淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1103201315034200
中文論文名稱 以都市垃圾焚化飛灰改質為無機膠體作為水泥摻料之漿體特性研究
英文論文名稱 A study on the MSWI fly ash modifying for inorganic gel of cement admixtures
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 101
學期 1
出版年 102
研究生中文姓名 李彥勳
研究生英文姓名 Yen-Hsun Lee
學號 699480546
學位類別 碩士
語文別 中文
口試日期 2013-01-15
論文頁數 94頁
口試委員 指導教授-高思懷
委員-鄭大偉
委員-周錦東
中文關鍵字 都市垃圾焚化飛灰  研磨  水泥  無機膠體 
英文關鍵字 MSWI fly ash  wet-ball-milling  cement  inorganic gel 
學科別分類 學科別應用科學環境工程
中文摘要 都市垃圾焚化飛灰含有高濃度重金屬和戴奧辛,為性質複雜之有害廢棄物,飛灰無害化與資源化將是未來的趨勢。由文獻中發現研磨飛灰具有卜作嵐特性,有取代水泥之潛力,另外有研究利用卜作嵐材料添加鹼液與矽酸鈉活化後所產生無機膠體,其特性具有強度高、可固化重金屬等特性。因此本研究嘗試將都市垃圾焚化飛灰改質成無機膠體探討取代部分水泥之可行性。
本研究將水萃後之飛灰與偏高嶺土依照特定比例混和後,藉由不同的NaOH活化液濃度、時間活化,製成的活化粉以取代水泥5%、10%進行灌漿養護7天、28天。透過FTIR、XRD儀器分析找出具有無機膠體活性較高之配比,針對活化粉進行毒性特性溶出程序試驗,探討重金屬溶出狀況,並以抗壓強度測試其成果。
研究結果顯示所有粉料配比條件經研磨活化後,活化粉TCLP試驗皆低於有害事業廢棄物認定標準。當不同條件之研磨活化粉取代水泥10%進行抗壓強度試驗,因為工作度不好導致相對強度皆低於100%。以偏高嶺土與水萃灰各50%(5C5W)使用1M NaOH研磨活化24 hr之活化粉反應形成較多元之無機聚合結晶物種,其活化粉取代水泥5%灌漿在7天與28天齡期之相對抗壓強度都上升至100%左右,同時無機膠體在水泥中之結晶成長狀況優異。對於活化粉的製備方法,研磨活化比起攪拌活化更有助於無機膠體之形成,同時有助於在水泥中之無機膠體成長。
英文摘要 Municipal solid waste incinerator (MSWI) fly ashes (reaction ash and boiler ash) contain high concentration of heavy metals and dioxin which are hazardous wastes that contain complex compositions. Stabilizing and recycling of the fly ash will be a future tendency in many countries. Former study shown that, milling MSWI fly ash has the characteristic of pozzolanic property, which could be used as the additive of cement. In addition, the reaction of a pozzolanic material with an aqueous alkali or sodium silicate solution produces inorganic gel, which can enhance high strength and stabilizing heavy metals. Therefore, this study attempts to transform the MSWI fly ash into inorganic gel and discuss the feasibility as cement admixtures. In this study, water-extracted fly ash mixed with metakaolin in difference weight ratios, then milled and activated by different concentrations of NaOH solution for different periods. Took 5% and 10% for the cement replacement, grouted and cured 7 and 28 days. The FTIR and XRD analysis were used to observe the effects of inorganic gel activation. The compression strength test was used to evaluate the feasibility for the cement replacement.
The results showed that, all of the conditions of activated powder were passed the TCLP standards, but all samples with 10% substitute for the cement were failed in the compression strength test due to the worse workability. Many crystal species of inorganic gel were found in the activated powder sample, 50% metakaolin and 50% water-extracted fly ash (5C5W), with 1M NaOH milling activation for 24 hr; replacing 5% cement grouted and cured for 7 and 28 days, achieved about 100% of the relative compressive strength compared with pure cement. Milling alkali activation showed much better inorganic gel formation than only stirring alkali activation.
論文目次 目錄
目錄............................................................................................................. I
表目錄........................................................................................................V
圖目錄.....................................................................................................VII
第一章前言...............................................................................................1
1-1 研究緣起.........................................................................................1
1-2 研究目的與內容.............................................................................3
第二章文獻回顧 ......................................................................................4
2-1 焚化飛灰之種類與特性..................................................................4
2-1-1 焚化飛灰之物理化學性質...................................................6
2-1-2 焚化飛灰中重金屬溶出特性...............................................8
2-1-3 飛灰水萃程序.....................................................................10
2-5 水泥特性與性質...........................................................................11
2-5-1 水泥原料與製程................................................................11
2-5-2 水泥成分與水化機制.........................................................12
2-5-3 水泥漿體之微觀結構........................................................16
2-5-3 水泥漿體之FTIR 分析......................................................20
2-3 無機聚合物...................................................................................21
2-3-1 無機聚合物之反應機制....................................................21
II
2-3-2 無機聚合物之結構............................................................21
2-3-3 無機聚合物結構之FTIR 分析..........................................23
2-3-4 無機聚合物之材料組成....................................................25
2-3-5 無機聚合物之相關應用....................................................26
2-2 高嶺土特性與成份........................................................................27
2-2-1 偏高嶺土.............................................................................27
2-4 研磨粉體技術...............................................................................29
2-4-1 超細粉體之物理化學性質................................................29
2-4-2 研磨程序相關研究............................................................33
第三章實驗材料與方法........................................................................35
3-1 實驗材料.......................................................................................35
3-3 實驗設計.......................................................................................38
3-3 材料配比與條件...........................................................................39
3-4 實驗方法.......................................................................................40
3-4-1 二段水萃.............................................................................40
3-4-2 研磨活化.............................................................................41
3-4-3 攪拌活化.............................................................................43
3-5 實驗藥品........................................................................................44
3-6 實驗設備........................................................................................44
III
3-7 分析設備........................................................................................46
第四章結果與討論 ................................................................................49
4-1 原料基本性質分析........................................................................49
4-1-1 物化特性.............................................................................49
4-1-2 元素分析與重金屬含量.....................................................50
4-1-3 TCLP 試驗..........................................................................52
4-2 原料混和配比對活化粉取代水泥之影響....................................53
4-2-1 原料混和配比對活化粉形成無機聚合物之影響............53
4-2-2 原料混合配比對水泥漿體影響.........................................60
4-3 活化液濃度對活化粉取代水泥之影響........................................64
4-3-1 活化液濃度對活化粉形成無機聚合物之影響................64
4-3-2 活化液濃度對水泥漿體之影響.........................................68
4-4 活化時間對活化粉取代水泥之影響............................................71
4-4-1 活化時間對活化粉形成無機聚合物之影響....................71
4-4-2 活化時間對水泥漿體之影響.............................................74
4-7 綜合條件抗壓強度分析................................................................76
4-5 研磨活化對活化粉取代水泥漿體形成無機聚合物之效益分析82
第五章結論與建議 ................................................................................87
5-1 結論................................................................................................87
IV
5-2 建議................................................................................................88
參考文獻...................................................................................................89

表目錄
表 2-1 水泥主要成份表...........................................................................12
表2-2 波特蘭水泥化學簡寫符號說明...................................................13
表 2-3 水泥漿體FTIR 圖譜表...............................................................20
表 2-4 無機聚合物之FTIR 吸收峰分佈及其鍵結形式........................24
表2-5 不同Si:Al 的比值,可應用的領域.........................................26
表3-1 無機聚合前驅物活化條件表.......................................................40
表 3-2 實驗所需之藥品...........................................................................44
表4-1 焚化飛灰與偏高嶺土物化性質...................................................49
表 4-2 水萃灰與偏高嶺土元素組成.......................................................51
表4-3 水萃灰與偏高嶺土之重金屬含量...............................................51
表4-4 水萃灰與偏高嶺土之TCLP 分析...............................................52
表4-5 不同粉料配比下使用1M NaOH 研磨活化24 小時之XRD 主要
晶相...........................................................................................................56
表4-6 不同粉料配比使用1M NaOH 活化液濃度之研磨活化粉TCLP
溶出濃度活化條件..................................................................................60
表4-7 將5C5W粉料配比使用不同NaOH 濃度活化液研磨活化24 小
時之XRD 主要晶相................................................................................66
表4-8 NaOH 活化液濃度對活化粉之TCLP 溶出濃度........................68
VI
表 4-9 將5C5W 粉料配比使用1M NaOH 濃度活化液研磨活化不同時
間之XRD 主要晶相................................................................................72
表4-10 NaOH 活化液濃度對活化粉之TCLP 溶出濃度分析..............74

圖目錄
圖 2-1 高嶺石高溫培燒之結晶相轉換之DTA 分析圖.........................28
圖3-1 高嶺土之TG/DTA 分析...............................................................37
圖3-2 高嶺土與偏高嶺土之XRD 分析................................................37
圖3-3 本研究之實驗流程圖...................................................................39
圖4-1 原灰、水萃灰、偏高嶺土粒徑分布圖.......................................50
圖 4-2 偏高嶺土與水萃灰之XRD 圖.....................................................55
圖4-3 不同粉料配比下使用1M NaOH 研磨活化24 小時之XRD 圖
...................................................................................................................55
圖4-4 偏高嶺土與水萃灰使用1M NaOH 研磨活化24 hr 之活化前後
FTIR 分析結果.........................................................................................58
圖4-5 不同粉料配比下使用1M NaOH 研磨活化24 小時之FTIR 分析
...................................................................................................................59
圖4-6 不同粉料配比使用1M NaOH 研磨活化24 hr 之活化粉取代水
泥10%之水泥漿體於養護28 天之FTIR 分析(Pure cement:養護28
天純水泥漿體) .........................................................................................62
圖4-7 不同粉料配比使用1M NaOH 研磨活化24hr 之活化粉取代水泥
10%之養護28 天後進行SAM 試驗之FTIR 分析(Pure cement :養護
28 天純水泥漿體、SAM:水楊酸-甲醇萃取前處理)..........................63
圖4-8 將5C5W粉料配比使用不同NaOH 濃度活化液研磨活化24 小
VIII
時之 XRD 分析........................................................................................65
圖4-9 將5C5W 粉料配比使用不同NaOH 活化液濃度研磨活化24 小
時之FTIR 分析........................................................................................67
圖4-10 將5C5W 粉料配比使用不同NaOH 濃度活化液研磨活化24hr
之活化粉取代水泥10%之養護28 天之FTIR 分析(Pure cement:養護
28 天純水泥漿體) ....................................................................................69
圖4-11 將5C5W粉料配比使用不同NaOH 濃度活化液研磨活化24hr
之活化粉取代水泥10%之養護28 天後進行SAM 試驗之FTIR 分析
(Pure cement :養護28 天純水泥漿體、SAM:水楊酸-甲醇萃取前處
理) .............................................................................................................70
圖4-12 將5C5W 粉料配比使用1M NaOH 濃度活化液研磨活化不同
時間之XRD 分析....................................................................................72
圖4-13 將5C5W 粉料配比使用1M NaOH 活化液研磨活化於不同時
間之FTIR 分析........................................................................................73
圖4-14 將5C5W 粉料配比使用1M NaOH 活化液研磨活化在不同時
間之活化粉取代水泥10%之養護28 天之FTIR 分析.........................75
圖4-15 將5C5W 粉料配比使用1M NaOH 活化液研磨活化在不同時
間之活化粉取代水泥10%之養護28 天後進行SAM試驗之FTIR 分析
(Pure cement :養護28 天純水泥漿體、SAM:水楊酸-甲醇萃取前處
IX
理) .............................................................................................................76
圖4-16 不同粉料配比下使用1M NaOH 研磨活化24 小時之活化粉取
代10%水泥灌漿試體之相對抗壓強度..................................................79
圖4-17 將5C5W 粉料配比使用不同NaOH 濃度活化液研磨活化24
小時之活化粉取代10%水泥灌漿試體之相對抗壓強度......................79
圖4-18 將5C5W 粉料配比下使用1M NaOH 研磨活化不同時間之活
化粉取代10%水泥灌漿試體之相對抗壓強度......................................80
圖4-19 不同粉料配比下使用1M NaOH 研磨活化24 小時之活化粉取
代5%水泥灌漿試體之相對抗壓強度....................................................80
圖4-20 將5C5W 粉料配比使用不同NaOH 濃度活化液研磨活化24
小時之活化粉取代5%水泥灌漿試體之相對抗壓強度........................81
圖4-21 將5C5W 粉料配比使用1M NaOH 研磨活化不同時間之活化
粉取代5%水泥灌漿試體之相對抗壓強度............................................81
圖4-22 將5C5W 粉料配比使用1M NaOH 活化液濃度經攪拌與研磨
活化程序活化24 hr 之活化粉之FTIR 分析.........................................84
圖4-23 將5C5W 粉料配比使用1M NaOH 活化液濃度經攪拌與研磨
活化程序活化24 hr 之活化粉取代水泥10%之水泥漿體於養護28 天
之FTIR 分析(Pure cement :養護28 天純水泥漿體) .........................84
圖4-24 將5C5W 粉料配比使用1M NaOH 活化液濃度經攪拌與研磨
X
活化程序活化24 hr 之活化粉取代水泥10%之水泥漿體於養護28 天
後進行SAM試驗之FTIR 分析(Pure cement :養護28 天純水泥漿體、
SAM:水楊酸-甲醇萃取前處理) ...........................................................85
圖4-25 將5C5W 粉料配比使用1M NaOH 活化液濃度經攪拌與研磨
活化程序活化24 hr 之活化粉取代水泥10%之水泥灌漿試體之相對抗
壓強度.......................................................................................................86
圖4-26 將5C5W 粉料配比使用1M NaOH 活化液濃度經攪拌與研磨
活化程序活化24 hr 之活化粉取代水泥5%之水泥灌漿試體之相對抗
壓強度.......................................................................................................86
參考文獻 Andac, M. and F. P. Glasser (1998), "The effect of test conditions on the leaching of stabilised MSWI-fly ash in Portland cement", Waste Management, vol.18, No.5, pp. 309-319.
Author (1982), "Mineral polymers and methods of making them", USP, No.4349386.
Brough, A. R., A. Katz, G. K. Sun, L. J. Struble, R. J. Kirkpatrick and J. F. Young (2001), "Adiabatically cured, alkali-activated cement-based wasteforms containing high levels of fly ash: Formation of zeolites and Al-substituted C-S-H", Cement and Concrete Research, vol.31, No.10, pp. 1437-1447.
Chakraborty, A. K. (2003), "DTA study of preheated kaolinite in the mullite formation region", Thermochimica Acta, vol.398, No.1–2, pp. 203-209.
Chimenos, J. M., M. Segarra, M. A. Fernandez and F. Espiell (1999), "Characterization of the bottom ash in municipal solid waste incinerator", Journal of Hazardous Materials, vol.64, No.3, pp. 211-222.
Davidovits, J.(2002), "30 Years successes and failures in geopolymer applications", Geopolymer 2002 Conference, Australia, Melbourne University.
Davidovits, J. (1991), "Geopolymer: Inorganic polymeric new materials", Journal of Thermal Analysis, 37, pp. 1633-1656.
Davidovits, J. (1999), "Chemistry of Geopolymeric Systems Terminology, Proceeding of Geopolymer", 99 Second International Conference, France, pp. 9-37.
Davidovits, J. (2008), "Geopolymer Chemistry & Application". France: Institute Geopolymere, pp. 23.
Eighmy, T. T., J. D. Eusden Jr, J. E. Krzanowski, D. S. Domingo, D. Stampfli, J. R. Martin and P. M. Erickson (1995), "Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash", Environmental Science and Technology, vol.29, No.3, pp. 629-646.
Fernandez, M. A., L. Martinez, M. Segarra, J. C. Garcia and F. Espiell (1992), "Behavior of heavy metals in the combustion gases of urban waste incinerators", Environmental Science and Technology, vol.26, No.5, pp. 1040-1047.
Guo, X., H. Shi and W. A. Dick (2010), "Compressive strength and microstructural characteristics of class C fly ash geopolymer", Cement and Concrete Composites, vol.32, No.2, pp. 142-147.
Heegn, H., F. Birkeneder and A. Kamptner (2003), "Mechanical activation of precursors for nanocrystalline materials", Crystal Research and Technology, vol.38, No.1, pp. 7-20.
Kaps, C. and A. Buchwald (2002 of Conference), " Property controlling influences on the generation of geopolymeric based on clay", Geopolymer 2002 International Conference, Melbourne, Australia.
Korzun, E. A. and H. H. Heck (1990), "Sources and fates of lead and cadmium in municipal solid waste", Journal of the Air and Waste Management Association, vol.40, No.9, pp. 1220-1226.
Kosson, D. S., H. A. van der Sloot and T. T. Eighmy (1996), "An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues", Journal of Hazardous Materials, vol.47, No.1–3, pp. 43-75.
Li, X., E. Zheng, Y. Zhao and C. Ma (2011),"Strength and microstructure of class C fly ash based geopolymer activated with sodium silicate powder", XianNing, pp. 1672-1675.
Matsunaga, T., J. K. Kim, S. Hardcastle and P. K. Rohatgi (2002), "Crystallinity and selected properties of fly ash particles", Materials Science and Engineering: A, vol.325, No.1–2, pp. 333-343.
Nomura, Y., T. Okada, S. Nakai and M. Hosomi (2006), "Inhibition of Heavy Metal Elution from Fly Ashes by Mechanochemical Treatment and Cementation", Kagaku Kogaku Ronbunshu, vol.32, No.2, pp. 196-199.
Ontiveros, J. L., T. L. Clapp and D. S. Kosson (1989), "Physical properties and chemical species distributions within municipal waste combuster ashes", Environmental Progress, vol.8, No.3, pp. 200-206.
Orumwense, O. A. and E. Forssberg (1991), "Surface and structural changes in wet ground minerals", Powder Technology, vol.68, No.1, pp. 23-29.
Roy, D. M.(1999), "Alkali-activated cements: Opportunities and challenges", Cement and Concrete Research, 29(2), pp. 249-254.
Sanchez, E. C., E. Torres M, C. Diaz and F. Saito (2004), "Effects of grinding of the feldspar in the sintering using a planetary ball mill", Journal of Materials Processing Technology, vol.152, No.3, pp. 284-290.
Struble, L. (1985), "The effect of water on maleic acid and salicylic acid extractions", Cement and Concrete Research, vol.15, No.4, pp. 631-636.
Thipse, S. S., M. Schoenitz and E. L. Dreizin (2002), "Morphology and composition of the fly ash particles produced in incineration of municipal solid waste", Fuel Processing Technology, vol.75, No.3, pp. 173-184.
Uchikawa, H. and H. Obana (1995), "Ecocement - frontier of recycling of urban composite wastes", World Cement, vol.26, No.11.
Van Der Bruggen, B., Vogels G., Van Herck P. and Vandecasteele C. (1998), "Simulation of acid washing of municipal solid waste incineration fly ashes in order to remove heavy metals", Journal of Hazardous Materials, vol.57, No.1-3, pp. 127-144.
Van Jaarsveld, J. G. S., Van Deventer, J. S. J., and Schwartzman A. (1999), "The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics", Minerals Engineering, vol.12, No.1, pp. 75-91.
Van Jaarsveld, J. G. S., Van Deventer, J. S. J.,(1999) “Effect of the alkali metal activator on the properties of fly ash-based geopolymers”, Industrial & Engineering Chemistry Research, vol.38, pp. 3932-3941.
Wang, S. D., Pu, X. C., Scrivener, K. L., Pratt, P. L.(1995), "Alkali-activated cement and concrete. A review of properties and problems", Advances in Cement Research, 7(27), pp. 93-102.
Winnefeld, F., Leemann A., Lucuk M., Svoboda P. and Neuroth M. (2010), "Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials", Construction and Building Materials, vol.24, No.6, pp. 1086-1093.
Xu, J. Z., Y. L. Zhou, Q. Chang and H. Q. Qu (2006), "Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers", Materials Letters, vol.60, No.6, pp. 820-822.
Young, J. F. (1981), "The Microstructure of Hardened Protland Cement Pastes", Edited by Bazant, Z. P. and Witlman, F. H., pp. 33.
Zdujić, M. V., O. B. Milošević and L. Č. Karanović (1992), "Mechanochemical treatment of ZnO and Al2O3 powders by ball milling", Materials Letters, vol.13, No.2–3, pp. 125-129.
丁明 (2003),"非金屬礦加工工程",北京,化學工業出版社,第327-332頁。
江康鈺、胡友馨、周娉慧 (2007),"利用水洗及調質處理技術降低焚化飛灰熔融過程污染物排放之研究",第22屆廢棄物處理技術研討會論文集。
池田攻 (1998),"資源と素材",vol.114,No.No 7,第497-500頁。
汪建民 (1994),"陶瓷技術手冊",中華民國產業科技發展協進會、中華民國粉末冶金協會。
李孟翰 (2009),"前處理程序對於垃圾焚化飛灰再利用為水泥取代料之研究",碩士論文,淡江大學水資源及環境工程學系碩士班,新北市。
吳逸翔 (2007),"垃圾焚化飛灰熔渣混凝土工程性質之探討",碩士論文,國立聯合大學防災科技研究所,苗栗縣。
林凱隆、吳修賢、張文凱、鄭敬融 (2008),"共熔熔渣取代部份水泥之水化反應研究",台灣環境資源永續發展研討會。
林家宏 (2004),"飛灰調質熔渣成份對卜作嵐反應特性之影響",碩士論文,國立中央大學環境工程研究所,桃園縣。
美國材料試驗協會(ASTM C 349),Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars。
高思懷、王鯤生 (1998), "垃圾焚化灰渣利用之研發建制及推廣計畫(一)",行政院環保署研究計畫報告,No.EPA-87-E3H1-03-01。
高思懷、林家禾 (1995),"垃圾焚化飛灰中無機鹽對重金屬溶出之影響",第十屆廢棄物處理技術研討會,第247-254頁。
曹德光、蘇達根、楊占印、宋國胜 (2004),"偏高嶺石的微觀結構與鍵合反應能力",礦物學報,vol.第24卷,No.第4期,第366-372頁。
莊家榮 (2004),"濕式研磨對MSWI飛灰特性影響之研究",碩士論文,淡江大學水資源及環境工程學系碩士班,新北市。
陳佑倫 (2007),"都市垃圾焚化飛灰再利用作為水泥替代物之研究",碩士論文,淡江大學水資源及環境工程學系碩士班,新北市。
陳達松 (2008),"水萃研磨程序對都市垃圾焚化飛灰重金屬穩定之影響",碩士論文,淡江大學水資源及環境工程學系碩士班,新北市。
黃兆龍 (1997),"混凝土性質與行為",台北,詹氏書局。
黃伯齡 (1987),"礦物熱差分析鑑定手冊",北京,科學出版社,第516-518頁。
黃彥為 (2008),"高能球磨飛灰內重金屬在高溫環境下穩定之研究",碩士論文,淡江大學水資源及環境工程學系碩士班,新北市。
楊金鍾、周順裕 (1997),"利用磷酸鹽穩定化處理都市垃圾焚化飛灰之效果評估",第十二屆廢棄物處理技術研討會。
楊金鐘、吳裕民 (1996),"垃圾焚化灰渣穩定化產物再利用可行性之探討",一般廢棄物焚化灰渣資源化技術與實務研討會論文集,第43-57頁。
楊國銘 (2004),"添加零維奈米材料對水泥漿及水泥砂漿材料性質之影響",碩士論文,國立台灣科技大學營建工程系,台北市。
蓋國胜 (2004),"超微粉體技術",北京,化學工業出版社。
劉瓊玲 (2005)"都市垃圾焚化飛灰穩定燒結再利用技術之研發",碩士論文,淡江大學水資源及環境工程碩士班。
鄭大偉 (2010),"無機聚合技術的發展應用及回顧",礦冶,vol.54卷,No.第1期,第141-157頁。
顧順榮、鍾昀泰、張木彬 (1995),"台灣地區都市垃圾焚化灰份中重金屬濃度及TCLP 溶出之評估",第十屆廢棄物處理技術研討會論文集,台南,第271頁。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-03-11公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-03-11起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信