淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1103201318265300
中文論文名稱 P25衍生光陽極組裝染敏太陽能電池之研究: I. 以PEG/P25漿料製備二氧化鈦光陽極與其最佳化 II. 烷氧基矽烷共吸附劑對光電轉換效率之影響
英文論文名稱 A Study of P25-Derived Photoanode for Dye-Sensitized Solar Cell: I. Preparation and Optimization of TiO2 Photoanode derived from PEG/P25 Paste II. The Effects of Siloxane Derivative as Coadsorbent on the energy conversion efficiency
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 101
學期 1
出版年 102
研究生中文姓名 朱俊銘
研究生英文姓名 Chun-Ming Chu
學號 699401179
學位類別 碩士
語文別 中文
口試日期 2013-01-15
論文頁數 87頁
口試委員 指導教授-張正良
共同指導教授-林正嵐
委員-陳慶鐘
委員-張朝欽
中文關鍵字 染料敏化太陽能電池  二氧化鈦  共吸附  吸附劑 
英文關鍵字 Dye-sensitized solar cell  titanium dioxide  coadsorption  coadsorbent 
學科別分類
中文摘要 本論文分為兩個主要部分,第一部分是以二氧化鈦 (TiO2) 粉體製備染料敏化太陽能電池(dye-sensitized solar cells, DSSC) 的光陽極 (photoanode) 並最佳化電池效能,第二部分為使用含矽氧烷基之化合物作為共吸附物以提高 DSSC 的光電轉換效率。
本研究第一部分以 Degussa P25 粉體製備TiO2 薄膜光陽極,討論製程條件對所得薄膜結構以及 DSSC 光電轉換效率的影響。光陽極為 (TiO2 薄膜/緻密層/fluorine-doped tin oxide (FTO) 導電玻璃) 的結構,製備程序為先以四異丙烷氧化鈦 (titanium tetraisopropoxide, TTIP)/乙二醇甲醚 (2-methoxyethanol, 2-ME) 之混合液於 FTO 導電玻璃上製得緻密層,再於其上以聚乙二醇 (Polyethylene glycol, PEG20k, 分子量 = 20,000)/P25粉體之混合漿料製作TiO2薄膜可得之。使用以 TTIP/2-ME (w/w) = 0.2 製備之緻密層搭配以 PEG20k/TiO2 (w/w) = 0.35 製備之TiO2薄膜所得光陽極組裝 DSSC,可達到 5.35±0.08 % 的最高光電轉換效率。另外,本研究以分子量更高的PEG200k (分子量 = 200,000) 取代PEG20k增加漿料黏度,可改善TiO2 薄膜製程的穩定度。TiO2 薄膜的微結構可由製備過程中 PEG20k 或 PEG200k 的添加比例調整,TiO2 的表面積增加可讓其吸附更多染料,提高 DSSC 的短路電流 (short-circuit current, Jsc),但其開路電壓 (open-circuit voltage, Voc) 則會因電子/電洞再結合位置 (recombination sites) 數量增加而降低。使用 PEG200k/TiO2 (w/w) = 0.25 製備TiO2 薄膜光陽極之 DSSC 具有最高光電轉換效率為5.51±0.17 %。
本研究第二部分使用四乙氧基矽烷 (tetraethoxysilane, TEOS) 或苯基三乙氧基矽烷(phenyltriethoxysilane, PTEOS) 作為染料的共吸附劑,討論其對 DSSC 效能的影響。根據 DSSC 之 i-V 行為與電化學阻抗分析的結果,使用TEOS 或 PTEOS 共吸附劑可增加電子由染料注入TiO2 的效率而提高 Jsc,且可降低暗電流 (dark current) 並使 Voc 上升,進而提高 DSSC 的光電轉換效率。使用 0.25 mM TEOS 或 0.5 mM PTEOS 與染料進行共吸附製備光陽極,所得 DSSC 之光電轉換效率可從 4.55±0.13 % 分別提高至 4.97±0.05 % 或 5.10±0.07 %,效率增加的幅度分別為9.2 % 或 12.5 %。
英文摘要 This thesis containing two major parts, the first part is preparation and optimization of P25-based TiO2 photoanode for its application in a dye-sensitized solar cell (DSSC), and the second part is study on the effects of siloxane derivatives as coadsorbents on the performance of a DSSC.
The structure of TiO2 photoanode plays a pivotal role in the performance of a DSSC. In the first part of this thesis, the influences of the preparation parameters of P25-based TiO2 photoanode and blocking layer on the energy conversion efficiency of a DSSC were investigated. The blocking layer, which sandwiched between the fluorine-doped tin oxide (FTO) glass and the TiO2 film, was derived from the mixture solution of titanium tetraisopropoxide (TTIP) and 2-methoxylethanol (2-ME). The DSSC with blocking layer synthesized using TTIP/2-ME ratio of 1/5 (w/w) exhibited superior energy conversion efficiency, which suggested that such blocking layer effectively reduce the electrolyte oxidation on the FTO surface and therefore improve the DSSC performance. The porosity of a TiO2 photoanode can be adjusted by the polyethylene glycol (PEG20k) content employed during the preparation process. When the average thickness of the TiO2 layer was approximately 20 micrometer, the performances of DSSCs employing photoanodes prepared using different PEG20k/TiO2 ratios were evaluated, and the best energy conversion efficiency of 5.35±0.08 % was achieved with the PEG20k/TiO2 (w/w) of 0.35. PEG200k was used to replace PEG20k in order to increase the viscosity of the TiO2 paste. The viscosity of the paste and the porosity of the TiO2 photoanode were adjusted by the PEG200k content employed during the preparation process. The performances of DSSCs employing photoanodes prepared using different PEG200k/TiO2 ratios were evaluated. With the increasing of PEG200k content in the TiO2 paste, the amount of dye absorption increases and resulted in an enhancement in short-circuit current (Jsc) but decreases in open-circuit voltage (Voc) of the DSSC. The best energy conversion efficiency of 5.51±0.17 % was achieved with the DSSC using the TiO2 photoanode prepared from a paste with PEG200k/TiO2 (w/w) ratio of 0.25.
In the second part of the thesis, tetraethoxysilane (TEOS) or phenyltriethoxysilane (PTEOS) was added in a dye solution as the coadsorbent and its effects on the photovoltaic properties of the resulting DSSC were investigated. It was found that the coadsorption of siloxane derivatives can hinder the formation of dye aggregates and improve the electron injection yield and thus increasing Jsc. This has also led to a rise in Voc, which is attributed to the decrease of charge recombination probability. Electrochemical impedance spectra data indicate that the electron lifetime was improved by the coadsorption of siloxane derivatives, which accounting for the significant improvement of Voc. The overall conversion efficiency was improved to 4.97±0.05 % and 5.10±0.07 % from 4.55±0.13 % upon addition of 0.25 mM TEOS and 0.5 mM PTEOS to the dye solution for TiO2 sensitization, respective.
論文目次 目錄
中文摘要………………………………………………………………………I
英文摘要………………………………………………………………………III
目錄………………………………………………………………………V
圖目錄…………………………………………………………………VII
表目錄…………………………………………………………………XII
第一章 緒論………………………………………………………………1
1.1前言……………………………………………………………………1
1.2染敏太陽能電池簡介…………………………………………………1
1.2.1染敏太陽能電池工作原理…………………………………………2
1.2.2染敏太陽能電池的化學反應機制…………………………………2
1.2.3發展面臨之問題……………………………………………………5
1.3研究目的………………………………………………………………6
第二章 文獻回顧…………………………………………………………7
2.1多孔性光陽極…………………………………………………………7
2.2用鈦前驅物以水熱法製備TiO2光陽極………………………………8
2.3以市售的TiO2粉體製備光陽極……………………………………12
2.4共吸附………………………………………………………………14
第三章 實驗……………………………………………………………17
3.1實驗藥品及材料……………………………………………………17
3.2實驗設備……………………………………………………………18
3.3實驗步驟……………………………………………………………19
3.3.1清洗導電玻璃……………………………………………………19
3.3.2 TiO2漿料的配製…………………………………………………19
3.3.3 TiO2光陽極的製備………………………………………………19
3.3.4對電極的製備……………………………………………………20
3.3.5電解液的配製……………………………………………………20
3.3.6電池元件組裝……………………………………………………20
3.4表面型態與性質分析………………………………………………21
3.4.1掃描式電子顯微鏡………………………………………………21
3.4.2表面輪廓儀………………………………………………………22
3.4.3紫外線-可見光光譜儀……………………………………………22
3.5電化學分析方法……………………………………………………22
3.5.1交流阻抗分析模組………………………………………………22
3.5.2電池光電轉換效率分析…………………………………………22
3.6實驗架構……………………………………………………………25
第四章 實驗結果與討論………………………………………………26
4.1 TiO2光陽極之最佳化………………………………………………26
4.1.1 TTIP/2-ME溶液之比例對電池效率的影響……………………27
4.1.2 TiO2薄膜厚度之選擇對電池效率的影響………………………31
4.1.3 PEG20k/TiO2比例對光陽極效能之影響………………………33
4.1.4 PEG200k/TiO2比例對光陽極效能之影響………………………40
4.2烷氧基矽烷共吸附對電池效率之影響……………………………62
第五章 結論……………………………………………………………74
參考文獻…………………………………………………………………76
附錄A……………………………………………………………………84
附錄B……………………………………………………………………87

圖目錄
圖1-1. 染敏太陽能電池電子迴路圖……………………………………3
圖1-2. 染敏太陽能電池中的電子再結合機制圖………………………4
圖2-1. 不同半導體與氧化還原對的能帶位置圖………………………7
圖2-2. 金紅石結構(a, b) 與銳鈦礦結構(c, d) TiO¬2薄膜截面與表面的SEM圖…………………………………………………………………8
圖2-3. 金紅石與銳鈦礦TiO2所製備DSSC的I-V曲線…………………9
圖2-4. 大尺寸梭狀TiO2 (a, b) 與小尺寸梭狀TiO2 (c, d) 的SEM與TEM圖……………………………………………………………………11
圖2-5. 不同濃度TiF4所製備出的TiO2的SEM圖:(a and b) 10 mM; (c and d) 30 mM。比例尺:(a and c) 500 nm;(b and d) 100 nm。………………………………………………………………………12
圖2-6. 不同市售粉體所製備的光陽極其穿透度比較………………13
圖2-7. 奈米TiO2管填充P90或奈米石墨所製備DSSC的I-V曲線 (a)與其對應的EIS圖 (b) ……………………………………………………14
圖2-8. 經過BMPPA不同時間處理所製備DSSC的I-V曲線……………16
圖3-1. 製備TiO2光陽極流程圖………………………………………20
圖3-2. 電池元件組裝流程示意圖……………………………………21
圖3-3. 電流-電壓曲線圖………………………………………………23
圖3-4. 光電轉換效率量測系統示意圖………………………………24
圖3-5. 實驗架構與流程圖……………………………………………25
圖4-1. DSSC元件結構之示意圖………………………………………26
圖4-2. 染敏太陽能電池之i-V圖………………………………………27
圖4-3. 以不同比例TTIP/2-ME溶液製備之緻密層的SEM圖(旋轉塗佈:3000 rpm) (a)空白FTO玻璃 (b) TTIP/2-ME = 1/5 (w/w) (c) TTIP/2-ME = 1/9 (w/w)………………………………………………29
圖4-4. 不同TTIP/2-ME溶液比例製備緻密層之染敏太陽能電池的i-V曲線。旋轉塗佈:3000 rpm, 30 s,TiO2薄膜塗佈三層。…………30
圖4-5. 使用不同塗佈次數製備光陽極之DSSC的i-V曲線。TTIP/2-ME = 1/5(w/w),旋轉塗佈:3000 rpm, 30 s。…………………………32
圖4-6. 不同比例PEG20k/TiO2製備所得TiO2薄膜的SEM圖(a) PEG20k/TiO2 = 0.25 (w/w) (b) PEG20k/TiO2 = 0.35 (w/w)……35
圖4-7. 使用不同比例PEG20k/TiO2製備光陽極之DSSC的i-V曲線。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,TiO2薄膜塗佈三層。…………………………………………………………………36
圖4-8. 使用不同比例PEG20k/TiO2製備光陽極之DSSC的各項光伏特性趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,TiO2薄膜塗佈三層。……………………………………………………37
圖4-9. 不同濃度的N719染料溶於0.1 M的NaOH水溶液之UV-vis吸收光譜…………………………………………………………………………37
圖4-10. 不同濃度的N719染料溶於0.1 M的NaOH水溶液對吸收度之檢量線………………………………………………………………………38
圖4-11. 以0.1 M的NaOH水溶液將不同比例PEG20k /TiO2製備所得之光陽極的染料洗下的UV-vis吸收光譜。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,TiO2薄膜塗佈三層。……………………38
圖4-12. PEG200k/TiO2 = 0.3 (w/w)製備所得TiO2薄膜的SEM圖 (a)俯視圖 (b)截面圖 (c)45度角俯視圖…………………………………42
圖4-13. PEG200k/TiO2 = 0.3 (w/w)時不同塗佈次數製備之光陽極之DSSC的i-V曲線。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。……………………………………………………………………43
圖4-14. PEG200k/TiO2 = 0.3 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項光伏特性趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。………………………………………………………44
圖4-15. 電化學阻抗的Nyquist圖……………………………………44
圖4-16. 染敏太陽能電池電化學交流阻抗特性之等效電路圖………45
圖4-17. PEG200k/TiO2 = 0.3 (w/w)時不同塗佈次數製備之光陽極之DSSC的電化學阻抗Nyquist圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。………………………………………………………45
圖4-18. PEG200k/TiO2 = 0.35 (w/w)時不同塗佈次數製備之光陽極之DSSC的i-V曲線。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。……………………………………………………………………48
圖4-19. PEG200k/TiO2 = 0.35 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項光伏特性趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。…………………………………………………49
圖4-20. PEG200k/TiO2 = 0.35 (w/w)時不同塗佈次數製備之光陽極之DSSC的電化學阻抗Nyquist圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。…………………………………………………49
圖4-21. PEG200k/TiO2 = 0.25 (w/w)時不同塗佈次數製備之光陽極之DSSC的i-V曲線。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。……………………………………………………………………53
圖4-22. PEG200k/TiO2 = 0.25 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項光伏特性趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。…………………………………………………54
圖4-23. PEG200k/TiO2 = 0.25 (w/w)時不同塗佈次數製備之光陽極之DSSC的電化學阻抗Nyquist圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。…………………………………………………54
圖4-24. PEG200k/TiO2 = 0.2 (w/w)時不同塗佈次數製備之光陽極之DSSC的i-V曲線。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。……………………………………………………………………55
圖4-25. PEG200k/TiO2 = 0.2 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項光伏特性趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。………………………………………………………56
圖4-26. PEG200k/TiO2 = 0.2 (w/w)時不同塗佈次數製備之光陽極之DSSC的電化學阻抗Nyquist圖。TTIP/2-ME比例為1/5,旋轉塗佈:3000 rpm, 30 s。………………………………………………………57
圖4-27. PEG200k/TiO2 = 0.15 (w/w)時不同塗佈次數製備之光陽極之DSSC的i-V曲線。TTIP/2-ME比例為1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。……………………………………………………………58
圖4-28. PEG200k/TiO2 = 0.15 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項光伏特性趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。…………………………………………………59
圖4-29. PEG200k/TiO2 = 0.15 (w/w)時不同塗佈次數製備之光陽極之DSSC的電化學阻抗Nyquist圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。…………………………………………………59
圖4-30. 不同PEG200k/TiO2比例與不同塗佈次數製備光陽極之薄膜厚度趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。………………………………………………………………………60
圖4-31. 使用不同比例PEG200k /TiO2塗佈四層製備光陽極之DSSC的各項光伏特性趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,TiO2薄膜塗佈三層。……………………………………61
圖4-32. 四乙氧基矽烷與苯基三乙氧基矽烷之結構式………………62
圖4-33. 使用不同濃度的TEOS共吸附劑製備光陽極之DSSC的i-V曲線。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。………………64
圖4-34. 用不同濃度的TEOS共吸附劑製備光陽極之DSSC的各項光伏特性趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。………………65
圖4-35. 使用不同濃度的TEOS共吸附劑製備光陽極之DSSC的電化學阻抗Nyquist圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。……………66
圖4-36. 使用不同濃度的TEOS共吸附劑製備光陽極之DSSC的電化學阻抗Bode phase angle圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2= 0.25 (w/w),TiO2薄膜塗佈四層。…67
圖4-37. 使用不同濃度的PTEOS共吸附劑製備光陽極之DSSC的i-V曲線。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。………………70
圖4-38. 使用不同濃度的PTEOS共吸附劑製備光陽極之DSSC的各項光伏特性趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25(w/w),TiO2薄膜塗佈四層。……………71
圖4-39. 使用不同濃度的PTEOS共吸附劑製備光陽極之DSSC的電化學阻抗Nyquist圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。………71
圖4-40. 使用不同濃度的PTEOS共吸附劑製備光陽極之DSSC的電化學阻抗Bode phase angle圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。………………………………………………………………………72
圖4-41. 兩種不同濃度的烷氧基矽烷共吸附劑製備光陽極之DSSC的效率趨勢圖。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。………………73
圖A-1. 不同TTIP/2-ME溶液比例製備緻密層之染敏太陽能電池的i-V曲線。旋轉塗佈:3000 rpm, 30 s,TiO2薄膜塗佈三層。…………84
圖A-3. 不同TTIP/2-ME溶液比例製備緻密層之XRD分析圖譜。旋轉塗佈:3000 rpm, 30 s。…………………………………………………86
圖B-1. 銳鈦礦TiO2之結晶型號 JCPDS 21-1272……………………87
圖B-2. 金紅石TiO2之結晶型號 JCPDS 21-1276……………………87

表目錄
表2-1. 不同水熱溫度對TiO2表面積、孔洞直徑、孔洞體積及平均顆粒大小的影響……………………………………………………………10
表2-2. 兩種染料吸附不同濃度之CDCA的各項光伏特性……………15
表2-3. 相關共吸附劑之整理…………………………………………16
表4-1. 不同TTIP/2-ME溶液比例製備緻密層之染敏太陽能電池的各項光伏特性。旋轉塗佈:3000 rpm, 30 s,TiO2薄膜塗佈三層。……30
表4-2. 使用不同TTIP/2-ME溶液比例與塗佈次數製備之二氧化鈦光陽極之DSSC的各項光伏特性,PEG20k/TiO2 = 0.3 (w/w)……………32
表4-3. 使用不同比例PEG20k/TiO2製備光陽極之DSSC的各項光伏特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,TiO2薄膜塗佈三層。……………………………………………………………36
表4-4. 不同比例PEG20k/TiO2製備所得之光陽極的染料吸附量。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,TiO2薄膜塗佈三層。…………………………………………………………………39
表4-5. PEG200k/TiO2 = 0.3 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項光伏特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。……………………………………………………………43
表4-6. PEG200k/TiO2 = 0.3 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項電化學阻抗特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。………………………………………………………46
表4-7. PEG200k/TiO2 = 0.35 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項光伏特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。……………………………………………………………48
表4-8. PEG200k/TiO2 = 0.35 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項電化學阻抗特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。………………………………………………………50
表4-9. PEG200k/TiO2 = 0.25 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項光伏特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。……………………………………………………………53
表4-10. PEG200k/TiO2 = 0.25 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項電化學阻抗特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。…………………………………………………55
表4-11. PEG200k/TiO2 = 0.2 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項光伏特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。……………………………………………………………56
表4-12. PEG200k/TiO2 = 0.2 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項電化學阻抗特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。………………………………………………………57
表4-13. PEG200k/TiO2 = 0.15 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項光伏特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。……………………………………………………………58
表4-14. PEG200k/TiO2 = 0.15 (w/w)時不同塗佈次數製備之光陽極之DSSC的各項電化學阻抗特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s。…………………………………………………60
表4-15. 用不同濃度的TEOS共吸附劑製備光陽極之DSSC的各項光伏特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25(w/w),TiO2薄膜塗佈四層。…………………65
表4-16. 使用不同濃度的TEOS共吸附劑製備光陽極之DSSC的各項電化學阻抗特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25(w/w),TiO2薄膜塗佈四層。……………66
表4-17. 使用不同濃度的PTEOS共吸附劑製備光陽極之DSSC的各項光伏特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。………………70
表4-18. 使用不同濃度的PTEOS共吸附劑製備光陽極之DSSC的各項電化學阻抗特性。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。……………72
表A-1. 不同TTIP/2-ME溶液比例製備緻密層之染敏太陽能電池的各項光伏特性。旋轉塗佈:3000 rpm, 30 s,TiO2薄膜塗佈三層。……84
表A-2. 使用不同濃度的TEOS共吸附劑製備光陽極之DSSC的表面元素分析。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。………………85
表A-3. 使用不同濃度的PTEOS共吸附劑製備光陽極之DSSC的表面元素分析。TTIP/2-ME = 1/5 (w/w),旋轉塗佈:3000 rpm, 30 s,PEG200k/TiO2 = 0.25 (w/w),TiO2薄膜塗佈四層。………………85
參考文獻 1. “Photoelectrochemical cells”, Gratzel, M.;Nature, 2001, 414, 338-344.
2. “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Gratzel, M.;J. Photochem. Photobiol. A Chem., 2004, 164, 3-14.
3. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, O’Regan, B.;Gratzel, M.;Nature, 1991, 353, 737-740.
4. “Dye-sensitized solar cells”, Gratzel, M.;J. Photochem. Photobiol. C Photochem. Rev., 2003, 4, 145-153.
5. “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based RedoxElectrolyte Exceed 12 Percent Efficiency”, Yella, A.;Lee, H. W.;Tsao, H. N.;Yi, C.;Chandiran, A. K.;Nazeeruddin, M. K.;Diau, W. G.;Yeh, C. Y.;Zakeeruddin, S. M.;Gratzel, M.;Science 2011, 334, 629-655.
6. “Toward Optimization of Oligothiophene Antennas: New Ruthenium Sensitizers with Excellent Performance for Dye-Sensitized Solar Cells”, Yin, J. F.;Chen, J. G.;Lu, Z. Z.;Ho, K. C.;Lin, H. C.;Lu, K. L.;Chem. Mater., 2010, 22, 4392–4399.
7. “Highly Efficient Mesoscopic Dye-Sensitized Solar Cells Based on Donor–Acceptor-Substituted Porphyrins”, Bessho, T.;Zakeeruddin, S. M.;Yeh, C. Y.;Diau, E. W. G.;Gratzel, M.;Angew. Chem. Int. Ed., 2010, 49, 6646–6649.
8. “Donor–acceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells”, Chen, B. S.;Chen, D. Y.;Chen, C. L.;Hsu, C. W.; Hsu, H. C.;Wu, K. L.;Liu, S. H.;Chou, P. T.;Chi, Y.;J. Mater. Chem., 2011, 21, 1937–1945.
9. “Improved Efficiency of over 10% in Dye-Sensitized Solar Cells with a Ruthenium Complex and an Organic Dye Heterogeneously Positioning on a Single TiO2 Electrode”, Fan, S. Q.;Kim, C. L.;Fang, B. Z.;Liao, K. Xi.;Yang, G. J.;Li, C. J.;Kim, J. J.;Ko, J. J.;J. Phys. Chem. C, 2011, 115, 7747–7754.
10. “Poly(ethylene oxide)/Poly(dimethylsiloxane) Blend Solid Polymer Electrolyte and Its Dye-Sensitized Solar Cell Applications”, Lee, J. Y.;Bhattacharya, B.; Kim, D. W.;Park, J. K.;J. Phys. Chem. C, 2008, 112, 12576–12582.
11. “In Situ Gelation of Electrolytes for Highly Effi cient Gel-State Dye-Sensitized Solar Cells”, Chen, C. L.;Teng, H.;Lee, Y. L.;Adv. Mater.,2011, 23, 4199–4204.
12. “Nanostructured Platinum Films Deposited by Polyol Reduction of a Platinum Precursor and Their Application as Counter Electrode of Dye-Sensitized Solar Cells”, Sun, K.;Fan B.;Ouyang, J.;J. Phys. Chem. C, 2010, 114, 4237–4244.
13. “A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells”, Calogero, G.;Calandra, G.;Irrera, A.;Sinopoli, A.;Citro, I.;Marco, G. D.;Energy Environ. Sci., 2011, 4, 1838–1844.
14. “Nanographite/polyaniline composite films as the counter electrodes for dye-sensitized solar cells”, Huang, K. C.;Huang, J. H.;Wu, C. H.;Liu, C. Y.;Chen, H. W.;Chu, C. W.;Lin, J. T.;Lin, C. L.;Ho, K. C.;J. Mater. Chem., 2011, 21, 10384–10389.
15. “Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells”, Li, G. R.;Song, J.;Pan, G. L.;Gao, X. P.;Energy Environ. Sci., 2011, 4, 1680–1683.
16. “Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes”, Lee, K. S.;Yun, J. H.;Han, Y. H.;Yim, J. H.;Park, N. G.;Cho, K. Y.;Park, J. H.;J. Mater. Chem., 2011, 21, 15193–15196.
17. 林俐瑩、蔡毓楨和楊乾信,“膠態與固態染料敏化太陽能電池的進展”, 化工技術, 2009, 第17卷第2期
18. “Recent Developments in Solid-State Dye-Sensitized Solar Cells”, Yum, J. H.;Chen, P.;Gratzel, M.;Nazeeruddin, M. K.;ChemSusChem, 2008, 1, 699-707.
19. “Conversion of Light to Electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate) Ruhenium(II) Charge-Transfer Sensitizers (X =Cl¯, Br¯, I¯, CN¯, and SCN¯) on Nanocrystalline TiO2 Electrodes”, Nazeeruddin, M. K.;Kay, A.;Rodicio, I.;Humpbry-Baker, R.;Muller, E.;Liska, P.;Vlachopoulos, N.;Gratzel, M.;J. Am. Chem. Soc., 1993, 115, 6382-6390.
20. “Ruhenium(II) Charge-Transfer Sensitizers Containing 4,4’-dicarboxy-2,2’-bipyridine. Synthesis, Properties, and Bonding Mode of Coordinated Thio- and Selenocyanates”, Kohle, O.;Ruile, S.;Gratzel, M.;Inorg. Chem., 1996, 35, 4779-4787.
21. “Novel Sensitizers for Photovoltaic Cells. Structural Variations of Ru(II) Complexes containing 2,6-bis(1-methylbenzimidazol-2-yl) pyridine”, Ruile, S.;Kohle, O.;Pe’chy, P.;Gratzel, M.;Inorg. Chim. Acta, 1997, 261, 129-140.
22. “Structure of Nanocrystalline TiO2 Powders and Precursor to their Highly Efficient Photosensitizer”, Shklover, V.;Nazeeruddin, M. K.;Zakeeruddin, S. M.;Barbe, C.;Kay, A.;Haibach, T.;Steurer, W.;Hermann, R.;Nissen, H. U.;Gratzel, M.;Chem. Mater., 1997, 9, 430-439.
23. “Design of Antenna-Sensitizer Polynuclear Complexes. Sensitization of Titanium Dioxide with [Ru(bpy)2(CN)2]Ru(bpy(COO)2)22-”, Amadelli, R.;Argazzi, R.;Bignozzi, C. A.;Scandola, F.;J. Am. Chem. Soc., 1990, 112, 7099-7103.
24. “Remote Interfacial Electron Transfer from Supramolecular Sensitizers”, Argazzi, R.;Bignozzi, C. A.;Inorg. Chem., 1997, 36, 2-3.
25. “Mechanisms of Instability in Ru based Dye Sensitization Solar Cells”, Grunwald, R.;Tributsch, H.;J. Phys. Chem. B, 1997, 101, 2564-2575.
26. “Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and their Sensitization with bis(2,2’-bipyridine)(2,2’-bipyridine-4,4’-dicarboxylic acid)ruthenium(II) Complex”, Bedja, I.;Hotchandani, S.;Kamat, P. V.;J. Phys. Chem., 1994, 98, 4133-4140.
27. “Photochemistry on Surfaces. Intermolecular Energy and Electron Transfer Processes between Excited ru(bpy)32+ and Aggregates of Cresyl Violet on SiO2 and SnO2 Colloids”, Liu, D.;Hug, G. L.;Kamat, P. V.;J. Phys. Chem., 1995, 99, 16768-16775.
28. “Dye-sensitization on the Photocurrent at Zinc Oxide Electrode in Aqueous Electrolyte Solution”, Matsumura, M.;Nomura, Y.;Tsubomura, H.;Bull. Chem. Soc. Japan, 1977, 50, 2533-2537.
29. “Dye Sensitization of Ceramic Semiconducting Electrodes for Photoelectrochemical Conversion”, Alonso V., N.;Beley, M.;Chartire, P.;Rev. Phys. Appl., 1981, 16, 5-10.
30. “Visible Light Sensitization by cis-bis(thiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxylato)ruthenium(II) of a Transparent Nanocrystalline ZnO Film prepared by Sol-gel Techniques”, Redmond, G.;Fitzmaurice, D.;Chem. Mater., 1994, 6, 686–691.
31. “Photosensitization of Nanocrystalline Semiconductor Films. Modulation of Electron Transfer between Excited Ruthenium Complex and SnO2 Nanocrystallites with an Externally Applied Bias”, Kamat, P. V.;Bedja, I.;Hotchandani, S.;Patterson, L. K.;J. Phys. Chem., 1996, 100, 4900-4908.
32. “High Light-to-energy Conversion Efficiencies for Solar Cells based on Nanostructured ZnO Electrodes”, Rensmo, H.;Keis, K.;Lindstrom, H.;Sodergren, S.;Solbrand, A.;Hagfeldt, A.;Lindquist, S. E.;J. Phys. Chem. B, 1997, 101, 2598-2601.
33. “Molecular photovoltaics”, Hagfeldt, A.;Gratzel, M.;Acct. Chem. Res., 2000, 33, 269-277.
34. “Comparison of Dye-sensitized Rutile- and Anatase-Based TiO2 Solar Cells”, Park, N. G.;van de Lagemaat, J.;Frank, A. J.;J. Phys. Chem. B, 2000, 104, 8989-8994.
35. “The Effects of Hydrothermal Temperature and Thickness of TiO2 Film on the Performance of a Dye-Sensitized Solar Cell”, Huang, C. Y.;Hsu, Y. C.;Chen, J. G.;Suryanarayanan, V.;Lee, K. M.;Ho, K. C.;Sol. Energ. Mat. Sol. Cells, 2006, 90, 2391-2397.
36. “Double-Layered Photoanodes from Variable-Size Anatase TiO2 Nanospindles: A Candidate for High-Efficiency Dye-Sensitized Solar Cells”, Qiu, Y.;Chen, W.;Yang, S.;Angew. Chem. Int. Ed., 2010, 49, 3675 –3679.
37. “Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells”, Yang, W. G.;Wan, F. R.;Chen, Q. W.;Li, J. J.;Xu, D. S.;J. Mater. Chem., 2010, 20, 2870–2876.
38. “Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs)”, Zhang, H. M.;Han, Y. H.;Liu, X. L.;Liu, P. R.;Yu, H.;Zhang, S. Q.;Yao, X. D.;Zhao, H. J.;Chem. Commun., 2010, 46, 8395–8397.
39. “A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells”, Yang, W. G.;Li, J. M.;Wang, Y. L.;Zhu, F.;Shi, W. M.;Wan, F. R.;Xu, D. S.;Chem. Commun., 2011, 47, 1809–1811.
40. “Electrophoretic deposition of mesoporous TiO2 nanoparticles consisting of primary anatase nanocrystallites on a plastic substrate for flexible dye-sensitized solar cells”, Chen, H. W.;Liang, C. P.;Huang, H. S.;Chen, J. G.;Vittal, R.;Lin, C. Y.;Wu, K. C. W.;Ho, K. C.;Chem. Commun., 2011, 47, 8346–8348.
41. “Enhanced DSSC performance with high surface area thin anatase TiO2 nanoleaves”, Dhas, V.;Muduli, S.;Agarkar, S.;Rana, A.;Hannoyer, B.;Banerjee, R.;Ogale, S.;Solar Energy, 2011, 85, 1213–1219.
42. “Fabrication of Screen-Printing Pastes From TiO2 Powders for Dye-Sensitised Solar Cells”, Ito, S.;Chen, P.;Comte, P.;Nazeeruddin, M. K.;Liska, P.;Pe’chy, P.;Gratzel, M.;Prog. Photovolt: Res. Appl., 2007, 15, 603–612.
43. “Enhanced performance of a dye-sensitized solar cell with the incorporation of titanium carbide in the TiO2 matrix”, Lee, C. P.;Chen, P. Y.;Vittala, R.;Ho, K. C.;Phys. Chem. Chem. Phys., 2010, 12, 9249–9255.
44. “Effects of Ethanol on Optimizing Porous Films of Dye-Sensitized Solar Cells”, Xu, S.;Zhou, C. H.;Y. Yang,;Hu, H.;Sebo, B.;Chen, B. L.;Tai, Q.;Zhao, D. X. Energy Fuels, 2011, 25, 1168–1172.
45. “Titanium flexible photoanode consisting of an array of TiO2 nanotubes filled with a nanocomposite of TiO2 and graphite for dye-sensitized solar cells”, Chen, Y. H.;Huang, K. C.;Chen, J. G.;Vittal, R.;Ho, K. C.;Electrochim. Acta, 2011, 56, 7999–8004.
46. “Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells:A photophysical study”, Lee, K. M.;Suryanarayanan, V.;Ho, K. C.;Thomas, K.R. J.;Lin, J. T.;Sol. Energy Mater. Sol. Cells, 2007, 91, 1426–1431.
47. “New Diketopyrrolopyrrole (DPP) Dyes for Efficient Dye-Sensitized Solar Cells”, Qu, S.;Wu, W.;Hua, J.;Kong, C.;Long, Y.;Tian, H.;J. Phys. Chem. C, 2010, 114,1343–1349.
48. “Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance”, Li, J.;Wu, W. J.;Yang, J. B.;Tang, J.;Long, Y. T.;Hua, J. L.;Sci China Chem., 2011, 54, 699–706.
49. “New fluoranthene-based cyanine dye for dye-sensitized solar cells”, Wu, W.;Guo, F.;Li, J.;He, J.;Hua, J.;Synth. Met., 2010, 160, 1008–1014.
50. “Improved performance of porphyrin-based dye sensitised solar cells by phosphinic acid surface treatment”, Allegrucci, A.;Lewcenko, N. A.;Mozer, A. J.;Dennany, L.;Wagner, P.;Officer, D. L.;Sunahara, K.;Moric, S.;Spiccia, L.;Energy Environ. Sci., 2009, 2, 1069–1073.
51. “Barrier effect of dendrons on TiO2 particles in dye sensitized solar cells”, Shin, B.;Won, J.;Son, T.;Kang, Y. S.;Kim, C. K.;Chem. Commun., 2011, 47, 1734–1736.
52. “Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells”, Wu, M. S.;Tsai, C. H.;Wei, T. C.;Chem. Commun., 2011, 47, 2871–2873.
53. “A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells”, Yan, K. Y.;Qiu, Y. C.;Chen, W.;Zhang, M.;Yang, S. H.;Energy Environ. Sci., 2011, 4, 2168–2176.
54. “Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates”, Lee, C. H.;Chiu, W. H.;Lee, K. M.;Hsieh, W. F.;Wu, J. M.;J. Mater. Chem ., 2011, 21, 5114–5119.
55. “Dye-Sensitized Solar Cells Based on Anatase TiO2 Nanoparticle/Nanowire Composites”, Tan, B.;Wu, Y.;J. Phys. Chem. B, 2006, 110, 15932–15938.
56. “Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance”, Han, L.;Koide, N.;Chiba, Y.;Islam, A.;Mitate, T.;C. R. Chimie, 2006, 9, 645–651.
57. 劉陶仕, 二氧化鈦奈米管熱處理之交流阻抗研究, 國立台北科技大學材料科學與工程研究所碩士論文, 2011.
58. “Effect of a Coadsorbent on the Performance of Dye-Sensitized TiO2 Solar Cells: Shielding versus Band-Edge Movement”, Neale, N. R.;Kopidakis, N.;van de Lagemaat, J.;Gratzel, M.;Frank, A. J.;J. Phys. Chem. B, 2005, 109, 23183–23189.
59. “Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells: Electron Lifetime Improved by Coadsorption of Deoxycholic Acid”, Wang, Z. S.;Cui, Y.;Yasufumi, D.;Kasada, C.;Shinpo, A.;Kohjiro, H. K.;J. Phys. Chem. C, 2007, 111, 7224–7230.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-03-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-03-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信