§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1103201613595600
DOI 10.6846/TKU.2016.00290
論文名稱(中文) 嵌入碳纖維板之氣隔式薄膜蒸餾於產量提升之理論與實驗研究
論文名稱(英文) Theoretical and experimental studies of flux enhancement in air gap membrane distillation modules with carbon fiber channels
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 1
出版年 105
研究生(中文) 黃美芝
研究生(英文) Mei-Chih Huang
學號 603400085
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-01-19
論文頁數 109頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
委員 - 涂志偉
委員 - 張煖
關鍵字(中) 薄膜蒸餾
水力角度
溫度極化
碳纖維支撐層
關鍵字(英) Membrane distillation
Hydrodynamic angles
Temperature polarization
Carbon-fiber separators
第三語言關鍵字
學科別分類
中文摘要
氣隔式薄膜蒸餾(air gap membrane distillation)原理乃是利用薄膜兩側之飽和蒸汽壓差為驅動力促使水蒸氣通過薄膜及其氣隔層後,在冷凝板上冷凝,進而達到分離的效果,然而,溫度極化對於系統產能會有相當顯著的影響。本研究針對氣隔式薄膜蒸餾之主要設備進行效率改善的研究,目標為:(1)設計新型紊流促進因子(Eddy promoter),以有效的改善系統內部之溫度極化現象進而提升系統產能,並歸納出一納賽數經驗公式,描述紊流促進因子對於通道內部熱對流效應的影響;(2)藉由一維數學模型針對薄膜蒸餾設備的熱量與質量傳送機制進行分析,配合實驗分析以驗證經驗公式與數學模型的正確性,並探討在不同之設計參數及操作條件對於薄膜蒸餾系統之流體溫度分佈、溫度極化現象、純水透膜通量增加百分率與水力損耗提升百分率的影響。研究結果顯示,平板型氣隔式薄膜蒸餾系統之理論值與實驗值的相對誤差總平均為8.06 %,而新型紊流促進因子能夠有效的提升系統透膜通量,在本研究設定的操作條件之中,最高可達到約18%的增益。
英文摘要
A new design of air gap membrane distillation (AGMD) with inserting carbon-fiber open slot separators of various hydrodynamic angles in flow channels for eddy promotion under concurrent-flow operation was developed and studied theoretically and experimentally.  Some studies showed that the eddy flow in aiming to reduce the temperature polarization were achieved implementing the carbon-fiber separators in the flow channel, and thus, heat- and mass-transfer rates were enhanced and the distillate flux enhancement was obtained.  A mathematical model considering heat and mass transfer mechanisms has been developed and a correlation of Nusselt numbers to calculate the heat transfer coefficient in the present AGMD device was correlated with the aid of the experimental data under various hydrodynamic angles of carbon-fiber separators.  The effects of various operation parameters were including the fluid inlet temperature, volumetric flow rate and hydrodynamic angles on the distillate flux enhancement of concurrent-flow operations for saline water desalination as compared that to the modules using empty channels.
第三語言摘要
論文目次
目錄
中文摘要Ⅰ
英文摘要Ⅱ
目錄Ⅲ
圖目錄VI
表目錄IX
第一章緒論1
1-1引言1
1-2 薄膜蒸餾系統簡介5
1-3研究動機與方向8
第二章文獻回顧10
2-1薄膜蒸餾10
2-2紊流促進因子15
第三章理論分析18
3-1氣隔式薄膜蒸餾之熱量、質量傳送機制分析18
3-1-1氣隔式薄膜蒸餾質傳機制之理論分析21
3-1-2氣隔式薄膜蒸餾熱傳機制之理論分析28
3-1-3 溫度極化現象34
3-2紊流促進因子納賽數經驗公式之建立37
3-2-1 納賽數經驗公式模型38
3-2-2實驗數據之取得與分析計算流程41
3-3平板型氣隔式薄膜蒸餾系統一維理論模型之建立45
3-3-1平板型薄膜蒸餾系統一維理論模型46
3-3-2理論數據取得與計算分析流程-朗吉庫塔數值解析方法49
3-3-3系統水力損耗	53
3-4數學模擬參數之設定55
第四章實驗分析58
4-1平板型氣隔式薄膜蒸餾系統58
4-2實驗步驟65
第五章結果與討論66
5-1新型紊流促進因子之納賽數經驗公式迴歸分析66
5-2平板型氣隔式薄膜蒸餾系統69
5-2-1系統操作變因對於透膜通量之影響69
5-2-2溫度分佈與溫度極化現象70
5-3添加紊流促進因子之平板型氣隔式薄膜蒸餾系統75
5-3-1紊流促進因子對於透膜通量之影響75
5-3-2溫度分佈與溫度極化現象77
5-4設計參數於透膜通量與水力損耗之影響84
5-4-1透膜通量增益程度與水力損耗提升程度85
5-4-2透膜通量與水力損耗提升程度之比較86
第六章結論92
6-1紊流促進因子之納賽數經驗公式92
6-2平板型氣隔式薄膜蒸餾系統93
6-3添加紊流促進因子之平板型氣隔式薄膜蒸餾系統93
6-4模組設計參數於透膜通量與水力損耗之影響94
符號說明95
參考文獻102
圖目錄
圖1-1世界水資源分佈圖2
圖1-2世界海水淡化使用技術比例3
圖1-3青島市不同水源供水潛力與取水、製水之能耗比較圖4
圖1-4薄膜蒸餾之操作型態6 
圖1-5薄膜蒸餾之模組型式圖7
圖1-6研究架構圖9
圖3-1薄膜蒸餾系統熱量及質量傳送機制示意圖19
圖3-2薄膜蒸餾於薄膜內部之質量傳送阻力模式23
圖3-3氣隔式薄膜蒸餾之質量傳送阻力示意圖27
圖3-4氣隔式薄膜蒸餾之熱量傳送阻力串聯模式28
圖3-5薄膜蒸餾於薄膜內部熱量傳送之阻力模式29
圖3-6溫度極化示意圖34
圖3-7溫度極化現象改善示意圖37
圖3-8不同操作流態之溫度分佈示意圖41
圖3-9熱對流係數運算流程圖44
圖3-10順流操作之平板型氣隔式薄膜蒸餾系統示意圖47
圖3-11朗吉庫塔法求聯立方程組之計算示意圖51
圖3-12氣隔式薄膜蒸餾系統運算流程圖52
圖4-1平板型氣隔式薄膜蒸餾系統簡圖59
圖4-2平板型氣隔式薄膜蒸餾系統實驗設備圖(a)側視圖(b)正視圖59
圖4-3氣隔式薄膜蒸餾模組分解圖61
圖4-4壓克力頂板嵌入碳纖維板之實際圖62
圖4-5纖維板示意圖(a) 60 o (b) 90 o (c) 120 o62
圖4-6碳纖維板實際圖(a) 60 o (b) 90 o (c) 120 o62
圖4-7碳纖維支撐層實際圖(a)上視圖(b)下視圖63
圖5-1納賽數理論值與實驗值比較圖68
圖5-2冷流層固定25℃進口溫度且熱流層流體為純水下,未嵌入碳纖維板,不同操作參數對於透膜通量之影響72
圖5-3冷流層固定25℃進口溫度且進料端流體為鹽水下,未嵌入碳纖維板,不同操作參數對於透膜通量之影響72
圖5-4冷流層固定25℃進口溫度且熱流層流體為鹽水下,不同體積流對於主流區域、熱流層薄膜表面與冷凝液表面溫度分佈之影響74
圖5-5冷流層固定25℃進口溫度且熱流層流體為鹽水時,不同操作參數於溫度極化係數之影響74
圖5-6熱側流體為鹽水,碳纖維板之水力角度為60o,透膜通量之關係圖78
圖5-7熱側流體為鹽水,碳纖維板之水力角度為90o,透膜通量之關係圖79
圖5-8熱側流體為鹽水,碳纖維板之水力角度為120o,透膜通量之關係圖79
圖5-9冷流層固定25℃進口溫度且熱流層流體為純水下,不同水力角度之碳纖維板與操作參數對於透膜通量影響之比較80
圖5-10冷流層固定25℃進口溫度且熱流層流體為鹽水下,不同水力角度之碳纖維板與操作參數對於透膜通量影響之比較80
圖5-11冷流層固定25℃進口溫度且熱流層流體為鹽水下,不同水力角度對於主流區、熱流層薄膜表面與冷凝液表面溫度分佈之影響83
圖5-12冷流層固定25℃進口溫度且熱流層流體為鹽水下,不同水力角度與操作參數於溫度極化係數之影響83
圖5-13鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力損耗提升程度比較圖91
表目錄
表1-1不同操作型態之薄膜蒸餾應用領域7
表3-1經驗式參數表38
表3-2模組相關參數55
表3-3疏水性薄膜(聚四氟乙烯+聚丙烯複合膜)相關參數55
表3-4流體相關參數56
表3-5流體相關參數式57
表4-1PTFE/PP複合膜之薄膜性質63
表5-1納賽數經驗公式所需實驗數據之操作變因表66
表5-2冷流層固定25℃度進口溫度下,平板型氣隔式薄膜蒸餾系統實驗值與理論值之相對誤差比較表73
表5-3冷流進口25℃且熱流流體為純水下,不同水力角度之碳纖維板與操作參數之實驗與理論值相對誤差比較表81
表5-4冷流進口25℃且熱流流體為鹽水下,不同水力角度與操作參數之實驗與理論值相對誤差比較表82
表5-5不同水力角度與操作參數下之純水理論透膜通量增益比例表87
表5-6不同水力角度與操作參數下之鹽水理論透膜通量增益比例表88
表5-7碳纖維板支撐條寬度之水力損耗提升程度比較表89
表5-8不同水力角度與操作參數下,理論透膜通量增益程度與水力損耗提升程度比值90
參考文獻
1.	United Nation Population Fund, 2014, The Power of 1.8 Billion, United Nation Population Fund.
2.	Meindersma G.W., Guijt C.M., de Haan A.B., 2006, Desalination and water recycling by air gap membrane distillation, Desalination, 187, 291–301.
3.	United Nations Environment Programme, 2007, Global Environment Outlook 4, United Nations Environment Programme.
4.	Committee on Advancing Desalination Technology, National Research Council, 2008, Desalination: A National Perspective, National Academy of Sciences.
5.	Lattemann S., Kennedy M.D., Schippers J.C., Amy G., 2010, Chapter 2 Global desalination situation, Sustainability Sci. and Eng., vol. 2, 7-39.
6.	Pankratz T.M., 2010, IDA Desalination Yearbook 2010-2011, Media Analytics Ltd.
7.	Kalogirou S.A., 2005, Seawater desalination using renewable energy sources, Prog. Energy Combstion Sci., 31, 242-281.
8.	Wen W., Zhong L., Fu X., 2014, Water energy nexus in the urban water source selection: A case study from Qingda, WRI Org.
9.	El-Bourawi M.S., Ding Z., Ma R., Khayet M., 2006, A framework for better understanding membrane distillation separation process, J. Membr. Sci., 285, 4–29.
10.	 Asghari M., Harandizadeh A., Dehghani M., Harami H.R., 2015, Persian Gulf desalination using air gap membrane distillation: Numerical simulation and theoretical study, Desalination, 374, 92-100.
11.	 Phattaranawik J., Jiraratananon R., Fane A.G., 2003, Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies, J. Membr. Sci., 217, 193-206.
12.	 Bodell B.R., 1963, Silicone rubber vapor diffusion in saline water distillation, United States Patent Application Serial, 285, 32.
13.	 Weyl P.K., 1967, Recovery of demineralized water form saline waters, United States Patent 3, 340, 186.
14.	 Findley M.E., 1967, Vaporization through porous membranes, Ind. Eng. Chem. Process Des. Dev., 6, 226-230.
15.	 Drioli E., Wu Y., 1985, Membrane distillation:An experimental study, Desalination, 53, 339-346.
16.	 Hanbury W.T., 1985, Hodgkiess T., Membrane distillation - An assessment, Desalination, 56, 287-297.
17.	 Jönsson A.S., Wimmerstedt R., Harrysson A.-C., 1985, Membrane distillation - a theoretical study of evaporation through microporous membranes, Desalination, 56, 237-249.
18.	 Sarti G.C., Gostoli C., Matulli S., 1985, Low energy cost desalination processes using hydrophobic membranes, Desalination, 56, 277-286.
19.	 Jonsson A.-S., Wimmerstedt R., Harrysson A.-C., 1985, Membrane distillation-a theoretical study of evaporation through microporous membranes, Desalination, 56, 237-249.
20.	 Schofield R.W., Fane A.G., Fell C.J.D., 1987, Heat and mass transfer in membrane distillation, J. Membr. Sci., 33, 299-313.
21.	 Izquierdo-Gil M.A., Garcı́a-Payo M.C., Fernández-Pineda C., 1999, Air gap membrane distillation of sucrose aqueous solutions, J. Membr. Sci., 155, 291-307.
22.	 Izquierdo-Gil M.A., Garcı́a-Payo M.C., 2000, Fernández-Pineda C., Air gap membrane distillation of aqueous alcohol solutions, J. Membr. Sci., 169, 61-80.
23.	 Phattaranawik J., Jiraratananon R., 2001, Direct contact membrane distillation:effect of mass transfer on heat transfer, J. Membr. Sci., 188, 137-143.
24.	 Banat F.A., Simandl J., 1998, Desalination by membrane distillation:a parametric study, Sep. Sci. Technol., 33, 201-226.
25.	 Liu G.L., Zhu C., Cheung C.S., Leung C.W., 1998, Theoretical and experimental studies on air gap membrane distillation, Int. J. Heat Mass Transf., 34, 329-335.
26.	 Kimura S., Nakao S.I., 1987, Transport phenomena in membrane distillation, J. Memb. Sci., 33, 285-298.
27.	 Gostoli C., Sarti G.C., Matulli S., 1987, Low temperature distillation through hydrophobic membranes, Sep. Sci. Technol., 22, 855-872.
28.	 Alklaibi A.M., Lior N., 2005, Transport analysis of air-gap membrane distillation, J. Memb. Sci., 255, 239-253.
29.	 Chouikh R., Bouguecha S., Dhahbi M., 2005, Modelling of a modified air gap distillation membrane for the desalination of seawater, Desalination, 181, 257-265.
30.	 Chernyshov M.N., Meindersma G.W., de Haan A.B., 2003, Modelling temperature and salt concentration distribution in membrane distillation feed channel, Desalination, 157, 315-324.
31.	 Bouguecha S., Chouikh R., Dhahbi M., 2003, Numerical study of the coupled heat and mass transfer in membrane distillation, Desalination, 152, 245-252.
32.	 Alklaibi A.M., Lior N., 2006, Heat and mass transfer resistance analysis of membrane distillation, J. Memb. Sci., 282, 362-369.
33.	 Guijt C.M., Meindersma G.W., Reith T., de Haan A.B., 2005, Air gap membrane Distillation-1.Modelling and mass transport properties for hollow fibre membranes, Sep. Sci. Technol., 43, 233-244.
34.	 Zhang J., J.-D. Li, Gray S., 2011, Effect of applied pressure on PTFE membrane in DCMD, J. Memb. Sci., 369, 514-525.
35.	 Zhang J., J.-D. Li, Gray S., 2011, Researching and modeling the dependence of MD flux on membrane dimension for scale-up purpose, Desalin. Water Treat., 31, 144-150.
36.	 Zhang J., J.-D. Li, Gray S., 2012, Modelling heat and mass transfers in DCMD using compressible membranes, J. Memb. Sci., 387, 7-16.
37.	 Ho C.D., Chang H., Chang C.L., Huang C.H., 2013, Theoretical and experimental studies of flux enhancement with roughened surface in direct contact membrane distillation desalination, J. Membr. Sci., 433, 160-166.
38.	 Alsaadi A.S., Ghaffour N., Li J.-D., Gray S., Francis L., Maab H., Amy G.L., 2013, Modeling of air-gap membrane distillation process:a theoretical and experimental study, J. Membr. Sci., 445, 53-65.
39.	 Gryta M., Tomaszewska M., Morawski A.W., 1997, Membrane distillation with laminar flow, Sep. Purif. Technol., 11, 93-101.
40.	 Martínez-Díez L., Vázquez-González M.I.., 1998, Effects of polarization on mass transport through hydrophobic porous membranes, Ind. Eng. Chem. Res., 37, 4128-4135.
41.	 Phattaranawik J., Jiraratananon R., Fane AG. 2003, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci., 212, 177-193.
42.	 Khayet M., Godino M.P., Mengual J.I., 2003, Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method, Desalination, 157, 297-305.
43.	 Bui V.A., Vu L.T.T., Nguyen M.H., 2010, Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules, J. Membr. Sci., 353, 85-93.
44.	 Lawson K.W., Lloyd D.R., 1996, Membrane distillation. II. Direct contact MD, J. Membr. Sci., 120, 123-133.
45.	 Srisurichan S., Jiraratananon R., Fane A.G., 2006, Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, J. Membr. Sci., 277, 186-194.
46.	 Gryta M., Tomaszewska M., 1998, Heat transport in the membrane distillation process., J. Membr. Sci., 144, 211-222.
47.	 Fernández-Pineda C., Izquierdo-Gil M.A., García-Payo M.C., 2002, Gas permeation and direct contact membrane distillation experiments and their analysis using different models, J. Membr. Sci., 198, 33-49.
48.	 Zhongwei D., Liying L., Runyu M., 2003, Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation, J. Membr. Sci., 215, 11-23.
49.	 Da Costa A.R., Fane A.G., Fell C.J.D., Franken A.C.M., 1991, Optimal channel spacer design for ultrafiltration, J. Membr. Sci., 62, 275-291.
50.	 Da Costa A.R., Fane A.G., Wiley D.E., 1994, Spacer characterization and pressure drop modeling in spacer-filled channels for ultrafiltration, J. Membr. Sci., 87, 79-98.
51.	 Schwinge J., Wiley D.E., Fane A.G., Guenther R. 2000, Characterization of a zigzag spacer for ultrafiltration, J. Membr. Sci., 172, 19-31.
52.	 Martínez-Díez L, Vázquez-González M.I., Florido-DõÂaz F.J., 1998, Study of membrane distillation using channel spacers, J. Membr. Sci., 144, 45-56.
53.	 Phattaranawik J, Jiraratananon R, Fane A.G., Halim C., 2001, Mass flux enhancement using spacer filled channels in direct contact membrane distillation, J. Membr. Sci., 187, 193-201.
54.	 Shakaib M., Hasani S. M. F., Ahmed I., Yunus R.M., 2012, A CFD study on the effect of spacer orientation on temperature polarization in membrane distillation modules, Desalination, 284, 332-340.
55.	 Lawson K.W., Lloyd D.R., Membrane distillation, 1997, J. Membr. Sci., 124, 1-25.
56.	 Geng H., Wu H., Li P., He Q., 2014, Study on a new air-gap membrane distillation module for desalination, Desalination, 334, 29-38.
57.	 Iversen S.B., Bhatia V.K., Dam-Jphasen K., Jonsson G., 1997, Characterization of microporous membranes for use in membrane contactors, J. Membr. Sci., 130, 205-217.
58.	 Fuller E.N., Schettler P.D., Giddings J.C., 1966, New method for prediction of binary gas-phase diffusion coefficients, Industrial & Engineering Chemistry, 58, 18-27.
59.	 Banat F.A., Simandl J., 1999, Membrane distillation for dilute ethanol Separation from aqueous streams, J. Membr. Sci., 163, 333-348.
60.	 Incropera F.P., DeWitt D.P., 1996, Fundamentals of Heat and Mass Transfer, fourth ed., New York:John Wiley & Sons Inc.
61.	 Chen T.C., Ho C.D., Yeh H.M., 2009, Theoretical modeling and experimental analysis of direct contact membrane distillation, J Mem. Sci., 330, 279-287.
62.	 Saini R.P., Saini J.S., 1997 ,Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element, Int. J. Heat Mass Transf., 40, 973-986.
63.	 Welty J.R., Wick C.E., Wilson R.E., 1984, Fundamentals of Momentum, Heat and Mass Transfer, third ed. John Wiley & Sons, New York.
64.	 Kandlikar S.G., Schmitt. D., Carrano A.L., Taylor J.B., 2005, Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels, Physics of fluid, 17, 100606.
65.	 Bird R.B., Stewart W.E., Lightfoot E.N., 2007, Transport Phenomena, second ed., John Wiley & Sons, New York.
66.	 Sharqawy M. H., 2013, New correlations for seawater and pure water thermal conductivity at different temperatures and salinities, Desalination, 313, 97-104.
67.	 Incropera F.P., DeWitt D.P., 1996, Fundamentals of Heat and Mass Transfer, fourth ed.,: John Wiley & Sons Inc., New York.
68.	 Chenlo F., Moreira R., Pereira G., Ampudia A., 2002, Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes, J. Food Eng., 54, 347-352.
69.	 Magalhães M.C.F., Königsberger E., May P.M., Hefter G., 2002, Heat capacities of concentrated aqueous solutions of sodium sulfate, sodium carbonate, and sodium hydroxide at 25 °C, J. Chem. Eng. Data, 47, 590-598.
70.	 葉和明, 1990, 單元操作演習, 三民書局出版.
71.	K. Sakai, T. Muroi, K. Ozawa, S. Takesawa, M. Tamura, 1986, T. Nakaue, Extraction of solute-free water from blood by membrane distillation, Trans. Am. Soc. Artif. Intern. Organs 32 397–400.
72.	P.P. Zolotarev, V.V. Ugrosov, I.B. Volkina, V.N. Nikulin, 1994, Treatment of waste-water for removing heavy-metals by membrane distillation, J. Hazard. Mater. 37 (1) 77–82.
73.	V. Calabro, B.L. Jiao, E. Drioli, 1994, Theoretical and experimental study on ` membrane distillation in the concentration of orange juice, Ind. Eng. Chem. Res. 33 (71) 1803–1808.
74.	S. Nene, S. Kaur, K. Sumod, B. Joshi, K.S.M.S. Raghavarao, 2002, Membrane distillation for the concentration of raw cane-sugar syrup and membrane clarified sugarcane juice, Desalination 147 157–160.
75.	C. Varming, M.L. Andersen, L. Poll, 2004, Influence of thermal treatment on black currant (Ribes nigrum L.) juice aroma, J. Agric. Food Chem. 52 (25) 7628–7636.
76.	 A. Khalifa, D. Lawal, M. Antar, M. Khayet, 2015, Experimental and theoretical investigation on water desalination using air gap membrane distillation, Desalination, 376, 94-108.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信