney, “Upper bound on cell size for moment-method solutions,” IEEE Trans. Microwave Theory Tech., vol. 25, pp. 831-832, Oct. 1977.
[47] J. H. Richmond, “TE-wave scattering by a dielectric cylinder of arbitrary cross-session shape,” IEEE Trans. Antennas Propagat., Vol. 14, pp. 460-464, July 1966.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-06-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-06-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信