§ 瀏覽學位論文書目資料
系統識別號 U0002-1102202017490400
DOI 10.6846/TKU.2020.00260
論文名稱(中文) 利用靜電紡絲法製備奈米銀/聚乳酸複合纖維膜及其抗菌性質
論文名稱(英文) Fabrication of Ag nanoparticles/poly(lactic acid) composite membrane by electrospinning and its antibacterial properties
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 108
學期 1
出版年 109
研究生(中文) 楊洛端
研究生(英文) Lo-Tuan Yang
學號 606400470
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2020-01-07
論文頁數 107頁
口試委員 指導教授 - 董崇民
委員 - 邱文英
委員 - 黃國忠
關鍵字(中) 靜電紡絲
銀顆粒
奈米纖維
抗菌薄膜
關鍵字(英) electrospinning
silver particles
nanofibers
antibacterial films
第三語言關鍵字
學科別分類
中文摘要
論文提要內容:
    本研究利用靜電紡絲法(Electrospinning)及靜電噴灑法(Electrospraying)製備多層結構疏水性的抗菌薄膜,藉由調整聚乳酸(Poly (lactic acid))高分子的濃度來控制薄膜的形態,透過製備多層纖維與顆粒參雜的方式提升薄膜的疏水性,再將最上層的薄膜加入硝酸銀以達到抗菌效果。
    本實驗所製備的薄膜分為三層結構,底層為高濃度的PLA高分子溶液(15 wt%, DMF/AC= 5/5 (wt/wt))經由靜電紡絲所形成的無串珠纖維,直徑約為1微米,中間層為低濃度的PLA高分子溶液(5 wt%, DMF)經由靜電噴灑方法所形成的完整顆粒,添加顆粒可以使部分纖維之間的孔隙被顆粒填滿,整體緻密性提升,進而提升疏水性,顆粒的粒徑有兩個分佈,分別為0.99微米與1.87微米,薄膜的最上層則是添加硝酸銀的奈米纖維,硝酸銀在配置溶液的過程中被二甲基甲醯胺(DMF)還原成銀顆粒,由於溶液的導電度增加因此高分子濃度可以在較低(5 wt%)下得到良好的纖維形態,透過掃描式電子顯微鏡(SEM)觀察得知纖維為奈米等級,測量其纖維直徑大約為200奈米,銀顆粒約為50奈米。
    由接觸角的實驗得知,當底層纖維的紡絲時間來到10分鐘,可以得到最大的接觸角,約為130度,此時纖維已經佔整體表面積超過90 %,即使再增加紡絲時間,也無法提升接觸角,加入了顆粒層可以小幅度的提升接觸角,顆粒層的噴灑時間在15分鐘能使雙層薄膜的接觸角最大化,約為135度,最後加入了奈米銀纖維的紡絲,由於其溶液的高導電性,無法維持較長的紡絲時間,也因此纖維較細也較疏,對接觸角並未有太大的影響,與雙層薄膜接觸角大小相似。在多層附著性的測試中了解到,由於PLA本身為疏水性高分子,即使經過80 rpm並振盪24小時,纖維的直徑與形態幾乎沒有任何改變,而加入了顆粒的纖維膜,原先填滿纖維之間的顆粒,經過振盪後會有所減少,而附著在纖維上的顆粒幾乎沒有任何改變,推測為高分子之間凡德瓦力所影響。 
    由拉力試驗的結果可以得知,底層纖維的降伏強度與斷裂伸長率最大,約為7 MPa與120 % ,而雙層與三層薄膜皆有下降的趨勢。從傅立葉轉換紅外線光譜分析(ATR-FTIR)的實驗可以分析各層纖維與PLA原物料結構之間的差異,由X光繞射分析儀(XRD)可以探討結晶高分子的峰值,PLA的峰值角度為17度與19度。透過熱重損失分析儀(TGA)與式差掃描式熱卡計(DSC)可以得知不同薄膜系統的裂解溫度與各自玻璃轉移溫度、熔點、結晶溫度與結晶度的差異,PLA的原物料初始裂解溫度約為322度,玻璃轉移溫度約為60度,熔點為149度,而PLA纖維膜的初始裂解溫度有降低的趨勢,最低來到280度左右,玻璃轉移溫度與熔點並沒有太大的改變,而加入硝酸銀的多層纖維膜,結晶溫度來到120度。最後將三層薄膜的系統膜剪取直徑1公分的圓形,膜厚約為13微米,放入大腸桿菌的固態培養皿與液態培養皿中進行抑菌環寬與抑菌率的實驗,比較添加不同比例的硝酸銀(0.5、1與2 wt%)對抗菌效果的影響。可以得知隨著銀的添加量越多,抗菌效果越為顯著,最高的抗菌效果可達10%。
英文摘要
Abstract:
    In this study, electrospinning and electrospraying were used to prepare a multi-layer hydrophobic antibacterial film, and the morphology of the film was controlled by adjusting the concentration of poly (lactic acid) polymers. The hydrophobicity of the film is improved by the method of preparing the granular layer, and the addition of silver nitrate makes the upper film achieve the antibacterial effect.
    The multilayer film prepared in this experiment is divided into three layers. The bottom layer is a bead-free fiber formed by a high-concentration of PLA polymer solution (15 wt%, DMF/AC= 5/5 (wt/wt)) through electrospinning method and the fiber diameter is about 1 micron. The middle layer is a particle layer formed by a low-concentration PLA polymer solution (5 wt%, DMF) through electrospraying. The addition of the particle layer can not only improve the density but also the hydrophobicity. The particle size is about 1.5 microns. 
    The top layer of the film is nanofibers which containing silver particles. Silver nitrate is reduced to silver particles by dimethylformamide (DMF) during the heating process. Due to the increased conductivity of the solution, a good fiber morphology can be obtained at a lower polymer concentration. It was observed that the fiber diameter was about 200 nm and the silver particles were about 50 nm through scanning electron microscope (SEM). 
We can know that when the spinning time of the bottom fiber reaches 10 minutes, the contact angle can be maximized, which is about 130 degrees through the contact angle experiment. At this time, the fiber already accounts for more than 90 % of the total surface area. Even if the spinning time is increased, the contact angle will no longer improve. The contact angle can be slightly increased by adding the particle layer, the spraying time of the particle layer can maximize the contact angle of the double-layer film at 15 minutes, which is about 135 degrees.
Finally, the upper layer of nano-silver fibers was added though the electrospinning proscess. Due to the high conductivity of the solution, it couldn’t   maintain a long spinning time during the electrospinning experiment. Therefore, the fibers were relatively thin and sparse, which did not affect its contact angle. The contact angle is similar to the double-layer film.
Since PLA is a hydrophobic polymer, there is almost no change in the diameter and morphology of the bottom layer film in deionized water that has been shaken for 24 hours at 80 rpm through the muti-layer attachment experiments. Through the SEM image, however, a double-layer film with particles that originally filled the gaps between the fibers would be reduced after shaking, and the particles attached to the fibers were hardly changed. It is presumed that Van der Waals forces between the polymers makes it more adherent. 
    From the results of the tensile test, it can be known that the Yield strengh and elongation at break of the bottom film are the largest, about 7 MPa and 120 %, while the double-layer and triple-layer films have a downward trend. Through Fourier Transform Infrared Spectroscopy (ATR-FTIR) experiments, we can analyze the differences between the layers of fibers and the structure of PLA raw materials. With the X-ray diffraction analyzer (XRD), we can explore the peaks of crystalline polymers. The most common peak angles for PLA are 17 and 19 degrees. From the Thermogravimetric analysis (TGA) and Differential Scanning  Calorimetry (DSC), we can know the differences between the degradation temperature and glass transition temperature, melting point, crystallization temperature and crystallinity of the respective film systems. The initial degradation temperature of PLA raw materials is about 322 degrees, the glass transition temperature is about 60 degrees, and the melting point is 149 degrees. The initial degradation temperature of PLA fiber membrane has a tendency to decrease, and the lowest value is about 280 degrees. The glass transition temperature and melting point did not change much, and the crystallization temperature reached 120 degrees when multi-layer fiber membranes with silver nitrate were added.
    Finally, the three-layer film was cut into a circle with a diameter of 1 cm and the thickness was about 13 microns. The antibacterial ring width and antibacterial activity were tested in Lysogency Agar and Lysogency Broth of E. coli. The effects of different ratios (0.5、1 and 2 wt%) of silver nitrate on antibacterial activity were compared. We can learn that the more silver is added, the better the antibacterial activity is, and the highest antibacterial activity is about 10 %.
第三語言摘要
論文目次
目錄
目錄	vi
圖目錄	ix
表目錄	xvi
第一章 緒論	1
1.1 前言	1
1.2 研究動機	1
第二章 文獻回顧	2
2.1 靜電紡絲 (Electrospinning)	2
2.1.1靜電紡絲之歷史	2
2.1.2 靜電紡絲之簡介	2
2.1.2.1 靜電紡絲原理	2
2.1.2.2 靜電紡絲裝置	2
2.1.2.3 靜電紡絲參數	3
2.1.3 靜電紡絲的應用	12
2.2 靜電噴灑 (Electrospraying)	12
2.3 聚乳酸	13
2.3.1 聚乳酸的歷史	13
2.3.2 聚乳酸的合成方法	14
2.3.3 聚乳酸的應用	15
2.4 銀與硝酸銀	16
2.4.1 銀的歷史與應用	16
2.4.2奈米銀的抗菌機制	16
2.4.2.1 銀離子	16
2.4.2.2 銀顆粒	17
2.5 聚乳酸與硝酸銀與靜電紡絲	18
第三章 實驗方法與步驟	20
3.1 實驗流程與架構	20
3.2 實驗藥品	22
3.3 實驗儀器	24
3.4 實驗步驟	29
3.4.1 底層-PLA纖維的製備	29
3.4.2 中間層-PLA顆粒的製備	31
3.4.3 上層-奈米銀纖維的製備	32
3.5 結構分析與性質測試	34
3.5.1 分子量大小測定 (膠體滲透層析儀, GPC)	34
3.5.2 表面結構分析 (掃描式電子顯微鏡, SEM)	34
3.5.3 元素分析 (能量色散光譜, EDS)	34
3.5.4 高分子官能基測定 (傅立葉紅外線轉換光譜儀, FTIR/ATR)	34
3.5.5 高分子無定形與結晶性分析 (X光繞射分析儀, XRD)	35
3.5.6 高分子裂解溫度測定 (熱重損失分析儀, TGA)	35
3.5.7 高分子結晶度分析 (式差掃描式熱卡計, DSC)	35
3.5.8 材料親疏水性分析 (水接觸角, Water Contact Angle)	35
3.5.9 機械性質分析 (拉伸試驗, Tensile test)	36
3.5.10 高分子溶液黏度測量 (黏度計, Viscometer)	37
3.5.11 高分子溶液導電度測量 (導電度計, Conductivity meter)	37
3.5.12 薄膜貼附性測試	37
3.6 抗菌性測試	38
3.6.1 培養基的製備	38
3.6.2 大腸桿菌抗菌測試	38
第四章 結果與討論	40
4.1 底層-PLA纖維的製備	40
4.2中間層-PLA顆粒的製備	50
4.3 上層-奈米銀纖維的製備	54
4.4 三層薄膜形態	60
4.5 薄膜的接觸角測試	63
4.6 薄膜貼附性測試	71
4.7 拉力測試 (Tensile test)	76
4.8 傅立葉轉換紅外線光譜分析(FTIR-ATR)	78
4.9 光繞射分析儀(XRD)	79
4.10 熱重損失分析儀(TGA)	80
4.11式差掃描式熱卡計(DSC)	82
4.12 三層薄膜的抗菌測試	84
第五章 結論	87
第六章 參考文獻	89
第七章 附錄	99
7.1 重量濃度對纖維直徑的影響	99
7.2 溶劑對纖維直徑的影響	104
7.3 流速對纖維直徑的影響	105
7.4 結論	107





圖目錄
圖 2-1靜電紡絲示意圖[10]	3
圖 2-2 PEO系統在不同黏度下的纖維表面形態圖(a) 37 cP, (b) 160 cP, (c) 527 cP, (d) 1250 cP ,流速= 0.1 ml/hr, 電壓= 14 k V, 工作距離= 20 cm [11]	4
圖2-3 聚乳酸纖維在電壓20 kV與進料流率20 μl/min下不同濃度下之電紡纖維形態 (a) 20 wt%, (b) 25 wt, (c) 30 wt% and (d) 35 wt% [12]	5
圖2-4 不同溶劑比之PEO電紡纖維表面形態圖(a) ethanol/water: 0.000 (b) ethanol/water: 0.115 (c) ethanol/water: 0.448 (d) ethanol/water: 0.702, 濃度= 3 w%, 電壓= 10 kV, 工作距離= 20 kV , 放大倍率= 5 k [13]	6
圖 2-5 4% (w/v) PEO 溶液加入不同濃度氯化鈉表面形態圖 (a) 0.1 %(b) 0.5 %(c) 1.5 % (w/v), 電壓= 11 kV, 工作距離= 15 kV, 放大倍率= 5 k [14]	7
圖 2-6不同氯化鈉濃度之PEO纖維在流速100 μl/min之纖維形態圖(a) 15 mM, 10 K放大倍率, (b) 25 mM, 5 K 放大倍率 (c) 34 mM, 2 K放大倍率 (d) 68 mM, 5	8
圖2-7不同流速對PVA纖維形態之影響(電壓 = 8 kV, 工作距離 = 15 cm) 流速 : (a) 0.1 ml/h; (b) 0.3 ml/h. 放大倍率10 k [16]	9
圖2-8 15 wt % PVC系統在不同電壓下之纖維形態圖(流速= 1 ml/hr, 工作距離 = 15 cm) (a) 8, (b) 12, and (c) 15 kV, 放大倍率6 k [17]	9
圖2-9 Nylon 6,6在不同工作距離下的纖維表面結構圖,(a) 0.5 cm (b) 2.0 cm. 電壓 = 8 kV, 溶液濃度 = 12 wt %, 放大倍率2 K [18]	10
圖2-10 PVC 纖維在不同工作距離下的纖維形態圖 (a) 6, (b) 10, and (c) 15 cm. 電壓 = 15 kV, 溶液濃度 = 15 wt %, 放大倍率6 K [19]	10
圖 2-11 10 wt% PVP系統在不同溫度與濕度之纖維表面結構圖, (a) 20 RH %, (b) 30 RH %, (c) 45 RH % , (d) 60 RH % (流速= 3 ml/hr, 電壓 = 10 kV, 工作距離 = 12 cm) [20]	11
圖 2-12 聚乳酸開還聚合法示意圖 [36]	14
圖 2-13 聚乳酸縮合聚合合法示意圖 [36]	14
圖 3-1 實驗流程圖	21
圖 3-2 實驗裝置圖	21
圖3-3三區畫線法	39
圖 4-1 不同濃度PLA/DMF系統靜電紡絲纖維SEM圖,(a) 5 wt%, (b) 10 wt%與(c) 15 wt% (流速= 1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm, 放大倍率= 3 k)	41
圖 4-2 不同共溶劑比例下PLA系統(15 wt%)的靜電紡絲纖維SEM圖,(a) DMF/AC= 10/0 (b) DMF/AC= 7/3與(c) DMF/AC= 5/5 (流速= 1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm, 放大倍率= 3 k)	44
圖 4-3  PLA系統(15 wt%, DMF/AC= 10/0)靜電紡絲纖維直徑分佈圖(流速= 1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm, n= 50)	45
圖 4-4 PLA系統(15 wt%, DMF/AC= 7/3)靜電紡絲纖維直徑分佈圖(流速= 1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm, n= 50)	45
圖 4-5 PLA系統(15 wt%, DMF/AC= 5/5)靜電紡絲纖維直徑分佈圖(流速= 1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm, n= 50)	46
圖 4-6 PLA系統(15 wt%, DMF/AC)在不同電壓下之靜電紡絲纖維SEM圖 (a) 9 kV (b) 11 kV (c) 14 kV (流速= 1 ml/hr, 工作距離= 15 cm, DMF/AC= 5/5, 放大倍率= 3 k)	47
圖 4-7 (a) PLA系統(15 wt%)靜電紡絲纖維直徑分佈圖(流速= 1 ml/hr, 電壓= 9 kV, 工作距離= 15 cm, DMF/AC= 5/5, n= 50)	47
圖 4-8 (a) PLA系統(15 wt%)靜電紡絲纖維直徑分佈圖(流速= 1 ml/hr, 電壓= 11 kV, 工作距離= 15 cm, DMF/AC= 5/5, n= 50)	48
圖 4-9 (a) PLA系統(15 wt%)靜電紡絲纖維直徑分佈圖(流速= 1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm, DMF/AC= 5/5, n= 50)	48
圖 4-10 PLA系統(15 wt%)在不同共溶劑(DMF/AC)比例下的溶液黏度與導電度對纖維直徑的影響 (流速= 1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm)	49
圖 4-11 PLA系統(15 wt%, DMF/AC= 5/5)在不同電壓下對纖維直徑的影響 (流速= 1 ml/hr, 工作距離= 15 cm)	50
圖 4-12 不同重量濃度之PLA/DMF/AC (DMF/AC= 5/5)系統靜電紡絲纖維SEM圖,(a) 1 wt%, (b) 3 wt%與(c) 5 wt% (流速= 1 ml/hr, 電壓= 9 kV, 工作距離= 15 cm, 放大倍率= 1 k)	51
圖 4-13 不同溶劑之PLA系統靜電紡絲纖維SEM圖,(a) DMF, (b) DMF/AC=5/5 (濃度= 5 wt%, 流速= 1 ml/hr, 電壓= 11 kV, 工作距離= 15 cm, 放大倍率= 1 k, 噴灑時間= 10 min)	53
圖 4-14 PLA/DMF系統靜電噴灑直徑分佈圖 (濃度= 5 wt%,流速=1 ml/hr,	54
圖 4-15 PLA-Ag系統靜電紡絲奈米纖維SEM圖 (a) AgNO3/PLA = 1/10, (b) AgNO3/PLA = 2/10, (c) AgNO3/PLA = 4/10 (PLA濃度= 5 wt%, 流速= 0.1 ml/hr, 電壓= 12~14 kV, 工作距離= 15 cm, DMF/AC= 5/5, 放大倍率= 5 k)	56
圖 4-16 PLA-Ag 系統靜電紡絲奈米纖維直徑分佈圖(濃度=5 wt%, AgNO3/PLA = 1/10, 流速= 0.1 ml/hr, 電壓= 12 kV, 工作距離= 15 cm, DMF/AC= 5/5, 放大倍率= 5 k , n=50)	57
圖 4-17 PLA-Ag 系統靜電紡絲奈米纖維直徑分佈圖(濃度=5 wt%, AgNO3/PLA = 2/10, 流速= 0.1 ml/hr, 電壓= 13 kV, 工作距離= 15 cm, DMF/AC= 5/5, 放大倍率= 5 k , n=50)	58
圖 4-18 PLA-Ag (0.5)系統(5 wt%, DMF/AC=5/5)靜電紡絲奈米纖維EDS圖 (AgNO3/PLA = 1/10, 流速= 0.1 ml/hr, 電壓= 12 kV, 工作距離= 15 cm)	59
圖 4-19 PLA-Ag (1)系統(5 wt%, DMF/AC=5/5)靜電紡絲奈米纖維EDS圖(AgNO3/PLA = 2/10, 流速= 0.1 ml/hr, 電壓= 13 kV, 工作距離= 15 cm)	59
圖 4-20 PLA-Ag (2)系統(5 wt%, DMF/AC=5/5)靜電紡絲奈米纖維EDS圖 (AgNO3/PLA = 4/10, 流速= 0.1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm)	60
圖 4-21 PLA三層薄膜系統手繪示意圖 (藍色為底層纖維, 綠色為中間層高分子顆粒, 黃色為奈米銀纖維)	61
圖 4-22 PLA-Ag (2)系統(5 wt%, DMF/AC=5/5)靜電紡絲奈米纖維SEM圖 (AgNO3/PLA = 4/10, 流速= 0.1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm)左圖放大倍率= 1 k, 右圖放大倍率= 3 k	61
圖 4-23 PLA-Ag (2)系統(5 wt%, DMF/AC=5/5)靜電紡絲奈米纖維SEM Line Scan分析 (AgNO3/PLA = 4/10, 流速= 0.1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm)	62
圖 4-24 PLA-Ag (2)系統(5 wt%, DMF/AC=5/5)靜電紡絲奈米纖維SEM Mapping分析 (AgNO3/PLA = 4/10, 流速= 0.1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm)	63
圖 4-25 不同紡絲時間PLA系統靜電紡絲纖維SEM圖,(a) 1min, (b) 2 min, (c) 3 min, (d) 5 min與(e) 10 min (濃度= 15 wt%, DMF/AC= 5/5, 流速= 1 ml/hr, 電壓= 9 k V, 工作距離= 15 cm, 倍率= 1 k)	65
圖 4-26 PLA/DMF/AC系統(15 wt%, DMF/AC= 5/5)在不同紡絲時間(1 min, 2 min, 3 min, 5 min與10 min)下的纖維SEM圖表面分析	66
圖 4-27 PLA/DMF/AC系統(15 wt%, DMF/AC= 5/5)在不同紡絲時間(0 min, 1 min, 2 min, 3min, 5 min與10 min)下之初始接觸角,0 min為利用溶劑揮發與熱壓所製備的薄膜	67
圖 4-28 PLA/DMF/AC系統(15 wt%, DMF/AC= 5/5)在不同紡絲時間(0 min, 1 min, 2 min, 3 min, 5 min與10 min)下,薄膜之接觸角隨水滴滯留時間變化圖	68
圖 4-29 不同噴灑時間PLAF/PLAP系統雙層薄膜SEM圖,(a) 1min, (b) 3 min, (c) 5 min, (d) 10 min與(e) 15 min (PLAF : 溶劑= DMF/AC, 濃度= 15 wt%, 流速= 1 ml/hr, 電壓= 9 kV, 工作距離= 15 cm, PLAP : 溶劑= DMF, 濃度= 5 wt%, 流速= 1 ml/hr, 電壓= 11 kV, 工作距離= 15 cm, 放大倍率= 3 k)	69
圖 4-30 不同噴灑時間(1 min, 3 min, 5 min, 10 min與15 min) PLAF/PLAP系統雙層薄膜之接觸角圖 (PLAF : 溶劑= DMF/AC, 濃度= 15 wt%, 流速= 1 ml/hr, 電壓= 9 kV, 工作距離= 15 cm, PLAP : 溶劑= DMF, 濃度= 5 wt%, 流速= 1 ml/hr, 電壓= 11 kV, 工作距離= 15 cm, 放大倍率= 3 k)	70
圖 4-31 不同硝酸銀比例之PLAF/PLAP/PLA-Ag 三層薄膜初始接觸角	71
圖 4-32 PLA/DMF/AC系統,貼附性測試SEM表面結構圖,圖(a)浸泡振盪前,圖(b) 浸泡振盪24小時後 (濃度= 15 wt%, 流速= 1 ml/hr, 電壓= 9 kV, 工作距離= 15 cm, 電紡時間= 10 min, 放大倍率= 1 k)	72
圖 4-33 PLA/DMF/AC系統浸泡振盪前直徑分佈圖 (濃度= 15 wt%, DMF/AC= 5/5, 流速= 1 ml/hr, 電壓= 9 kV, 工作距離= 15 cm)	73
圖 4-34 PLA/DMF/AC系統浸泡振盪24小時後直徑分佈圖 (濃度= 15 wt%, DMF/AC= 5/5, 流速= 1 ml/hr, 電壓= 9 kV, 工作距離= 15 cm)	73
圖 4-35 PLAF/PLAP系統,貼附性測試SEM表面結構圖,圖(a)浸泡振盪前,顆粒數目約為115個,圖(b) 浸泡振盪24小時後,顆粒數目約為80個,減少約30 % (PLAF實驗參數 : PLA/DMF/AC (15 wt%, DMF/AC= 5/5), 流速= 1 ml/hr, 電壓= 9 kV, 工作距離= 15 cm, PLAP實驗參數 : PLA/DMF (5 wt%), 流速= 1 ml/hr, 電壓= 11 kV, 工作距離= 15 cm, 電灑時間= 15 min, 放大倍率= 3 k)	74
圖 4-36 PLAF/PLAP/PLA-Ag (2)系統,貼附性測試SEM表面結構圖,圖(a)浸泡振盪前,圖(b)浸泡振盪24小時後 (PLAF實驗參數 : PLA/DMF/AC (15 wt%, DMF/AC= 5/5), 流速= 1 ml/hr, 電壓= 9 kV, 工作距離= 15 cm, PLAP實驗參數 : PLA/DMF (5 wt%), 流速= 1 ml/hr, 電壓= 11 kV, 工作距離= 15 cm, 電灑時間= 15 min, PLA-Ag (2)實驗參數 : (PLA/DMF/AC/AgNO3 (5 wt%, DMF/AC= 5/5, AgNO3/PLA= 4/10) 流速= 0.1 ml/hr, 電壓= 14 k V, 工作距離= 15 cm )放大倍率= 3 k)	75
圖 4-37 不同PLA靜電紡絲纖維膜之拉力測試圖,PLAF : 溶劑= DMF/AC, 濃度= 15 wt%, 流速= 1 ml/hr, 電壓= 9 kV, 工作距離= 15 cm ; PLAP : 溶劑= DMF, 濃度= 5 wt%, 流速= 1 ml/hr, 電壓= 11 kV, 工作距離= 15 cm ; PLA-Ag (2) : 溶劑= DMF/AC, PLA濃度= 5 wt%, AgNO3/PLA= 4/10 (w/w), 流速= 0.1 ml/hr, 電壓= 14 kV, 工作距離= 15 cm	77
圖 4-38 不同PLA靜電紡絲纖維膜之FTIR-ATR圖	78
圖 4-39 PLA raw material之XRD圖	80
圖 4-40 不同PLA靜電紡絲薄膜之熱重損失圖	81
圖 4-41不同PLA靜電紡絲薄膜熱重損失微分圖	81
圖 4-42不同PLA靜電紡絲薄膜於DSC一次升溫圖	83
圖 4-43 不同硝酸銀添加量對PLA複合纖維膜抑菌率的影響	85
圖 4-44 不同硝酸銀添加量PLA系統抑菌環寬實驗,(a) PLAF/PLAP (b) PLAF/PLAP/PLA-Ag (0.5) (c) PLAF/PLAP/PLA-Ag (1) (d) PLAF/PLAP/PLA-Ag (2)	86
圖 7-1 不同重量濃度之聚甲基丙烯酸乙酯(PEMA/DMF)系統靜電紡絲SEM圖,(a) 10 wt%, (b) 15 wt%, (c) 17.5 wt%, (d) 20 wt% (流速= 1 ml/hr, 電壓= 15 kV, 工作距離= 15 cm)	99
圖7-2 不同重量濃度之PEMA/DMF系統直徑比較圖,(流速= 1 ml/hr, 電壓= 15 kV, 工作距離= 15 cm)	100
圖7-3 不同重量濃度之聚乙烯吡咯烷酮(PVP/DMF)系統靜電紡絲SEM圖,(a) 10 wt%, (b) 12.5 wt%, (c) 15 wt%, (d) 20 wt% (PVP分子量1300 K, 流速= 1 ml/hr, 電壓=12 kV, 工作距離= 15 cm)	101
圖 7-4 不同重量濃度之PVP/DMF系統直徑比較圖,(PVP分子量1300 K, 流速= 1 ml/hr, 電壓= 12 kV, 工作距離= 15 cm)	102
圖 7-5 不同重量濃度之聚乙烯吡咯烷酮(PVP/EtOH)系統靜電紡絲SEM圖,(a) 10 wt%, (b) 12.5 wt%, (c) 15 wt%, (d) 17.5 wt% (PVP分子量1300 K, 流速= 1 ml/hr, 電壓= 12 kV, 工作距離= 15 cm, 放大倍率= 1 k)	102
圖 7-6 不同重量濃度之PVP/EtOH系統黏度與直徑比較圖,PVP分子量1300 K, 流速= 1 ml/hr, 電壓= 12 kV, 工作距離= 15 cm	103
圖 7-7 不同溶劑之聚乙烯吡咯烷酮(PVP)系統(15 wt%)靜電紡絲SEM圖,(a) EtOH, (b) EtOH/H2O (5/5)與(c) DMF (流速= 1 ml/hr, 電壓= 12 kV, 工作距離= 15 cm, 放大倍率= 3 k)	104
圖7-8 不同溶劑之PVP系統(15 wt%)直徑比較圖, EtOH/H2O= 5/5, (流速= 1ml/hr, 電壓= 12 kV, 工作距離= 15cm)	105
圖 7-9 不同流速之聚甲基丙烯酸乙酯(PEMA/DMF)系統靜電紡絲SEM圖,(a)(c) 1 ml/hr , 放大倍率=1 k (b)(d) 3 ml/hr, 放大倍率=3 k (濃度=17.5 wt%, 電壓= 15 kV, 工作距離=15 cm)	106










表目錄
表 3-1 不同濃度之PLA/DMF系統參數表	29
表 3-2 相同濃度下(15 wt%),不同DMF/AC共溶劑比例下之聚乳酸系統	29
表 3-3 不同電壓的PLA系統(15 wt%, DMF/AC= 5/5)靜電紡絲實驗參數	30
表 3-4 不同濃度之PLA/DMF/AC (DMF/AC= 5/5)系統參數表	31
表 3-5 維持PLA在相同濃度下(5 wt%),利用不同溶劑之聚乳酸系統參數表	31
表 3-6 維持PLA在相同濃度下(5 wt%),利用不同溶劑之PLA-Ag (AgNO3/PLA= 1/10)系統參數表	33
表 3-7 維持PLA在相同濃度下(5 wt%),不同硝酸銀比例之(PLA/Ag, DMF/AC=5/5)系統參數表	33
表 4-1 不同濃度PLA/DMF系統靜電紡絲實驗參數表	41
表 4-2 不同DMF/AC共溶劑比例的PLA系統(15 wt%)靜電紡絲實驗參數	43
表 4-3 不同電壓的PLA系統(15 wt%, DMF/AC= 5/5)靜電紡絲實驗參數	49
表 4-4 不同濃度之PLA/DMF/AC (DMF/AC= 5/5)靜電紡絲實驗參數	52
表 4-5 不同溶劑之PLA系統(5 wt%)靜電紡絲實驗參數表	53
表 4-6 不同硝酸銀添加量的PLA-Ag系統 (5 wt%, DMF/AC= 5/5)靜電紡絲參數	57
表 4-7 PLA/DMF/AC系統(15 wt%, DMF/AC= 5/5)在不同紡絲時間下之纖維占總面積比例與初始接觸角大小 (滯留時間= 0 sec)	67
表 4-8 不同噴灑時間PLAF/PLAP系統之雙層薄膜接觸角大小	70
表 4-9 PLA/DMF/AC系統纖維浸泡振盪前後的直徑差異表(濃度= 15 wt%, DMF/AC= 5/5, 流速= 1 ml/hr, 電壓= 9 k V, 工作距離= 15 cm, 電紡時間= 10 min)	72
表 4-10 不同PLA形態之單層與雙層薄膜拉力測試統整表	77
表 4-11 PLA官能基紅外線光譜吸收峰位置 [79]	79
表 4-12 不同PLA靜電紡絲薄膜熱重損失數據	82
表 4-13不同PLA靜電紡絲薄膜於DSC一次升溫數據	83
表 4-14 不同硝酸銀添加量PLA系統抗菌測試OD值與抑菌率表	85
表 7-1 不同重量濃度之PEMA/DMF系統直徑分析表	100
表 7-2 不同重量濃度之PVP/DMF系統直徑分析表	101
表 7-3 不同重量濃度之PVP/EtOH系統黏度與直徑分析表	103
表 7-4 不同溶劑之聚乙烯吡咯烷酮(PVP)系統(15 wt%)直徑表	104
表 7-5 不同流速之聚甲基丙烯酸乙酯(PEMA/DMF)系統直徑表	106
參考文獻
[1]	Khan, A.,Jadhav, S. (2019) Neglected bacterial foodborne pathogens in India. Indian Journal of Public Health Research and Development, 10(7), p 1645-1649.
[2]	Konop, M., Damps, T., Misicka, A., Rudnicka, L. (2016). Certain Aspects of Silver and Silver Nanoparticles in Wound Care. Journal of Nanomaterials, 1–10 doi:10.1155/2016/7614753.
[3]	Rayleigh, Lord. (1882). On the equilibrium of liquid conducting masses charged with electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 14(87), 184–186
[4]	Formhals, Anton et al. (1934)"Method and apparatus for spinning"U.S. Patent
2,349,950
[5]	G. I. Taylor, (1964) Proc. R. SOC. London, Ser. A, 280,383 
[6]	Larrondo, L., St. John Manley, R. (1981). Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Journal of Polymer Science: Polymer Physics Edition, 19(6), 909-920. doi:10.1002/pol.1981.180190601 
[7]	Reneker, D., Chun, I. (1996). Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 7(3), 216-223. doi: 10.1088/0957-4484/7/3/009.
[8]	Theron, A., Zussman, E., & Yarin, A. (2001). Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 12(3), 384-390. doi: 10.1088/0957-4484/12/3/329
[9]	Zheng, Y., Xie, S., & Zeng, Y. (2013). Electric field distribution and jet motion in electrospinning process: from needle to hole. Journal Of Materials Science, 
48(19), 6647-6655. doi: 10.1007/s10853-013-7465-8
[10]	Ghorani, B., & Tucker, N. (2015). Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids, 51, 227-240. doi: 10.1016/j.foodhyd.2015.05.024
[11]	Fong, H., Chun, I., & Reneker, D. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592. doi: 10.1016/s0032-3861(99)000683
[12]	Koombhongse, S., Liu, W., & Reneker, D. (2001). Flat polymer ribbons and other shapes by electrospinning. Journal Of Polymer Science Part B: Polymer Physics, 39(21), 2598-2606. doi: 10.1002/polb.10015
[13]	Magarvey, R., & Outhouse, L. (1962). Note on the break-up of a charged liquid jet. Journal Of Fluid Mechanics, 13(1), 151-157. doi: 10.1017/ s002211206200058
0.
[14]	Arayanarakul, K., Choktaweesap, N., Aht-ong, D., Meechaisue, C., & Supaphol, P. (2006). Effects of Poly(ethylene glycol), Inorganic Salt, Sodium Dodecyl Sulfate, and Solvent System on Electrospinning of Poly(ethylene oxide). Macromolecular Materials And Engineering, 291(6), 581-591. doi: 10.1002/mame.200500419
[15]	Huang, L., Nagapudi, K., P.Apkarian, R., & Chaikof, E. (2001). Engineered collagen–PEO nanofibers and fabrics. Journal Of Biomaterials Science, Polymer Edition, 12(9), 979-993. doi: 10.1163/156856201753252516
[16]	Zhang, C., Yuan, X., Wu, L., Han, Y., & Sheng, J. (2005). Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 41(3), 423-432. doi: 10.1016/j.eurpolymj.2004.10.027
[17]	 Lee, K., Kim, H., La, Y., Lee, D., & Sung, N. (2002). Influence of a mixing solvent with tetrahydrofuran andN,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Journal Of Polymer Science Part B: Polymer Physics, 40(19), 2259-2268. doi: 10.1002/polb.10293
[18]	Mit-uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry And Physics, 205(17), 2327-2338. doi: 10.1002/macp.200400225
[19]	Lee, K.H., Kim, H.Y., La, Y.M.(2002) Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Journal of Polymer Science, Part B: Polymer Physics
[20]	Yang, G., Li, H., Yang, J., Wan, J., & Yu, D. (2017). Influence of Working Temperature on The Formation of Electrospun Polymer Nanofibers. Nanoscale Research Letters, 12(1). doi: 10.1186/s11671-016-1824-8
[21]	Frenot, A., & Chronakis, I. (2003). Polymer nanofibers assembled by electrospinning. Current Opinion In Colloid & Interface Science, 8(1), 64-75. doi: 10.1016/s1359-0294(03)00004-9
[22]	Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B., & Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43(16), 4403-4412. doi: 10.1016/s0032-3861(02)00275-6
[23]	Kataphinan W, Dabney S, Smith D, Reneker DH. (2001). Fabrication of electrospun and encapsulation into polymer nanofibers. J Textile Apparel, Technol Manage 2001, vol. 1. Special issue: The Fiber Society Spring 2001 Conference, Raleigh NC.
[24]	Yang, S., Wang, C., & Chen, S. (2011). A Release-Induced Response for the Rapid Recognition of Latent Fingerprints and Formation of Inkjet-Printed Patterns. Angewandte Chemie International Edition, 50(16), 3706-3709. doi: 10.1002/anie.201006537
[25]	Zhang, W., & Pintauro, P. (2011). High-Performance Nanofiber Fuel Cell Electrodes. Chemsuschem, 4(12), 1753-1757. doi: 10.1002/cssc.201100245
[26]	Doshi, J., & Reneker, D. (1995). Electrospinning process and applications of electrospun fibers. Journal Of Electrostatics, 35(2-3), 151-160. doi: 10.1016/0304-3886(95)00041-8
[27]	Liu, X., Yang, D., Jin, G., Ma, H. (2010). A nanofibrous membrane with tunable surface chemistry: Preparation and application in protein microarrays. Journal of Materials Chemistry. 20(45), 10228. doi:10.1039/c0jm01409e
[28]	Nartker, S., Drzal, L. T. (2010). Electrospun Cellulose Nitrate Nanofibers. Journal of Nanoscience and Nanotechnology, 10(9), 5810–13. doi:10.1166/jnn.2010.2447.
[29]	León, N., Meléndez, A., Figueroa, G., Ramos, I., Pinto, N. J. (2007). Electrospun tin oxide nanofibers for gas sensing applications. Nanotechnology.  doi:10.1117
/12.722103. 
[30]	Jain, A. K., Sood, V., Bora, M., Vasita, R., Katti, D. S. (2014). Electrosprayed inulin microparticles for microbiota triggered targeting of colon. Carbohydrate Polymers, 112, 225–234
[31]	Kakoria, A., Sinha-Ray, S. (2018). A review on biopolymer-based fibers via electrospinning and solution blowing and their applications. Fibers, 6(3), 45.
[32]	Ghayempour, S., Mortazavi, S. M. (2013). Fabrication of micro–nanocapsules by a new electrospraying method using coaxial jets and examination of effective parameters on their production. Journal of Electrostatics, 71(4), 717–727..
[33]	Jaworek, A., Sobczyk, A. T. (2008). Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 66(3–4), 197–219.
[34]	Eling B, Gogolewski S, Pennings AJ.(1982). Biodegadable materials of poly (L-lactic acid):  Melt-spun and solution spun fibers. Polymer.23:1587–93
[35]	Kalb B, Pennings AJ. (1980). General crystallization behavior of poly( L-lactic acid). Polymer .21:607–12.
[36]	Carothers WH, Dorough GL, Van Natta FJ. (1932) Studies of polymerization and ring formation. J Am Chem Soc 54:76-72
[37]	Watson PD. (1948) Lactic acid polymers as constituents of synthetic resins and coating. Ind Engng Chem 40(8):1393-7
[38]	Spinu M, Jaackson C, Keating MY, Gardner KH. (1996) Material design in poly(lactic acid) systems : block copolymers, star homo- and copolymers, and stereocomplexes. J Macromol Sci Pure Appl Chem A33(10):1497-530s
[39]	Amass W, Amass A, Tighe B. (1998) A review of biodegradable polymers : uses, current developmemts in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47 : 89-144
[40]	Vainionpaa S, Rokkanen P, Tormala P. (1989) Surgical applications of biodegradable polymers in human tissue. Prog Polm Sci 14 :679-716
[41]	Kulkami RK, Pani KC, Neuman C, Leonard F. (1966) Polylactic acid for surgical implants. Arch Surg 93:839-43
[42]	Datta R, Henry M. (2006) Lactic acid: recent advances in products, processes and technologies—a review. J Chem Technol Biotechnol ; 81:1119–29.
[43]	Auras R, Harte B, Selke S. (2004) An overview of polylactides as packaging materials. Macromol Biosci ; 4:835–64.
[44]	Garlotta D. (2001) A literature review of poly(lactic acid). J Polym Environ; 9:63–84
[45]	Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer Jr LJ, LaDu BN. (1995). Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food Chem Toxicol; 33:273–283..
[46]	Weber CJ, Haugaard V, Festersen R, Bertelsen G. (2002) Production and applications of biobased packaging materials for the food industry. Food Addit Contam ;19:172–7.
[47]	Auras R, Harte B, Selke S, Hernandez R. (2003) Mechanical, physical, and barrier properties of poly(lactide) films. J Plastic Film Sheeting;19:123–35.
[48]	Singh SP, Singh JJ. (2005) Evaluation of oriented poly(lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packag Technol Sci ;18:207–16.
[49]	Jiang, J., Gong, L., Dong, Q., Kang, Y., Osako, K. Li, L. (2020). Characterization of PLA-P3,4HB active film incorporated with essential oil: Application in peach preservation. Food Chemistry, 313, p.126134.
[50]	Serizawa S, Inoue K, Iji M. (2006) Kenaf-fiber-reinforced poly(lactic acid) used for electronic products. J Appl Polym Sci; 100:618–24.
[51]	J. J. Castellano, S. M. Shafii, F. Ko (2007). Comparative evaluation of silver-containing antimicrobial dressings and drugs. International Wound Journal, vol. 4, no. 2, pp. 114–122.
[52]	 X. Chen, H. J. Schluesener (2008). Nanosilver: a nanoproduct in medical application. Toxicology Letters, vol. 176, no. 1, pp. 1–12.
[53]	J. Fong, F. Wood. (2006) Nanocrystalline silver dressings in wound management. International Journal of Nanomedicine, vol. 1, no. 4, pp. 441–449
[54]	R. Bandyopadhyaya, M. V. Sivaiah, P. A. Shankar. (2008) Silver-embedded granular activated carbon as an antibacterial medium for water purification Journal of Chemical Technology and Biotechnology, vol. 83, no. 8, pp. 1177–1180
[55]	D. J. Barillo, M. Pozza, and M. Margaret-Brandt. (2014). A literature review of the military uses of silver-nylon dressings with emphasis on wartime operations. Burns, vol. 40, no. 1, pp. S24– S29..
[56]	E. C. Abboud, J. C. Settle, T. B. Legare, J. E. Marcet, D. J. Barillo, J. E. Sanchez, (2014) Silver-based dressings for the reduction of surgical site infection: review of current experience and recommendation for future studies. Burns, vol. 40, no. 1, pp. S30–S39.
[57]	M. N. Bates, (2006) Mercury amalgam dental fillings: an epidemiologic assessment. International Journal of Hygiene and Environmental Health, vol. 209, no. 4, pp. 309–316.
[58]	Xu, C. W. Gao, X. H. Li et al. (2013) In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. Journal of Ocular Pharmacology and Therapeutics, vol. 29, no. 2, pp. 270–274.
[59]	D. J. Barillo, D. E. Marx. (2014). Silver in medicine: a brief history BC 335 to present. Burns, vol. 40, supplement 1, pp. S3–S8.
[60]	M. Ip, S. L. Lui, V. K. M. Poon, I. Lung, (2006). Antimicrobial activities of silver dressings: an in vitro comparison. Journal of Medical Microbiology, vol. 55, no. 1, pp. 59–63.
[61]	J. B. Wright, K. Lam, R. E. Burrell, (1998). Wound management in an era of increasing bacterial antibiotic resistance: a role for topical silver treatment.American Journal of Infection Control, vol. 26, no. 6, pp. 572–577.
[62]	Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, J. O. Kim, (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, vol. 52, no. 4, pp. 662–668
[63]	Periasamy, S.; Joo, H.S.; Duong, A.C.; Bach, T.H.; Tan, V.Y.; Chatterjee, S.S.; Cheung, G.Y.; Otto, M. (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl. Acad. Sci. 109, 1281–1286
[64]	Rolim, J.P.; de-Melo, M.A.; Guedes, S.F.; Albuquerque-Filho, F.B.; de Souza, J.R.; Nogueira, N.A.; Zanin, I.C.; Rodrigues, L.K.(2012) The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J. Photochem. Photobiol. B, 106, 40–46.
[65]	S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, (2007) “Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, vol. 18, no. 22, pp. 22510–22513.
[66]	Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M. (2014) Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Appl. Microbiol. Biotechnol. 98, 1951–1961.
[67]	Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., Galdiero, M. (2015). Silver Nanoparticles as Potential Antibacterial Agents. Molecules, 20(5), 8856–8874. doi:10.3390/molecules20058856 
[68]	Casasola, R., Thomas, N. L., Georgiadou, S. (2016). Electrospinning of poly(lactic acid): Theoretical approach for the solvent selection to produce defect-free nanofibers. Journal of Polymer Science Part B: Polymer Physics, 54(15), 1483–1498.doi:10.1002/polb.24042.
[69]	Pavlova, E. R., Bagrov, D. V., Monakhova, K. Z., Piryazev, A. A., Sokolova, A. I., Ivanov, D. A., Klinov, D. V. (2019).Tuning the properties of electrospun polylactide mats by ethanol treatment. Materials & Design, 181, 08061
[70]	Abudula, T., Saeed, U., Memic, A., Gauthaman, K., Hussain, M. A., Al-Turaif, H. (2019). Electrospun cellulose Nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering. Journal of Polymer Research, 26(5). doi:10.1007
/s10965-019-1772-y 
[71]	Rabionet, M., Gallardo, X., Angelats, D., Ciurana, J., Ruiz-Martínez, S., Puig, T. (2019).PLA Electrospun Scaffolds for Three-Dimensional Triple-Negative Breast Cancer Cell Culture. Polymers, 11(5), 916. doi:10.3390
/polym11050916 
[72]	Li, W., Yu, Q., Yao, H., Zhu, Y., Topham, P. D., Yue, K., Wang, L. (2019).
Superhydrophobic hierarchical fiber/bead composite membranes for efficient burns treatment. Acta Biomaterialia. doi:10.1016/j.actbio.
[73]	Alippilakkotte, S., Kumar, S., Sreejith, L. (2017).Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 771–782. doi:10.1016/j.colsurfa.
[74]	Au, H. T., Pham, L. N., Vu, T. H. T., Park, J. S. (2011).Fabrication of an antibacterial non-woven mat of a poly(lactic acid)/chitosan blend by electrospinning. Macromolecular Research, 20(1), 51–58. doi:10.1007/s13233-012-0010-9.
[75]	Kim, E. S., Kim, S. H., Lee, C. H. (2010). Electrospinning of polylactide fibers containing silver nanoparticles. Macromolecular Research, 18(3), 215–221
. doi:10.1007/s13233-010-0316-4 
[76]	Pastoriza-Santos I, Liz-Marz á n LM.(2002) Synthesis of Silver Nanoprisms in DMF. Nano Lett; 2:903-905 
[77]	Pastoriza-Santos I, Liz-Marz á n LM. (2002) Formation of PVP-Protected Metal Nanoparticles in DMF. Langmuir; 18: 2888-2894.
[78]	Pastoriza-Santos I, Liz-Marz á n LM. (1999) Formation and Stabilization of Silver Nanoparticles through Reduction by N,N-Dimethylformamide, Langmuir; 15: 948-951
[79]	Cam, M. E., Cesur, S., Taskin, T., Erdemir, G., Kuruca, D. S., Sahin, Y. M., … Gunduz, O. (2019). Fabrication, characterization and fibroblast proliferative activity of electrospun Achillea lycaonica-loaded nanofibrous mats. European Polymer Journal, 120, 109239. doi:10.1016/j.eurpolymj
[80]	Leyva-Verduzco, A. A., Castillo-Ortega, M. M., Chan-Chan, L. H., Silva-Campa, E., Galaz-Méndez, R., Vera-Graziano, R. (2019). Electrospun tubes based on PLA, gelatin and genipin in different arrangements for blood vessel tissue engineering. Polymer Bulletin. doi:10.1007/s00289-019-03057-7
[81]	Hedayati, F., Moshiri‐Gomchi, N., Assaran‐Ghomi, M., Sabahi, S., Bahri‐Laleh, N., Mehdipour‐Ataei, S., Mirmohammadi, S. A. (2019). Preparation and properties of enhanced nanocomposites based on PLA/PC blends reinforced with silica nanoparticles. Polymers for Advanced Technologies. doi:10.1002/pat.4797 
[82]	Hedayati, F., Moshiri‐Gomchi, N., Assaran‐Ghomi, M., Sabahi, S., Bahri‐Laleh, N., Mehdipour‐Ataei, S., Mirmohammadi, S. A. (2019). Preparation and properties of enhanced nanocomposites based on PLA/PC blends reinforced with silica nanoparticles. Polymers for Advanced Technologies. doi:10.1002/pat.4797
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信