淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1101201714092800
中文論文名稱 風致振動舒適度標準評估:利用振動台問卷資料
英文論文名稱 Evaluation of Human Comfort Criteria Questionnaire Survey to Wind-Induced Motion by Motion Simulator
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 105
學期 1
出版年 106
研究生中文姓名 劉興澔
研究生英文姓名 Hsin-Hao Liu
學號 603380154
學位類別 碩士
語文別 中文
口試日期 2016-12-20
論文頁數 77頁
口試委員 指導教授-張正興
委員-陳振華
委員-蔡元芳
委員-蔡懷寬
委員-張正興
中文關鍵字 風致振動  舒適度標準  振動模擬台  回歸週期 
英文關鍵字 Wind-Induced Motion  Comfort Criteria  Motion Simulator  Return Period 
學科別分類 學科別應用科學土木工程及建築
中文摘要 建築物在受到風力擾動的的情況下,除了安全性受到考量以外,內部使用人員的舒適度在結構設計裡也是一個重要的議題,對於現今建築物受風影響造成的振動其舒適度規範的制定長久以來一直備受爭議,其影響原因不只是身體因素,心理與外在環境等也都贈成眾多影響。台灣現今的風力規範訂定之舒適度加速度標準為5 mm/sec2,對應之回歸週期為半年。
為建立在地資料作為未來風力規範改進之參考,本研究使用淡江大學風工程研究中心之振動模擬台,實際進行簡諧振動與真實建築物之隨機振動試驗,獲得實驗調查資料,並建立舒適度規範(2%、10%、50%抱怨百分比)與對應之回歸週期。
由結果得知
1. 舒適度門檻值與頻率密切相關,頻率越高門檻值越低;出現負面抱怨的累積人數越多,門檻值越高。
2. 對於相同加速度而言,頻率越高越容易造成不舒適。
3. 當振動頻率較低的時候,造成負面抱怨的主要原因為尖峰振動。相對的,當振動頻率較高時,造成負面抱怨的主要原因為整體振動的平均感受。
4. 對於ISO6897規範大約對應到本實驗10%的人感受到不舒適。
5. 對於相同加速度門檻值下,ISO之回歸週期(5年)與本實驗(0.5年)和台灣規範(0.5年)結果有差距,所以地區不同所能接受週期之容忍度也不盡相同。
英文摘要 Under wind disturbance, the comfort of occupants in buildings is an important issue in the structural design aside from safety consideration. The human comfort criterion for wind-induced motion has been a long-time controversial issue because many factors, either physiological or psychological, can considerably differentiate the outcome. Recently, a constant criterion of 5 cm/sec2 for a half-year return period was regulated in Taiwan building wind code.
In an attempt to build up the local data base in preparation for improving the building wind code in the future, this research aims to conduct surveys to investigate the comfort criteria by using a motion simulator in the wind engineering research center, Tamkang University. A methodology and feasible procedure to determine the comfort threshold and the return period were proposed in this study. Two types of surveys by using harmonic motion and random motion, respectively, were performed to obtain the comfort thresholds for 2%, 10% and 50% of people objecting and their corresponding return periods.
The survey results indicate that
1. The comfort thresholds are frequency-dependent in 0.1~1.08 Hz.
2. The comfort (acceleration) thresholds decreases as the vibration frequency increases.
3. Under a random motion, the peak motion effect plays an more important role in comfort when the vibration frequency is lower, while the average motion effect is more emphasized in terms of feeling if the vibration frequency is higher.
4. In the ISO6897 about 10% of people feel uncomfortable In this experiment.
5. In the same comfort thresholds, the return period of ISO (5 years) is different from the experiment (0.5 years) and Taiwan building wind code (0.5 years), so the different area have different return periods.
論文目次 目錄
目錄 III
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 3
第二章 文獻回顧 6
第三章 實驗設計與流程 16
3-1 實驗設備與器材 16
3-1-1 水平振動台 16
3-1-2 感受室 17
3-2 第一階段實驗-簡諧振動實驗 18
3-2-1 振動參數之選取 18
3-2-2 實驗要項 18
3-2-3 試驗流程 20
3-3 第二階段實驗-隨機振動試驗 20
3-3-1 振動參數之產生 21
3-4 問卷設計 22
3-4-1 先期問卷 23
3-4-2 舒適度問卷 24
第四章 方法與理論 39
4-1 舒適度門檻值之分析 39
4-1-1 對數常態分佈之假設 39
4-2 回歸週期分析 41
4-2-1 負面抱怨百分比之回歸週期與期望值之關係 41
第五章 問卷結果分析與討論 43
5-1 簡諧試驗之振動感受 43
5-1-1 簡諧試驗之舒適度門檻值 43
5-1-2 簡諧試驗之回歸週期 44
5-2 隨機試驗之振動感受(以加速度RMS表示) 45
5-2-1 隨機試驗之舒適度門檻值 45
5-2-2 隨機試驗之回歸週期 46
5-3 隨機試驗之振動感受(以加速度Peak表示) 47
5-3-1 隨機試驗之舒適度門檻值 47
5-3-2 隨機試驗之回歸週期 48
5-4 本研究舒適度門檻與ISO 6897之比較 49
5-4-1 簡諧試驗 49
5-4-2 隨機試驗 50
5-5 感受試驗討論 50
5-6 問卷資料之分析 52
5-6-1 門檻值: 52
5-6-2 回歸週期 54
第六章 結論與建議 71
6-1 結論 71
6-2 建議 72
參考文獻 73
附錄1 76
附錄2 77



圖目錄
圖2.1特殊用途建築物內人體之振動感受門檻值 12
圖2.2一般用途建築物內人體之振動感受門檻值 13
圖2.3 水平向正弦波之感受門檻值 14
圖2.4 水平向之舒適度標準 15
圖2.5一年回歸週期下之各國舒適度規範 15
圖3.1 舒適度感受實驗室 29
圖3.2 水平振動模擬台 29
圖3.3 感受室外觀 30
圖3.4 感受室內觀透視圖 31
圖3.5 感受室內部實景 31
圖3.6 百世大樓數值模擬受風振動位移時間歷時 32
圖3.7 百世大樓數值模擬受風振動軌跡圖(單位:公尺) 32
圖3.8 百世大樓數值模擬受風振動能量頻譜 33
圖3.9 百世大樓數值模擬受風振動濾波前後之能量頻譜 34
圖3.10 隨機振動試驗使用之0.1099Hz下4種等級之位移 35
圖3.11 隨機振動試驗使用之0.3235Hz下4種等級之位移 35
圖3.12 隨機振動試驗使用之0.7507Hz下4種等級之位移 36
圖3.13 隨機振動試驗使用之1.08Hz下4種等級之位移 36
圖3.14 隨機振動試驗使用之0.1099Hz下4種等級之加速度 37
圖3.15 隨機振動試驗使用之0.3235Hz下4種等級之加速度 37
圖3.16 隨機振動試驗使用之0.7507Hz下4種等級之加速度 38
圖3.17 隨機振動試驗使用之1.08Hz下4種等級之加速度 38
圖5.1簡諧試驗下舒適度門檻值之累積分布函數(CDF) 61
圖5.2簡諧試驗下加速度與回歸週期關係 62
圖5.3隨機試驗下舒適度門檻值之累積分布函數(CDF) 63
圖5.4隨機試驗下加速度與回歸週期關係 64
圖5.5隨機試驗下舒適度尖峰門檻值之累積分布函數(CDF) 65
圖5.6隨機試驗下尖峰加速度與回歸週期關係 66
圖5.7簡諧試驗RMS結果與ISO6897之比較 67
圖5.8隨機試驗RMS結果與ISO6897之比較 68
圖5.9隨機試驗尖峰值結果與ISO6897之比較 69
圖5.10簡諧RMS與隨機RMS比較表 70

表目錄
表2.1 Takeshi Goto 建議之感受標準 11
表2.2 Isyumov 與 Kilpatrick 建議之感受標準 11
表3.1簡諧振動試驗頻率、振幅與加速度對應表 28
表3.2隨機振動試驗頻率振福與加速度對應表 28
表5.1簡諧試驗振動受試者出現負面抱怨百分比 56
表5.2隨機試驗振動受試者出現負面抱怨百分比 56
表5.3簡諧試驗下2%負面抱怨之加速度門檻值與回歸週期 57
表5.4簡諧試驗下10%負面抱怨之加速度門檻值與回歸週期 57
表5.5簡諧試驗下50%負面抱怨之加速度門檻值與回歸週期 57
表5.6隨機試驗下2%負面抱怨之加速度門檻值與回歸週期 58
表5.7隨機試驗下10%負面抱怨之加速度門檻值與回歸週期 58
表5.8隨機試驗下50%負面抱怨之加速度門檻值與回歸週期 58
表5.9隨機試驗下2%負面抱怨之加速度尖峰門檻值與回歸週期 59
表5.10隨機試驗下10%負面抱怨之加速度尖峰門檻值與回歸週期 59
表5.11隨機試驗下50%負面抱怨之加速度尖峰門檻值與回歸週期 59
表5.12簡諧試驗下受試者不能忍受該振動的回歸週期百分比 60
表5.13隨機試驗下受試者不能忍受該振動的回歸週期百分比 60

參考文獻 [1] Architecture and Building Research Institute of Taiwan (2007), Taiwan Building Wind Code, Taipei, Taiwan
[2] Fazlur R. Khan and Richard A. Parmelee (1971), “Service Criteria for Tall Buildings for Wind Loading, Proceedings of 3rd International Conference on Wind Effects on Buildings and Structures, Tokyo, Japan, pp. 401-407.
[3] Peter W. Chen and Leslie E. Robertson (1972), “Human Perception Threshold of Horizontal Motion, ASCE Journal of Structural Division, Vol. 98, No. ST8, pp. 1681-1695.
[4] Robert J. Hansen、John W. Reed and Eric H. Vanmarcke, (1973), 粀uman Response to Wind-induced Motion of Buildings, ASCE Journal of Structural Division, Vol. 99, No. ST7, pp. 1589-1605.
[5] Takeshi Goto (1983), “Studies on Wind-Induced Motion of Tall Buildings Based on Occupants枹eactions, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 13, pp. 241-252.
[6] A.P.Jeary, R.G.Morris and R.W.Tomlinson (1988), “Perception of Vibration – Tests in a Tall Building, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 29, pp.361-370.
[7] Andy W. Irwin (1978), 粀uman Response to Dynamic Motion of Structures, The Structural Engineer, Vol. 56A , No. 9, pp. 237-244.
[8] Andy W. Irwin (1986), 罘otion in Tall Buildings, Proceedings of Conference on Tall Buildings and Urban Habitat - Second Century of the Skyscraper, Van Nostrand, Chicago, pp. 759-778.
[9] International Organization for Standardization (1984), Guidelines for the evaluation of the response of occupants of fixed structures, especially buildings and off-shore structures, to low-frequency horizontal motion (0.063 to 1 Hz), ISO6897-1984, Geneva, Switzerland.
[10] N. Isyumov (1993), “Criteria for Acceptable Wind-Induced Motions of Tall Buildings, Proceedings of International Conference on Tall Buildings, Council on Tall Buildings and Urban Habitat, Rio de Janeiro.
[11] N. Isyumov and J. Kilpatrick (1996), “Full-Scale Experience with Wind-Induced Motions of Tall Buildings, Procceedings of ASCE Structures Congress, Chicago, USA.
[12] W. H. Melbourne and J.C.J. Cheung (1988), “Designing for Serviceable Accelerations in Tall Buildings, Proceedings of 4th International Conference on Tall Buildings, Hong Kong and Shanghai, pp. 148-155.
[13] W. H. Melbourne, (1998), “Comfort Criteria for Wind-Induced Motion in Structures, Structural Engineering International 1/98, International Association of Bridge and Structural Engineering, pp. 40-44.
[14] Andy W.Irwin (1978), “Human Response to Dynamic Motion of Structures, The Structural Engineer, Vol. 56A , No. 9, pp. 237-244.
[15] Andy W.Irwin (1986), “Motion in Tall Buildings, Proceedings of Conference on Tall Buildings and Urban Habitat - Second Century of the Skyscraper, Van Nostrand, Chicago, pp. 759-778.
[16] W. H. Melbourne and J.C.J. Cheung (1988), “Designing for Serviceable Accelerations in Tall Buildings, Proceedings of 4th International Conference on Tall Buildings, Hong Kong and Shanghai, pp. 148-155.
[17] W. H. Melbourne (1998), “Comfort Criteria for Wind-Induced Motion in Structures, Structural Engineering International 1/98, International Association of Bridge and Structural Engineering, pp. 40-44.
[18] Standards Australia/ Standards New Zealand (2002), AS/NZS 1170.2 Supplement 1:2002, Structural Design Actions - Wind Actions - Commentary (Supplement to AS/NZS 1170.2:2002), Sidney, Australia.
[19] Takeshi Goto (1975), “Research on Vibration Criteria from the View Point of People Living in Tall Buildings. (Part 1) Various Responses of Humans to Motion, Transactions of the Architectural Institute of Japan, Vol. 237, No. 11, pp.109-118.
[20] J. Kanda, Y. Tamura and K. Fujii, (1988), “Probabilistic Criteria for Human Perception of Low-Frequency Horizontal Motions, Proceedings of Symposium/Workshop on Serviceability of Buildings, Ottawa, pp. 260-269.
[21] N. Isyumov, (1993), “Criteria for Acceptable Wind-Induced Motions of Tall Buildings, Proceedings of International Conference on Tall Buildings, Council on Tall Buildings and Urban Habitat, Rio de Janeiro.
[22] N. Isyumov and Kilpatrick, J. (1996), “Full-Scale Experience with Wind-Induced Motions of Tall Buildings, Procceedings of ASCE Structures Congress, Chicago, USA.
[23] S. Nakata, Y. Tamura and T. Otsuki,(1993), “Habitability under Horizontal Vibration of Law Building, International Colloquium on Structural Serviceability of Buildings, Göteborg, Sweden, IABSE Reports, Vol. 69, pp.39-44.
[24] K. Shioya and J. Kanda (1993), “Human Perception Thresholds of Horizontal Motion, International Colloquium on Structural Serviceability of Buildings, Göteborg, Sweden, IABSE Reports, Vol. 69, pp. 45-52.
[25] Kenny C. S. Kwok, Melissa D. Burton and Peter A. Hitchcock, (2007),“Occupant Comfort and Perception of Motion in Wind-Excited Tall Buildings, Proc. of 12th International Conference on Wind Engineering, Cairns, Australia, pp. 101-115.
[26] Melissa D. Burton, Roy O. Denoon, Richard D. Roberts, Kenny C. S. Kwok, and Peter A. Hitchcock (2003),“A motion simulator to investigate effects of wind-induced building mption, Proc. of 11th International Conference on Wind Engineering, Texas, USA, pp. 1341-1348.
[27] John F. Golding(1998), “Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness, Brain Research Bulletin, Vol.47, No. 5, pp.507-516.
[28] John F. Golding(2006), “Predicting individual differences in motion sickness susceptibility by questionnaire, Personality and Individual Differences 41, pp.237-248.
[29] John F. Golding(2006), “Motion sickness susceptibility, Autonomic Neuroscience: Basic and Clinical 129, pp.67-76.
[30] Architectural Institute of Japan (2004), Guidelines for the evaluation of habitability to building vibration, AIJES-V001-2004, Tokyo, Japan.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-01-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-01-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信