下載電子全文 （限經由淡江IP使用）
 系統識別號 U0002-1103200914162600 中文論文名稱 纜索風力係數之風洞實驗量測 英文論文名稱 Wind-Tunnel Measurements of Aerodynamic Force Coefficients of Cables 校院名稱 淡江大學 系所名稱(中) 土木工程學系碩士班 系所名稱(英) Department of Civil Engineering 學年度 97 學期 1 出版年 98 研究生中文姓名 陳雍羲 研究生英文姓名 Yung-Hsi Chen 學號 695380476 學位類別 碩士 語文別 中文 口試日期 2009-01-12 論文頁數 72頁 口試委員 指導教授-林堉溢委員-林堉溢委員-陳振華委員-鄭啟明 中文關鍵字 斜拉索  圓柱斷面  風壓量測  風洞實驗 英文關鍵字 inclined cables  circular cylinder  wind pressure measurements  wind-tunnel test 學科別分類 學科別＞應用科學＞土木工程及建築 中文摘要 在本文中，主要是探討斜張橋斜拉索在風向平行於橋軸和垂直於橋軸兩種不同方向傾角的受風效應。將斜拉索視為圓柱斷面進行風洞試驗，從圓柱斷面在不同傾角之下，觀察風力係數與風壓係數的變化。風壓量測實驗，主要是利用量測纜索斷面在平滑流場下之風壓數值，再利用壓力積分成外力後便可得到纜索斷面所受的外力，經由數值計算便可得到所欲求的風力係數，經由探討風力係數之結果，可以觀察出纜索受力之行為，本實驗並針對不同纜索傾斜角度探討其角度變化後的風力係數之趨勢。 斜拉索傾角為纜索與橋塔所夾的角度，斜拉索在風向平行於橋軸迎風面0度角風壓與文獻吻合，隨著斜拉索傾角越傾斜會使得最大平均壓力係數下降，風向平行於橋軸的纜索表面壓力會隨著纜索越傾斜而使表面平均壓力上升，風向垂直於橋軸的情況則剛好相反,而分離點並不隨著傾斜角而變化。 在風力係數部分，平行於橋軸傾斜角度的拖曳向風力係數值會隨著斜拉索越傾斜而變小。基本上，圓形斷面受流體作用，因其斷面之對稱性，使得垂直向風力係數值趨近於0。當垂直於橋軸風向纜索傾斜時，背壓會明顯的增大，所以垂直於橋軸風向纜索的拖曳向風力係數值會隨著斜拉索越傾斜而變大。 英文摘要 The objective of thesis is to study the aerodynamic coefficients of inclined cables of cable-stayed bridges by using pressure measurements. The cables were modeled by circular cylinders which were tested in smooth flow in wind tunnel. The drag and lift coefficients were obtained by integrating the wind pressure around the cable. The effects of inclined angles on the aerodynamic coefficients and wind pressure were investigated. Both the cases, wind parallel to and vertical to the bridge axis, were considered. The inclined angle of a cable defined here is the angle between the vertical tower and the cable. It can be observed that the pressure distribution around a cable is consistent with that in the literature as the angle is zero. In the case of wind being parallel to the bridge axis, the drag coefficient of a cable decreases as the inclined angle increases. However, the trend is on the contrary in the case of wind being vertical to the bridge axis, that is, the drag coefficient of a cable increases with the angle. As for the lift coefficient, it is approaching to zero because of the symmetry. 論文目次 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 研究內容 3 1-4 研究方法 3 1-5 本文架構 4 第二章 文獻回顧 6 2-1 前言 6 2-2 渦流振動(vortex shedding) 6 2-3 尾流振動(wake vibration)與馳振(galloping) 7 2-4 風雨振動(rain-wind vibration) 7 2-5 參數共振(parametric resonance) 8 2-6 圓柱拖曳向風力係數CD 8 2-7 平均壓力係數CP 9 2-8 螺旋狀纜索風力係數 9 2-9 不同表面纜索傾角風力係數 10 2-10 風洞實驗之端版效應 10 2-11 風洞實驗之阻塞比效應 11 2-12 管線失真與校正 11 第三章 理論背景 13 3-1 前言 13 3-2 纜索風力係數 13 3-3 纜索風壓係數 14 3-4 隨機數據分析 15 3-5 圓柱基本理論 18 第四章 實驗儀器介紹與取值分析 20 4-1 前言 20 4-2 風洞實驗室之特性 20 4-3 流場配置 20 4-4 纜索斷面模型之簡述 21 4-5 實驗儀器介紹 22 4-5-1 壓力量測 22 4-5-2 風速量測 22 4-6 管線系統訊號校正 25 第五章 實驗結果與分析 28 5-1 前言 28 5-2 基本纜索風壓分佈 28 5-3 傾角對風壓分佈的影響 29 5-3-1 順風向傾斜角度 29 5-3-2 垂直風向傾斜角度 30 5-4 纜索平均風力係數 31 5-4-1 順風向傾斜角度 31 5-4-2 垂直風向傾斜角度 32 5-5 纜索擾動風力係數 32 5-5-1 順風向傾斜角度 32 5-5-2 垂直風向傾斜角度 33 5-6 風力頻譜 33 5-6-1 順風向傾斜角度 34 5-6-2 垂直風向傾斜角度 34 第六章 結論與建議 36 6-1 結論 36 6-2 建議 39 參考文獻 40 圖目錄 圖(2-1)光滑圓柱與實體纜索的拖曳向風力係數 44 圖(2-2)不同表面纜索傾角風力係數 44 圖（3-5-a）亞臨界流渦流流動 45 圖（3-5-b）超臨界流渦流流動 45 圖（4-1-a）風洞實驗室側視圖 46 圖（4-1-b）風洞實驗室上視圖 46 圖(4-2)順風向傾斜角度模型配置示意圖 47 圖(4-3)垂直風向傾斜角度模型配置示意圖 47 圖(4-4)端版內紊流強度 48 圖(4-5)端版內風速剖面 48 圖(4-6)纜索模型 49 圖(4-7)壓力訊號處理系統(RADBASE3200) 49 圖(4-8)64頻道壓力感應器模組 50 圖(4-9)壓力量測系統 50 圖(4-10)壓力量測流程 51 圖(4-11)管線率定流程圖 51 圖(5-1)纜索上表面平均風壓係數 52 圖(5-2)纜索上表面擾動風壓係數 52 圖(5-3)順風向傾斜角度(+)平均風壓係數 53 圖(5-4)順風向傾斜角度(-)平均風壓係數 53 圖(5-5)順風向傾斜角度(+)擾動風壓係數 54 圖(5-6)順風向傾斜角度(-)擾動風壓係數 54 圖(5-7)順風向傾斜角度(+)平均風力係數 55 圖(5-8)順風向傾斜角度(-)平均風力係數 55 圖(5-9)順風向傾斜角度擾動風力係數 56 圖(5-10)垂直風向傾斜角度(右傾)平均風壓係數 56 圖(5-11) 垂直風向傾斜角度(左傾)平均風壓係數 57 圖(5-12) 垂直風向傾斜角度(右傾)擾動風壓係數 57 圖(5-13) 垂直風向傾斜角度(左傾)擾動風壓係數 58 圖(5-14) 垂直風向傾斜角度(右傾)平均風力係數 58 圖(5-15) 垂直風向傾斜角度(左傾)平均風力係數 59 圖(5-16) 垂直風向傾斜角度擾動風力係數 59 圖(5-17) 傾角90度無因次化x向風力頻譜 60 圖(5-18) 傾角90度無因次化y向風力頻譜 60 圖(5-19) 向前傾角70度無因次化x向風力頻譜 61 圖(5-20) 向前傾角70度無因次化y向風力頻譜 61 圖(5-21) 向前傾角60度無因次化x向風力頻譜 62 圖(5-22) 向前傾角60度無因次化y向風力頻譜 62 圖(5-23) 向前傾角50度無因次化x向風力頻譜 63 圖(5-24) 向前傾角50度無因次化y向風力頻譜 63 圖(5-25) 向後傾角70度無因次化x向風力頻譜 64 圖(5-26) 向後傾角70度無因次化y向風力頻譜 64 圖(5-27) 向後傾角60度無因次化x向風力頻譜 65 圖(5-28) 向後傾角60度無因次化y向風力頻譜 65 圖(5-29) 向後傾角50度無因次化x向風力頻譜 66 圖(5-30) 向後傾角50度無因次化y向風力頻譜 66 圖(5-31) 向右傾角70度無因次化x向風力頻譜 67 圖(5-32) 向右傾角70度無因次化y向風力頻譜 67 圖(5-33) 向右傾角60度無因次化x向風力頻譜 68 圖(5-34) 向右傾角60度無因次化y向風力頻譜 68 圖(5-35) 向右傾角50度無因次化x向風力頻譜 69 圖(5-36) 向右傾角50度無因次化y向風力頻譜 69 圖(5-37) 向左傾角70度無因次化x向風力頻譜 70 圖(5-38) 向左傾角70度無因次化y向風力頻譜 70 圖(5-39) 向左傾角60度無因次化x向風力頻譜 71 圖(5-40) 向左傾角60度無因次化y向風力頻譜 71 圖(5-41) 向左傾角50度無因次化x向風力頻譜 72 圖(5-42) 向左傾角50度無因次化y向風力頻譜 72 參考文獻 1. Kubo, Y., Miyazaki, M. and Kato, K.(1989) “Effect of end plate and blockage of structure menberson drag force,” Journal of Wind Eng. and Industrial Aerodynamics. 2. Obasaju, E. D., Ermshaus, R. and Naudasher, E.(1989) “Vortex induced Streamwise Oscillations of Square-section Cylinder in a Uniform Stream,” Journal of Fluid Mech. 3. Jesen, M.(1958) “The Model Law for Phenomena in Natural Wind” Ingeioen International Edition. 4. Whitbread, R. E.(1963) “Model Simulation of Wind Effects on Structures” Proceeding of the Conference on Wind Effects on Buildings and Structures. 5. Biggs, J. M.(1954) “Wind Load on Truss Bridges,” ASCE. 6. Cheng, Shaohong, Larose, G. L., Savage, M. G. Tanaka, Hiroshi. Irwin, Peter A. (2008) “Experimental study on the wind-induced vibration of a dry inclined cable-Part I:Phenomena” Journal of Wind Engineering and Industrial Aerodynamics. 7. Bartoli, G., Cluni, F., Gusella, V., Procino, L.(2007) “Dynamic of cable under wind action: Wind tunnel experimental analysis,” Journal of Wind Engineering and Industrial Aerodynamics. 8. Cai, Y., and Chen, S. S.(1996) “Dynamic Response Of a Stack/Cable System Subjected to Vortex Induced Vibration,” Journal of Sound and Vibration. 9. Cluni, F., Gusella, V., Bartoli, G.(2007) “Wind tunnel scale model testing of suspended cables and numerical comparison,” Journal of Wind Engineering and Industrial Aerodynamics. 10. Desai, Y. M. and Punde, S.(2001) “Simple model for dynamic analysis of cable supported structures,” Engineering Structures. 11. Flamand, Olivier(1995) “Rain-wind induced vibration of cables,” Journal of Wind Engineering and Industrial Aerodynamics. 12. Gu, Ming and Du, Xiaoqin(2005)“Experimental investigation of rain-wind-induced vibration of cables in cable-stayed bridges and its mitigation,” Journal of Wind Engineering and Industrial Aerodynamics. 13. Hover, Franz S., Miller, Scott N. and Triantafyllou, Michael S.(1997) “Vortex-induced oscillations in inclined cables,” Journal of Wind Engineering and Industrial Aerodynamics. 14. Kahla, N. Ben(1994) “Dynamics of a single guy cable,” Computers and Structures. 15. Kim, M. J. and Perkins, N. C. (2002) “Two-dimensional vortex-induced vibration of cable suspensions,” Journal of Fluids and Structures. 16. Kazakevitch, M., Zakora, A.(1995) “Cable stabilization for wind and moving load effect,” Journal of Wind Engineering and Industrial Aerodynamics. 17. Matsumoto, Masaru, Daito, Yoshiyuki, Kanamura, Takashi, Shigemura, Yoshinori, Sakuma, Satoru, Ishizaki, Hiroshi(1998) “Wind-induced vibration of cables of cable-stayed bridges,” Journal of Wind Engineering and Industrial Aerodynamics. 18. Matsumoto, Masaru, Yagi, Tomomi, Shigemura, Yoshinori, Tsushima, Daisuke(2001) “Vortex-induced cable vibration of cable-stayed bridges at high reduced wind velocity,” Journal of Wind Engineering and Industrial Aerodynamics. 19. Peil, U. and Dreyer, O.(2007) “Rain-wind induced vibrations of cables in laminar and turbulent flow,” Wind and Structures. 20. Poulin, Sanne, Larsen, Allan(2007) “Drag loading of circular cylinders inclined in the along-wind direction,” Journal of Wind Engineering and Industrial Aerodynamics. 21. Takahashi, K., Wu, Q., Nakamura, S.(2005) “Formulae for frequencies and modes of in-plane vibrations of small-sag inclined cables,” Journal of Sound and Vibration. 22. Xu, Y. L. and Wang, L. Y.(2003) “Analytical study of wind-rain-induced cable vibration: SDOF model,” Journal of Wind Engineering and Industrial Aerodynamics. 23. Yoshimura, T., Savage, M. G., Tanaka, H., Urano, D.(2005) “Wind-induced oscillations of groups of bridge stay-cables,” Journal of Wind Engineering and Industrial Aerodynamics. 24. Achencach, E.(1968) “Distribution of local pressure and skin friction around a circular cylinder at high Reynolds numbers,” J. Fluid Mech. 25. Nishimura, H., Taniike, Y.(2001) “Aerodynamic characteristics of fluctuation forces on a circular cylinder,” Journal of Wind Engineering and Industrial Aerodynamics. 26. Fage, A., Falkner, V. M.(1931) “Further experiments on the flow around a circular cylinder,” Aero. Res. Counc. Lond. Rep. Mem. 27. Cantwell, B., Coles, D.(1983) “An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder,” J. Fluid Mech. 28. Schlichting, H.(1979) “Boundary layer theory,” MCGraw Hill, 1979. 29. Kiya, M., Suzuki, Y., Arie, M., Hagino, M. (1982) “Acontribution to the free stream turbulence effect on flow past circular cylinder,” J. Fluid Mech. 30. Jones, G. W., Cincotta, J. J., Walker, R. W.(1969) “Aerodynamic forces on a stationary and Oscillating circular cylinder at high Reynolds number,” NASA Tech. Report No. TR R-300, NASA Washington, DC. 31. Schnabel, W.(1981) “Field and wind tunnel measurement of wind pressure acting on a tower,” Journal Wind Engineering Industrial Aerodynamics. 32. Sageau, J. F.(1977/1978) “In-situ study of the steady and fluctuating pressure fields around a 240m high chimney,” Journal Wind Engineering Aerodynamic. 33. Roshko, A.(1954) “on the drag and shedding frequency of two-dimensional bluff bodies,” NASA Tech. 34. Chang , P.K., Separation of Flow, Pergamon Press. 35. Simiu, Emil and Scanlan, Robert H. “Wind Effects on Structures,” 36. 林志興、楊立波、李文勃(2005)“斜拉索順橋向風阻係數的試驗研究,” 37. 鄭啟明(1991)“圓柱型結構模型橫風向振動之風洞實驗研究,” 論文使用權限 同意紙本無償授權給館內讀者為學術之目的重製使用，於2009-03-13公開。同意授權瀏覽/列印電子全文服務，於2009-03-13起公開。

 若您有任何疑問，請與我們聯絡！圖書館： 請來電 (02)2621-5656 轉 2281 或 來信