§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1101201711023400
DOI 10.6846/TKU.2017.00347
論文名稱(中文) 5G行動通訊網路下車對車通訊之非視距防撞預警研究
論文名稱(英文) Study on Non-Line-of-Sight Collision Avoidance of Vehicle-to-Vehicle Communication for 5G Communication Networks
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系博士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 1
出版年 106
研究生(中文) 顏良祐
研究生(英文) Liang-Yu Yen
學號 800440017
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2016-12-20
論文頁數 79頁
口試委員 指導教授 - 李揚漢
委員 - 曹恆偉
委員 - 蔡志宏
委員 - 謝孫源
委員 - 蘇木春
委員 - 許獻聰
委員 - 李揚漢
委員 - 陳懷恩
關鍵字(中) 5G
車對車通訊
非視距範圍
防撞偵測
都普勒偏移
關鍵字(英) 5G
Vehicle-to-Vehicle Communication
Non-Light-of-Sight(NLOS) Range
Collision Detection
Doppler Shift
第三語言關鍵字
學科別分類
中文摘要
本論文將對於5G行動網路下車對車通訊在非視距情況下的防撞預警進行研究與探討,在本論文中將分成三個章節進行討論:第二章進行情境模擬與分析,在三種情境下進行模擬以觀察都普勒偏移值變化,第三章則提出行車碰撞理論以行車碰撞預警判斷流程判斷是否發生碰撞,第四章則是將本論文所提之碰撞預警機制進行模擬驗證。 
    在台灣高速公路的環境,由於駕駛的行車習慣不佳或視線不良常會出現在國道上發生嚴重追撞車禍的新聞,在目前物聯網與4G/5G無線通訊系統蓬勃發展的階段,許多車廠已經開始投入大量資源進行車輛安全防撞的技術,希望能夠大幅的減少損及人命的車禍憾事,在高速公路的情境之下,本論文提出使用在車上裝設V2V收發機,利用都普勒偏移的特性對於移動車輛發出的頻率偏移進行分析與觀察車之間動態關係,透過頻率偏移的變化來偵測在前方同車道多車狀況下,進行車輛碰撞的預警分析,並且對於在同一車道上,若要進行跨越車道超車行為時,分析是否能夠安全的完成超車的行為。

    在十字路口常會有駕駛搶黃燈或闖紅燈的行為,導致在經過路口時與另一向遵守交通號誌的駕駛發生碰撞的車禍,本論文提出一利用都普勒偏移特性偵測路口碰撞行為的方法,因兩車的移動方向皆相同,若在觀察車等速的條件下,利用都普勒偏移公式可推得,如果都普勒偏移值一直維持固定,則兩車在路口很有可能會發生碰撞。本論文皆是利用車對車間發射無線電波的都普勒特性進行行車安全的預警分析,以達到低延遲快速預警的效果,這也是V2V通訊碰撞預警中最重要的一環。綜合以上的研究項目,在未來5G V2V通訊系統的情境下,可為行車駕駛的生命安全提供迅速,有效的安全資訊,並有效的減少車禍的發生。
英文摘要
In this dissertation it explores and develops a collision avoidance process for Vehicle-to-Vehicle communication in Non-Line-of-Sight (NLOS) communication environment for 5G mobile communication networks. It consists of three chapters in the dissertation; in Chapter 2 the scenario simulation and analysis, it considers in freeway three vehicles moving environments and then uses simulations to observe the variations of vehicles Doppler frequency shifts in every environment; in Chapter 3 a vehicle collision theory is proposed and a vehicle collision pre-warning process is developed to determine is there any vehicle collision occurs and then in Chapter 4 it is through simulations to validate our proposed collision pre-warning algorithm. 

  It is reported quite often in daily news that serious rear-end car collisions are happened in Taiwan freeway due to drivers inappropriate driving behavior or bad view range due to weather condition. In current prosperously developed IoT (Internet of Things) and 4G/5G wireless communication networks car industry has invested many resources in the development of car collision safety technologies trying to possibly reduce property damages and fatalities. In this dissertation it considers in the freeway traffic environment to have cars installed V2V transceiver to utilize the Doppler frequency drift characteristic and to analyze the frequency drift generated from moving vehicles; and then to observe the dynamic relationships among vehicles and through the variation of frequency drift to detect the situation when many in front vehicles are moving in the same lane to perform the pre-warning analysis for possible vehicles collision and also to analyze is it possible to safely complete the car pass intention when a vehicle is trying, across from another lane, to pass a front vehicle moving in the same lane.  

  In a cross-section road it sometimes occurs the situation a defense driver is hit at the intersection by a vehicle that its driver does not stop at red signal or rushes to ignore the yellow signal. In this dissertation we propose a method to utilize the Doppler frequency drift characteristic to detect vehicle collision behavior at the intersection. If constant speed vehicles are moving in the same direction and if the Doppler frequency drift is maintained at a fixed value then by utilizing the developed Doppler frequency drift formula it could detect the possibility that two vehicles may incur collision at the intersection

  In this dissertation it utilizes the Doppler frequency shift characteristic of wireless electromagnetic waves emitted between vehicles to perform the pre-warning analysis for the safety of moving vehicles it attains a low delay and fast pre-warning effect that is also the most important subject in considering the collision pre-warning issue in vehicle–to-vehicle communication. From the subjects we analyzed and developed in this dissertation it concludes that we can provide a vehicle driver a fast and safety information to effectively reduce the occurrence of possible fatalities.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	III
目錄	V
圖目錄	VII
表目錄	X
第 1 章	介紹	1
1.1.	研究動機	1
1.2.	3GPP LTE-V2V發展現況	2
1.3.	V2V防撞研究文獻探討	3
1.4.	現今所使用各種防撞技術比較	9
1.5.	論文章節與架構	10
第 2 章	情境模擬與分析	11
2.1.	模擬環境介紹	11
2.2.	都普勒偏移介紹與公式推導[54]	11
2.3.	情境介紹	16
2.4.	模擬參數	20
2.4.1.	直線高速公路	20
2.4.2.	十字路口	20
2.4.3.	交流道口	21
2.5.	模擬結果	22
2.5.1.	直線高速公路	22
2.5.2.	十字路口	26
2.5.3.	交流道口	38
2.6.	整理與結論	47
2.6.1.	直線高速公路	47
2.6.2.	十字路口	47
2.6.3.	交流道口	48
2.6.4.	觀察總結之分析討論	48
第 3 章	行車碰撞理論之分析	52
3.1.	2車行車碰撞之情境分析	52
3.2.	行車碰撞預警判斷流程	53
3.3.	直線高速公路碰撞預警流程圖	53
3.4.	路口碰撞預警流程圖	55
第 4 章	行車碰撞預警機制模擬驗證	56
4.1.	NLOS混合情境預警機制驗證	56
4.2.	混合情境都普勒偏移值分析	58
4.3.	混合情境都普勒偏移值斜率分析	59
4.4.	混合式情境Car1之Cosine Value分析	60
4.5.	混合式情境分析之總結	60
第 5 章	第五章 結論與未來展望	61
5.1.	結論	61
5.2.	未來展望	63
參考文獻	66
附錄1-行車碰撞預警實境分析	72
附錄2-5車碰撞情境示意圖	73
著作列表	74
期刊	74
會議論文	75
專利	78
中華民國專利	78
韓國專利	78
美國專利	78
獲獎紀錄	79
國際標準規格參與情形	79


 
圖目錄
圖1 1. LTE V2X之架構[1]	2
圖1 2. LTE V2X 配置 [2]	3
圖2 1.訊號源移動	12
圖2 2.觀察者移動	14
圖2 3.訊號源移動且觀察者移動	15
圖2 4.直線高速公路情境示意圖	17
圖2 5.十字路口情境示意圖	18
圖2 6.交流道口情境示意圖	19
圖2 7.高速公路Case1都普勒偏移值	22
圖2 8.高速公路Case1都普勒偏移值斜率	22
圖2 9.高速公路Case2都普勒偏移值	23
圖2 10.高速公路Case2都普勒偏移值斜率	23
圖2 11.高速公路Case3都普勒偏移值	23
圖2 12.高速公路Case3都普勒偏移值斜率	23
圖2 13.高速公路Case4都普勒偏移值	24
圖2 14.高速公路Case4都普勒偏移值斜率	24
圖2 15.高速公路Case5都普勒偏移值	24
圖2 16.高速公路Case5都普勒偏移值斜率	24
圖2 17.高速公路Case6都普勒偏移值	25
圖2 18.高速公路Case6都普勒偏移值斜率	25
圖2 19.十字路口Case1都普勒偏移值	26
圖2 20.十字路口Case1都普勒偏移值斜率	26
圖2 21.十字路口Case1Cosine Value	26
圖2 22.十字路口Case2都普勒偏移值	27
圖2 23.十字路口Case2都普勒偏移值斜率	27
圖2 24.十字路口Case2Cosine Value	27
圖2 25.十字路口Case3都普勒偏移值	28
圖2 26.十字路口Case3都普勒偏移值斜率	28
圖2 27.十字路口Case3Cosine Value	28
圖2 28.十字路口Case4都普勒偏移值	29
圖2 29.十字路口Case4都普勒偏移值斜率	29
圖2 30.十字路口Case4Cosine Value	29
圖2 31.十字路口Case5都普勒偏移值	30
圖2 32.十字路口Case5都普勒偏移值斜率	30
圖2 33.十字路口Case5 Cosine Value	30
圖2 34.十字路口Case6都普勒偏移值	31
圖2 35.十字路口Case6都普勒偏移值斜率	31
圖2 36.十字路口Case6 Cosine Value	31
圖2 37.十字路口Case7都普勒偏移值	32
圖2 38.十字路口Case7都普勒偏移值斜率	32
圖2 39.十字路口Case7 Cosine Value	32
圖2 40.十字路口Case8都普勒偏移值	33
圖2 41.十字路口Case8都普勒偏移值斜率	33
圖2 42.十字路口Case8 Cosine Value	33
圖2 43.十字路口Case9都普勒偏移值	34
圖2 44.十字路口Case9都普勒偏移值斜率	34
圖2 45.十字路口Case9 Cosine Value	34
圖2 46.十字路口Case10都普勒偏移值	35
圖2 47.十字路口Case10都普勒偏移值斜率	35
圖2 48.十字路口Case10 Cosine Value	35
圖2 49.十字路口Case11都普勒偏移值	36
圖2 50.十字路口Case11都普勒偏移值斜率	36
圖2 51.十字路口Case11 Cosine Value	36
圖2 52.十字路口Case12都普勒偏移值	37
圖2 53.十字路口Case12都普勒偏移值斜率	37
圖2 54.十字路口Case12 Cosine Value	37
圖2 55.交流道口Case1都普勒偏移值	38
圖2 56.交流道口Case1都普勒偏移值斜率	38
圖2 57.交流道口Case1 Cosine Value	38
圖2 58.交流道口Case2都普勒偏移值	39
圖2 59.交流道口Case2都普勒偏移值斜率	39
圖2 60.交流道口Case2 Cosine Value	39
圖2 61.交流道口Case3都普勒偏移值	40
圖2 62.交流道口Case3都普勒偏移值斜率	40
圖2 63.交流道口Case3 Cosine Value	40
圖2 64.交流道口Case4都普勒偏移值	41
圖2 65.交流道口Case4都普勒偏移值斜率	41
圖2 66.交流道口Case4 Cosine Value	41
圖2 67.交流道口Case5都普勒偏移值	42
圖2 68.交流道口Case5都普勒偏移值斜率	42
圖2 69.交流道口Case5 Cosine Value	42
圖2 70.交流道口Case6都普勒偏移值	43
圖2 71.交流道口Case6都普勒偏移值斜率	43
圖2 72.交流道口Case6 Cosine Value	43
圖2 73.交流道口Case7都普勒偏移值	44
圖2 74.交流道口Case7都普勒偏移值斜率	44
圖2 75.交流道口Case7 Cosine Value	44
圖2 76.交流道口Case8都普勒偏移值	45
圖2 77.交流道口Case8都普勒偏移值斜率	45
圖2 78.交流道口Case8 Cosine Value	45
圖2 79.交流道口Case9都普勒偏移值	46
圖2 80.交流道口Case9都普勒偏移值斜率	46
圖2 81.交流道口Case9 Cosine Value	46
圖3 1.兩車碰撞情境示意圖	52
圖3 2.行車碰撞預警判斷流程圖	53
圖3 3.直線高速公路碰撞預警判斷流程圖	54
圖3 4.路口撞擊預警判斷流程圖	55
圖4 1.混合情境示意圖	56
圖4 2.路徑圖	57
圖4 3.各車速度	57
圖4 4.都普勒偏移值	57
圖4 5.都普勒偏移值斜率	57
圖4 6.CAR1 Cosine Value	58
圖4 7.Collision Index	58
圖4 8.都普勒偏移值	58
圖4 9.都普勒偏移值斜率	59
圖4 10.NLOS混合情境預警結果	60
圖5 1.通用型碰撞預警流程圖	65

 
表目錄
表 1 1. 目前常見防撞技術比較表	9
表 2 1. 直線高速公路模擬參數	20
表 2 2. 十字路口情境模擬參數	21
表 2 3. 交流道口情境模擬參數	21
表 2 4. 十字路口都普勒偏移模擬結果	49
表 2 5. 十字路口兩車夾角模擬結果	50
表 2 6. 交流道口都普勒偏移模擬結果	50
表 2 7. 交流道口兩車夾角模擬結果	51
表 4 1. 混合情境模擬參數表	56
參考文獻
[1]	3GPP Specification 22.885, “Study on LTE support for Vehicle to Everything(V2X) services ”
[2]	Dino Flore, “Initial Cellular V2X standard completed,” 3GPP RAN, Sept. 2016
[3]	Jisoo Yu, Yeona Kim and Cheol Mun, “Demo: Development of an Integrated Cooperative Collision Warning System Based on Established Standards,” 2015 IEEE Vehicular Networking Conference (VNC), pp. 173-174, Dec., 2015.
[4]	Ashwin Gumaste, Rahul Singhai and Anirudha Sahoo, “Intelligent Vehicular Transportation System (In VeTraS),” 2007 Australasian Telecommunication Networks and Applications Conference, pp. 58-63, Dec., 2007, New Zealand.
[5]	George K. Mitropoulos, Irene S. Karanasiou, Arno Hinsberger, Fernando Aguqdo-Agelet, Jorst Wireker, Hans-Josef Hilt, Said Mammar and Gerhard Noecker, “Wireless Local Danger Warning: Cooperative Foresighted Driving Using Intervehicle Communication,” IEEE Transactions on Intelligent Transportation System, Vol. 11, Issue 3, pp. 622-626, Dec. 2009.
[6]	James Ward, Gabriel Agamennoni, Stewart Worral and Eduarado Nebot, “Vehicle Collision Probability Calculation for General Traffic Scenarios Under Uncertainty,” 2014 IEEE Intelligent Vehicles Symposium (IV¸ pp. 986-992, June, 2014, Michigan, USA.
[7]	Hassan A. Jarimi, Benjamin Zimmerman, David Nawn and Peter Sutovsky, “Collaborative Navigation Systems for Collision Avoidance,” 2010 6th International conference on Collaborative Computing: Network, Application and Worksharing (CollaborateCom), Oct., 2010.
[8]	周立德, 何經強, “具預警能力之車輛防撞機制, ” TANET 2008 台灣網際網路研討會, Oct. 2008, 義守大學, 高雄, 台灣
[9]	Po-Jui Chiu and Hsin-Mu Tsai, “An Intersection Collision Avoidance System for Scooters Utilizing Non-Line-Of-Sight Links,” 2012 IEEE Global Communications Conference (GLOBECOM), pp. 49-55, Dec. 2012.  
[10]	Le Tien TRIEN and Yasushi YAMAO, “AN INVESTIGATION OF NETWORK CODING RELAY IN ITS V2V COMMUNICATION AT INTERSECTIONS,” 2014 4th IEEE International Conference on Network Infrastructure and Digital Content(IC-NIDC), pp. 297-301, Sept., 2014. 
[11]	Seyed (Reza) Azimi, Garrav Bhatia, Raguathan(Raj) Rajkumar and Priyantha Mudalige, “Reliable Intersection Protocols Using Vehicular Networks,” 2013 ACM/IEEE International Conference on Cyber-Physical System (ICCPS), pp. 1-10, April, 2013.
[12]	Jeong-Ah Jane, Keechoo Choi and Hanbyeog Cho, “A Fixed Sensor-Based Intersection Collision Warning System in Vulnerable Line-of-Sight and/or Traffic-Violation-Prone Environment,” IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, Vol. 13, No. 4, pp. 1880-1890, Dec. 2012.
[13]	Akhil M., Nirmala Vasddevan, Ullas Ramanadhan and Alin Devassy, “Collision Avoidance at Intersections using Vehicle Detectors and Smartphones,” 2015 International Conference on Connected Vehicles and Expo(ICCVE), pp. 389-390, April, 2016.
[14]	Hidenori Suzuki, Hidekazu Murata and Kiyomichi Araki, “Performance of Inter-vehicle Communication Technique for Intersection Collision Warning,” 2005 Fifth International Conference on Information, Communications and Signal Processing, pp. 603-606, Dec., 2005. 
[15]	Henrik Schumacher, Hugues Tchouankem, Jorg Nucklt, Thomas Kurner, Tetiana Zinchenko, Andre Leschke and Lars Wolf, “Vehicle-to-Vehicle IEEE 802.11p performance measurements at urban intersections,” 2012 IEEE International Conference on Communications (ICC), pp. 7131-7135, June, 2012. 
[16]	Fei Ye, Maatthew Adams and Sumit Roy, “V2V Wireless Communication Protocol for Rear-End Collision Avoidance on Highways,” 2009 International Conference on Advances in Recent Technologies in Communication and Computing (ARTCoM ‘09), May, 2008.
[17]	K. V. Kavitha, Bagubali A. and L. Shalini, “V2V WIRELESS COMMUNICATION PROTOCOL FOR REAR-END COLLISION AVOIDANCE ON HIGHWAYS WITH STRINGENT PROPAGATION DELAY,” 2009 International Conference on Advances in Recent Technologies in Communication and Computing, Oct. 2009.
[18]	Maziar Nekovee, “Quantifying Performance Requirements of Vehicle-to-Vehicle Communication Protocols for Rear-end Collision Avoidance,” 2009 IEEE 69th Vehicular Technology Conference (VTC Spring 2009), pp. 1-5, April, 2009.
[19]	Liang Li, Guangquan Lu, Yunpeng Wang and Daxin Tian, “A Rear-end Collision Avoidance System of Connected Vehicles,” 2014 IEEE 17th International Conference on Intelligent Transportation System (ITSC), pp. 63-68, Oct. 2014. 
[20]	Qingdong Zeng, Liqun Peng, Chaozhong Wu and Haoran Li, “Novel Vehicle Crash Risk Detection based on Vehicular Sensory System,” 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 622-626, Dec. 2015.
[21]	Matthias Rockl, Thomas Strang and Matthias Kranz, “Demonstrator: V2V Communications in Automotive Multi-sensor Multi-target Tracking,” 2008 IEEE 68th Vehicular Technology Conference (VTC 2008-Fall), pp. 1-2, Sept., 2008.
[22]	V. DhilipKumar, Dr. D. Kandar and Dr. C.K. Sarker, “Enhancement of Inter-vehicular communication to optimize the performance of 3G/4G-VANET,” Proceedings of International Conference on Optical Imaging Sensor and Security, July, 2013. 
[23]	Qingdong Zeng, Chaozhong Wu, Liqun Peng and Haoran Li, “Novel Vehicle Crash Risk Detection based on Vehicular Sensory System,” 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 622-626, Dec., 2015.
[24]	Radown Miucic, Zeljko Popovic and Syed M. Mahumud, “Experimental Characterization of DSRC Signal Strength Drops,” Proceedings of the 12th International IEEE Conference on Intelligent Transportation Systems, pp. 311-315, Oct., 2009.
[25]	Samreen N. Shaikh and Dr. S. R Patil, “A Robust Broadcast Scheme for Vehicle to Vehicle Communication System,” 2016 Conference on Advances in Signal Processing (CASP) Cummins College of Engineering for Women, pp. 539-553 Jun., 2016.
[26]	Bo Xu, Ouri Wolfson and Hyung Ju Cho, “Monitoring Neighboring Vehicles for Safety via V2V Communication,” 2011 IEEE International Conference on Vehicular Electronics and Safety (ICVES), pp. 280-285, July 2011. 
[27]	Stewart Worrall, James Ward, Gabriel Agamennoni, David Orchansky and Eduard Nebot, “Estimating Time To Interaction For Vehicles in ITS Applications,” 2014 IEEE 17th International Conference on Intelligent Transportation System(ITSC), pp. 1053-1059, Oct, 2014, Qingdao, China.
[28]	Dang Ruina, Ding Jieyun, Su Bo, Yao Qichang, Tian Yuanmu and Li Keqiang, “A Lane Chang Warning System Based on V2V Communication,” 2014 IEEE 7th International Conference on Intelligent Transportations Systems (ITSC), pp. 1923-1928, Oct, 2014, Qingdao, China.
[29]	Billy Kihei, John A. Copeland and Yusun Chang, “Design Considerations for Vehicle IEEE 802.11p Radar in Collision Avoidance,” 2015 IEEE Global Communications Conference (GLOBECOM), Feb., 2016.
[30]	Boyuan Xie, Keqiang Li, Xiaohui Qin, Hang Yang and Jianqing Wang, “Approaching Index Based Collision Avoidance for V2V Cooperative Systems,” 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp. 127-132 , Oct., 2014, Qingdao, China. 
[31]	Shouzhi XU, Huan Zhou, Chengxia Li and Yu Zhao, “A MULTI-HOP V2V BROADCAST PROTOTOL FOR CHAIN COLLISION AVOIDANCE ON HIGHWAYS,” 2009 IEEE International Conference on Communications Technology and Applications (ICCTA ‘09), pp. 110-114, Dec. 2009.
[32]	CHEN Ning, “Approach of Active Collision-avoidance of Vehicles Based on Vehicle Infrastructure Integration Technology,” Proceedings of the 29th Chinese Control Conference, pp. 5421-5425, July, 2010, Beijing, China.
[33]	Vishun S., Ullas Ramanadhan, Nirmala Vasudevan and Anand Ramachandran, “Vehicular Collision Avoidance Using Video Processing and Vehicle-to-Infrastructure Communication,” 2015 International Conference on Connected Vehicles and Expo (ICCVE), pp. 387-388, April, 2016
[34]	Xinzhou Wu, Radovan Miucic, Sichao Yang, Samir Al-Stouhi, James Misener, Sue Bai and Wai-hoi chan, “Cars Talk to Phones: A DSRC Based Vehicle-Pedestrian Safety System, ” 2014 IEEE 80th  Vehicular Technology Conference(VTC2014-Fall), pp. 1-7, Sept. 2014.
[35]	Ye Yuan, Xiao-Yuan Lu and Jianqiang Wang, “Problem Formulation Improvement for Multi-Vehicle Collision Avoidance and Impact Mitigation,” pp. 889-894, 2015 IEEE Intelligent Vehicles Symposium (IV), June, 2015, Seoul, Korea.
[36]	Mohammad Javad Fazel Ashrafi, Slaeh Yousefi, Hamid Karmi, Seyed Mohammad Hosseini, Habib Rostamimi and Hamid Reaz Ataeian, “ Highway Chain Collision Avoidance using Inter-Vehicular Communications,” 2013 3th Internal eConference on Computer and Knowledge Engineering(ICCKE), 31 Oct. – 1 Nov. , 2013 .
[37]	Byungjo Kim and Hyogon Kim, “Resolving Global Synchronization in 2-hop Information Sharing for Periodic Safety Messaging,” 2009 (ICUT ’09.) Proceedings on the 4th International Conference on Ubiquitous Information Technologies & Applications, pp. 1-6, Dec., 2009.
[38]	Refix Caglar Kizilrmak and Mastanch Torkamani-Azar, “Reducing Collision Probability with Multihop Diversity for Vehicle-to-Roadside Networks,” 2013 IEEE Symposium on Wireless Technology and Applications (ISWTA), pp. 17-22, Sept., 2013, Kuching, Malaysia.
[39]	Chung-Ming Huang, Shih-Yang Lin, Chia-Ching Yang and Chih-Hsun Chou, “A Collision Pre-Warning Algorithm based on V2V Communication,” 2009 Proceedings of the 4th International Conference on Ubiquitous Information Technologies & Applications, pp. 1-6, Dec. 2009. 
[40]	Michael R. Hafner, Drew Cunningham, Lorenzo Caminiti and Domitilla Del Vecchio, “Cooperative Collision Avoidance at Intersections: Algorithms and Experiments,” IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 3, Sept., 2013.
[41]	Sutao Duan, Jian Zhao, Jian Wu and Yu Lei, “A System of Collision Avoidance Warning On The Highway Based On A Drive Lane Localization Algorithm,” 2016 25th Wireless and Optical Communication Conference (WOCC), May, 2016.
[42]	Janeks Ahrems, “Implement of Collision Warning Algorithm Based on V2V communications,” 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA), April, 2015
[43]	Ping-Fan Ho and Jyh-Cheng Chen, “WiSafe: Wi-Fi Pedestrian Collision Avoidance System,” IEEE Transactions on Vehicular Technology, pp. 1-15, Aug. 2015.
[44]	Billy Kihei, John A. Copeland and Yusun Chang, “Predicting Car Collisions using RSSI,” 2015 IEEE Global Communications Conference (GLOBECOM), Dec. 2015. 
[45]	Ji LI, Renato G. BOSISIO and Ke WU, “A COLLISION AVOIDANCE RADAR USING SIX-PORT PHASE/FREQUENCY DISCRIMINATOR(SPFD),” 1994 IEEE MTT-S International Microwave Symposium Digest, May, 1994.
[46]	Jerry D. Woll, “Monopulse Doppler Radar for Vehicle Applications,” Proceedings of the Intelligent Vehicles ’95 Symposium, pp. 42-47, Sept. 1995. 
[47]	Nima Alamm, Asghar Tabatabaie Balaie and Andrew G. Dempster, “Dynamic Path Loss Exponent and Distance Estimation in a Vehicular Network using Doppler Effect and Received Signal Strength,” 2010 IEEE 2nd Vehicular Technology Conference Fall (VTC2010-Fall), Sept. 2010.
[48]	Billy Kihei, John A. Copeland and Yusun Chang, “Doppler Domain Localization for Collision Avoidance in VANETs by Using Omnidirectional Antennas,” 2014 International Conference on Connected Vehicles and Expo (ICCVE), pp. 331-337, 2014 
[49]	Kosuke Tomoyama, Takeshi Hattori and Ikuko Yairi, “The Collision Avoidance System Using the Doppler Effect Between Vehicles in the Intersection,” (31st JSST Annual Conference) JSST 2012 International Conference on Simulation Technology, Sep. 27-28, 2012, Kobe, Japan. 
[50]	Hemann Rohing, “Milestones in radar and the success story of automotive radar systems,” 2010 11th International Radar Symposium (IRS), June 2010. 
[51]	Sarangi D. Dissanayake, Kusha Panta, Ahmet Sekercioglu and Jean Armstrong, “A novel relative speed estimation technique in WAVE using pilot subcarriers,” 2011 IEEE Vehicular Technology Conference(VTC Fall), Sept. 2011
[52]	Ming Chen, Domenic Belgiovane and Chi-Chih Chen, “Radar characteristics of pedestrians at 77 GHz,” 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 2232-2233, July 2014.
[53]	P. R. Atkins, T. Collins and K. G. Foote, “Transmit-Signal Design and Processing Strategies for Sonar Target Phase Measurement,” IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 1, pp. 91-104, June, 2007.
[54]	Dr. Lewis A. Rily “4.4 The Doppler Effect,” PHYS: Classical and Quantum Mechanical Wave, Spring 2009.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信