淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1101201220135900
中文論文名稱 以六氯化鎢為起始物製備鉑/三氧化鎢甲醇氧化電催化劑與其性質分析
英文論文名稱 Preparation and Characterization of Tungsten Hexachloride Derived Pt-WO3/C Electrocatalysts for Methanol Oxidation Reaction
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 1
出版年 101
研究生中文姓名 王志仲
研究生英文姓名 Chih-Chung Wang
學號 698400511
學位類別 碩士
語文別 中文
口試日期 2012-01-04
論文頁數 149頁
口試委員 指導教授-林正嵐
委員-何國川
委員-陳林祈
委員-張裕祺
委員-鄭廖平
中文關鍵字 直接甲醇燃料電池  甲醇氧化反應  電催化劑  三氧化鎢  碳載體 
英文關鍵字 direct methanol fuel cell  methanol oxidation reaction  electrocatalyst  tungsten trioxide  carbon support 
學科別分類
中文摘要 本研究為製備直接甲醇燃料電池 (Direct Methanol Fuel Cell, DMFC) 之鉑-三氧化鎢/碳 (Pt-WO3/C) 陽極催化劑與其性質之研究,目的為開發對甲醇氧化反應 (Methanol oxidation reaction, MOR) 效能有提升之電催化劑。
一般 DMFC 使用以 Pt 為主成份之電催化劑進行 MOR,往往因為 CO 毒化現象的發生,造成 Pt 表面吸附一層不易移除之 CO 分子,使得 DMFC 的發電效能快速衰減。本研究嘗詴於傳統 Pt/C 電催化劑中加入三氧化鎢 (WO3) 奈米顆粒,以期能提高電催化劑抵抗 CO 毒化的能力,進而提升 MOR 效能。本研究以六氯化鎢 (tungsten hexachloride, WCl6) 為起始物,使用二甲基甲醯胺 (N,N-dimethyl-formamide, DMF) 為溶劑,以經過 NaOH 前處理或未經前處理之 Vulcan XC-72 為碳載體,先將 WO3 製備於碳載體上成為 WO3/C 奈米複合材料,然後利用多元醇還原法 (Polyol method),以乙二醇同時做為還原劑與溶劑,將 Pt 奈米顆粒製備於 WO3/C 上,取得 Pt-WO3/C 電催化劑。本研究使用 X 光繞射分析儀 (X-ray diffractometer, XRD)、穿透式電子顯微鏡 (transmission electron microscope, TEM)、掃描式電子顯微鏡 (scanning electron microscope, SEM)、傅立葉轉換紅外線吸收光譜儀 (fourier transform infrared spectroscopy, FT-IR) 與元素分析 (energy dispersive X-ray spectrometer, EDS) 等儀器,測量製備所得電催化劑之表面形態與成份,並使用循環伏安法 (cyclic voltammetry,CV),計時安培法 (chronoamperometry, CA) 進行 MOR 效能、電化學活性表面積 (electrochemical active surface area, EASA)、CO 脫附與反應穩定性等電化學特性分析。 使用不同濃度 WCl6/DMF 溶液為起始物,以未經前處理之碳載體製備 WO3/C,經 450℃ 燒結所得之 PtW(0.06 ~ 0.14)/C450 系列電催化劑,WO3 奈米顆粒形成約 50 ~ 150 nm 之聚集,且其 MOR 效能低於市售 E-TEK Pt/C 電催化劑。使用經 NaOH 前處理過之碳載體,於相同條件下製得之 PtW(0.06 ~ 0.14)/Cs450 系列電催化劑,雖然 WO3 奈米顆粒仍呈現聚集狀態,但其 MOR 效能可獲得明顯提升。使用經前處理之碳載體,並改變 WO3/C 之燒結溫度為 200℃ 製備所得之 PtW(0.06 ~ 0.14)/Cs200 系列電催化劑,可得非晶形狀態(amorphous) 之 WO3 奈米顆粒均勻分佈於碳載體上,且其 MOR 效能皆高於市售 E-TEK Pt/C 電催化劑。其中 PtW(0.08)/Cs200 電催化劑於本研究中展現最佳之 MOR 效能,於相同 CV 實驗條件下,其 MOR 峰電流值為 873 ± 96 A/g-Pt,約 2.2 倍高於市售 E-TEK Pt/C 電催化劑 (389 ± 56 A/g-Pt)。於計時安培法之測量下也顯示 PtW(0.08)/Cs200 電催化劑具有最佳抵抗 CO 毒化的能力,於 1000 秒後之穩定電流密度值 (28.0 A/g-Pt) 約 11 倍高於市售 E-TEK Pt/C 電催化劑。
英文摘要 The major goals of this research are the preparation and characterization of Pt-WO3/C electrocatalysts for the methanol oxidation reaction (MOR) at the anode of a direct methanol fuel cell (DMFC). Pt-based electrocatalysts were generally employed as the anode electrocatalysts for DMFCs. However, the surface of Pt could be easily occupied by intermediates generated during MOR (especially CO), which are difficult to be removed and leading to a rapid decrease in the DMFC performance. Such phenomenon is known as “CO-poisoning” phenomenon. In this study, WO3 nanoparticles were synthesized and added to conventional Pt/C to give Pt-WO3/C electrocatalysts in order to enhance the MOR efficiencies as well as the CO-tolerance abilities.
The Pt-WO3/C electrocatalysts were prepared by two-step procedure. N,N-Dimethyl-formamide (DMF) solution of tungsten hexachloride (WCl6) was used as the precursor, and the WO3/C nanocomposites were firstly synthesized. Then, Pt nanoparticles were decorated onto the WO3/C nanocomposites by polyol method using ethylene glycol (EG) as both the reducing agent and solvent to obtain the Pt-WO3/C electrocatalysts. X-ray diffractometer (XRD)、transmission electron microscope (TEM)、scanning electron microscope (SEM)、fourier transform infrared spectroscopy (FT-IR) and energy dispersive X-ray spectrometer (EDS) were used to investigate the surface morphologies and compositions of the electrocatalysts. The MOR efficiency, electrochemical active surface area (EASA), CO stripping and MOR stability of the electrocatalysts were evaluated by cyclic voltammetry (CV) and chronoamperometry (CA) experiments.
For the PtW(0.06 ~ 0.14)/C450 series electrocatalysts using pristine Vulcan XC-72 carbon black as the support and calcined at 450 oC, the WO3 nanoparticle aggregates with sizes of 50 ~ 200 nm were obtained, and their MOR efficiencies were all lower then the commercial E-TEK Pt/C electrocatalyst. The MOR efficiencies were sighificantly improved for the PtW(0.06 ~ 0.14)/Cs450 series electrocatalysts using NaOH-pretreated Vulcan XC-72 carbon black as the support, however the aggregates of WO3 nanoparticles were still observed. In order to avoid the aggregation of WO3 nanoparticles, the PtW(0.06 ~ 0.14)/Cs200 series electrocatalyst were synthesized using NaOH-pretreated Vulcan XC-72 carbon black and calcined at 200 oC. Evenly distributed amorphous WO3 nanoparticles on carbon support were obtained and confirmed by XRD and TEM investigates. The MOR efficiencies as well as the CO-tolerance abilities of these electrocatalysts were all higher than the commercial E-TEK Pt/C electrocatalyst. The PtW(0.08)/Cs200 electrocatalyst achieved the highest MOR efficiency of 873 ± 96 A/g-Pt among all the electrocatalysts prepared in this study, and which was about 2.2 times higher than that of the commercial E-TEK Pt/C electrocatalyst (389 ± 56 A/g-Pt).
論文目次 中文摘要 ......................................................................................................... I
英文摘要 .......................................................................................................III
圖目錄 .......................................................................................................... IX
表目錄 ................................................................................................................. XIV
第一章 緒論............................................................................................................. 1
1.1 前言 ............................................................................................................ 1
1.2 直接甲醇燃料電池簡介 ............................................................................. 4
1.2.1 工作原理 ......................................................................................... 4
1.2.2 電催化甲醇氧化反應機制 .............................................................. 7
1.2.3 發展面臨之問題 .............................................................................. 8
1.3 甲醇氧化之電催化劑 ................................................................................. 9
1.3.1 雙元合金電催化劑 (Binary metal alloy electrocatalysts) ................ 9
1.3.2 鉑-金屬氧化物電催化劑 ................................................................ 11
1.3.3 碳載體的應用 ................................................................................ 13
1.4 研究動機與目的 ..................................................................................... 16
第二章 文獻回顧 ................................................................................................... 17
2.1 以碳為載體之 Pt-WO3/C 電催化劑 ....................................................... 17
2.2 以 WO3 為載體之 Pt/WO3 電催化劑 ................................................... 22
2.3 以導電材料為基材之 Pt-WO3 電催化劑 ............................................... 24
2.4 碳載體表面修飾之文獻回顧 ................................................................... 26
第三章 實驗........................................................................................................... 27
3.1 實驗藥品及材料 ...................................................................................... 27
3.2 實驗設備 .................................................................................................. 28
3.3 Pt/C電催化劑製備方法步驟 .................................................................... 29
3.4 WO3 奈米顆粒製備方法之選擇 .............................................................. 31
3.4.1 WO3 奈米顆粒製備方法之步驟 .................................................... 32
3.5 碳載體之前處理 ...................................................................................... 36
3.6 以 WCl6 前驅物製備 Pt-WO3/C 電催化劑 ........................................... 36
3.6.1 實驗架構 ....................................................................................... 37
3.6.2 WO3/C 奈米複合材料之製備 ........................................................ 38
3.7 表面型態與性質分析 ............................................................................... 40
3.7.1 X 光繞射分析儀 ............................................................................ 40
3.7.2 穿透式電子顯微鏡 ........................................................................ 40
3.7.3 掃描式電子顯微鏡 ........................................................................ 40
3.7.4 傅立葉轉換紅外線吸收光譜儀 ..................................................... 40
3.8 電化學分析方法 ...................................................................................... 41
3.8.1 循環伏安法 ................................................................................... 41
3.8.2 計時安培法 ................................................................................... 46
3.8.3 電化學活性表面積 ........................................................................ 47
第四章 Pt-WO3/C 電催化劑製備方法之選擇 ...................................................... 49
4.1 Pt 奈米顆粒製備方法之選擇 ................................................................... 49
4.2 WO3 奈米顆粒製備方法之選擇 .............................................................. 58
4.2.1 以鎢粉製備 WO3奈米顆粒 .......................................................... 59
4.2.2 以鎢酸鈉 (Na2WO4‧2H2O) 製備 WO3奈米顆粒...................... 70
4.2.3 以磷鎢酸 (H3PW12O40) 製備 WO3奈米顆粒 .............................. 75
4.2.3 以氯鎢酸 (WCl6) 製備 WO3 奈米顆粒 ...................................... 78
4.3 以 NaOH 對碳載體進行前處理 ............................................................. 82
4.3.1 碳載體 XC-72 之前處理 ............................................................. 82
4.3.2 結構與結晶分析 ............................................................................ 83
4.3.3 表面形態與元素分析 .................................................................... 87
4.3.4 電化學分析結果 ............................................................................ 89
第五章 Pt-WO3/C 電催化劑 MOR 效能最佳化 ................................................. 92
5.1 碳載體之前處理與 WCl6 濃度之影響 ................................................... 92
5.1.1 XRD 晶型結構分析....................................................................... 93
5.1.2 TEM 表面形態與結構分析 ........................................................... 94
5.1.3 電催化甲醇氧化反應之效能........................................................104
5.2 燒結溫度之影響 .....................................................................................108
5.2.1 XRD 晶型結構分析與 TEM 表面型態與元素分析 ...................109
5.2.2 電催化甲醇氧化反應之效能........................................................ 115
5.3 電催化劑效能比較.................................................................................. 118
5.3.1 電催化甲醇氧化反應之效能........................................................120
5.3.2 CO 脫附實驗 ................................................................................122
5.3.3 計時安培法之穩定性效能測詴 ....................................................123
第六章 結論..........................................................................................................126
建議 .......................................................................................................................129

參考文獻 ...............................................................................................................130
附錄 A ..................................................................................................................143
附錄 B...................................................................................................................149

圖目錄
圖 1-1. DMFC工作原理。……………………………………………………………5
圖 1-2. DMFC 過電壓成因。【4】……………………………………………………6
圖 1-3. 雙功效應示意圖。…………………………………………………………10
圖 1-4. 理想之催化劑於載體上之分佈情形。……………………………………15
圖 1-5. Vulcan XC-72 碳載體之 TEM 圖。………………………………………15
圖 2-1. HRTEM images and associated nano-EDS measurements of Pt-WOx/C electrodes. EDS analysis was performed by reducing the size of the beam and focusing on the area as shown in the pictures.【71】……………………………17
圖 2-2. a TEM image for the sample of Pt–WO3/MWCNT, and b–e the corresponding EDS elemental mapping for the image in a. 【73】……………19
圖 2-3. TEM images of (a) Pt/C, (b) WO3/C, (c) Pt/WO3–C and (d) Pt/WO3–C–HT samples. 【66】…………………………………………………………………20
圖 2-4. TEM images of (A) WO3/C-1 and (B) WO3/C-2. 【67】……………………21
圖 2-5. (a) SEM image of WO3 microspheres, (b) HRTEM image of WO3 microspheres, (c) Lattice image of WO3 microspheres. 【75】…………………23
圖 3-1. Pt-WO3/C 電催化劑之製備流程圖。………………………………………31
圖 3-2. 實驗架構及流程。………………………………………………………37
圖 3-3. WO3 奈米複合材料製備流程。……………………………………………37
圖 3-4. 三極式電化學系統。………………………………………………………42
圖 3-5. E-TEK Pt/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………43
圖 3-6. E-TEK Pt/C 電催化劑於 0.5 M H2SO4 飽和 CO 水溶液之循環伏安圖。電位掃描速率為 50 mV/s。…………………………………………………45
圖 3-7. E-TEK Pt/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液之計時安培法曲線圖。定電位為 0.5 V vs. Ag/AgCl。掃描時間為 1000 秒。…………46
圖 3-8. E-TEK Pt/C 電催化劑於 0.5 M 硫酸水溶液之循環伏安圖。電位掃描速率為 50 mV/s。………………………………………………………………48
圖 4-1. Pt/C 電催化劑製備流程。…………………………………………………49
圖 4-2. Pt/C-SBH電催化劑之 TEM 圖。…………………………………………51
圖 4-3. Pt/C-SBH TEM – EDAX 表面元素分析。………………………………51
圖 4-4. Pt/C-RME 電催化劑之 (a) TEM圖與 (b) HR-TEM 圖。………………53
圖 4-5. Pt/C-EGR 電催化劑之 (a) TEM 圖與 (b) HR-TEM 圖。……………55
圖 4-6. Pt/C-EGR 電催化劑之 TEM–EDS 表面元素分析。…………………55
圖 4-7. Pt/C-EGR與 E-TEK Pt/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。…………………………57
圖 4-8. Pt/C-EGR 與 E-TEK Pt/C 電催化劑於 0.5 M H2SO4 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………57
圖 4-9. WO3 奈米顆粒製備流程。………………………………………………58
圖 4-10. (a) PTA1/C、(b) PTA2/C、(c) PTA3/C 複合材料之 TEM 圖。……………61
圖 4-11. PtPTA1/C 與 PtPTA3/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………61
圖 4-12. (a) PTA1/ C、(b) PTA2/ C 與 (c) PTA3/ C 複合材料之 TEM–EDS 表面元素分析。………………………………………………………………………62
圖 4-13. (a) PtPTA1/C 與 (b) PtPTA3/C 電催化劑之 TEM 圖。………………63
圖 4-14. PtPTA4/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………64
圖 4-15. PtPTA4/C 電催化劑之 TEM 圖。………………………………………65
圖 4-16. PtPTA5/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………66
圖 4-17. PtPTA5/C 電催化劑之 TEM 圖。………………………………………67
圖 4-18. PtPTA6/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………68
圖 4-19. PtPTA6/C 電催化劑之 TEM 圖。………………………………………69
圖 4-20. PtNW1/C 電催化劑之 TEM 圖。………………………………………71
圖 4-21. PtNW1/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………72
圖 4-22. PtNW2/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………73
圖 4-23. PtNW2/C 電催化劑之 TEM 圖。………………………………………74
圖 4-24. PtPWA/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………76
圖 4-25. (a) PWA/C 複合材料與 (b) PtPWA/C 電催化劑之 TEM 圖。………77
圖 4-26. PtWC/C 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………79
圖 4-27. (a) WC/C 複合材料與 (b) PtWC/C 電催化劑之 TEM 圖。…………80
圖 4-28. 碳載體於 DMF 溶劑中分散情形。(左) 未經前處理之碳載體 (C)、(右) 經 NaOH 前處理之碳載體 (Cs)。…………………………………………82
圖 4-29. NaOH 處理過程中之表面反應示意圖。【98】……………………………83
圖 4-30. 未經 NaOH 前處理之碳載體 (C) 與經 NaOH 前處理之碳載體 (Cs) 之FTIR 圖譜。………………………………………………………………84
圖 4-31 XC-72 碳載體處理前後之 XRD 圖譜;(a)未經 NaOH 前處理之碳載體C,(b) 經 NaOH 前處理之碳載體 Cs。……………………………………86
圖 4-32. Pt/C 系列電催化劑之 XRD 圖譜。(a) Pt/Cs,(b) Pt/C 與 (c) E-TEK Pt/C。……………………………………………………………………..……86
圖 4-33. (a) 與 (b) 為 Pt/Cs 電催化劑之 TEM 圖與 (c) 之粒徑分佈分析圖。……………………………………………………………………………88
圖 4-34. Pt/Cs TEM – EDS 表面元素分析。……………………………….…........88
圖 4-35. E-TEK Pt/C、Pt/C-EGR 與 Pt/Cs 電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………91
圖 4-36. E-TEK Pt/C、Pt/C-EGR 與 Pt/Cs 電催化劑於 0.5 M H2SO4 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。…………………………………91
圖 5-1. PtW(0.06~0.14)/C450 系列電催化劑之 XRD 分析圖譜。….…………97
圖 5-2. PtW(0.06~0.14)/Cs450 系列電催化劑之 XRD 分析圖譜。……………98
圖 5-3. PtW(0.06 ~ 0.14 M)/C450 系列電催化劑之 TEM 分析圖。……………99
圖 5-4. PtW(0.06~0.14M)/Cs450 系列電催化劑之 TEM 分析圖。…………100
圖 5-5. W(0.14)/C450 電催化劑之 TEM–Mapping 掃描元素分析。(a) TEM 圖、(b) C 元素分佈、(c) O 元素分佈、(d) W 元素分佈。………………………101
圖 5-6. PtW(0.10)/C450 之 TEM 分析圖。(a) TEM 圖、(b) 選區繞射分析、(c) HR-TEM 圖。…………………………………………………………………103
圖 5-7. PtW/C450 系列電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。………………………………………106
圖 5-8. PtW/Cs450系列電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。………………………………………106
圖 5-9 . PtWC/450 與 PtW/Cs450 系列電催化劑之 MOR 效能趨勢圖。.....107
圖 5-10. PtW(0.06~0.14)/Cs200 系列催化劑之 XRD 分析圖譜。……………111
圖 5-11. PtW(0.06~0.14M)/Cs200 系列電催化劑之 TEM 分析圖。…………112
圖 5-12. PtW(0.08)/Cs200 電催化劑之 TEM–Mapping掃描元素分析。(a) TEM 圖、(b) Pt 元素分佈、(c) W 元素分佈。……………………………………114
圖 5-13. PtWCs200系列電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………117
圖 5-14. PtW/Cs200 系列電催化劑之 MOR 效能趨勢圖。……………………117
圖 5-15. 三系列催化劑之趨勢圖比較。…………………………………………119
圖 5-16. E-TEK Pt/C、PtW(0.10)/C450、PtW(0.12)/Cs450 與PtW(0.08)/Cs200電催化劑於 0.5 M H2SO4 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。…………………………………………………………………………121
圖 5-17. E-TEK Pt/C、PtW(0.10)/C450、PtW(0.12)/Cs450 與PtW(0.08)/Cs200電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………………………122
圖 5-18. E-TEK Pt/C、PtW(0.10)/C450、PtW(0.12)/Cs450 與PtW(0.08)/Cs200
電催化劑於飽和 CO 之 0.5 M H2SO4 水溶液中之循環伏安圖。電位掃描速率為 50 mV/s。……………………………………………………………124
圖 5-19. E-TEK Pt/C、PtW(0.10)/C450、PtW(0.12)/Cs450 與PtW(0.08)//Cs200
電催化劑於 0.5 M H2SO4 + 1.0 M CH3OH 水溶液中之計時安培法曲線圖。定電位於 0.5 V vs. Ag/AgCl。掃描時間為 1000 秒。……………………125
圖 A-1. (a)~(e)為PtW(0.06~0.14)/C450 系列電催化劑之 TEM 圖與粒徑分佈圖。……………………………………………………………………………143
圖 A-2. (a)~ (e) 為PtW(0.06~0.14)/Cs450 系列電催化劑之 TEM 圖與粒徑分佈圖。……………………………………………………………………………145
圖 A-3. (a)~ (e) 為PtW(0.06~0.14)/Cs200 系列電催化劑之 TEM 圖與粒徑分佈圖。……………………………………………………………………………147
圖 B-1. 單斜 WO3 之結晶型號 JCPDS 72-0677。……………………………148

表目錄
表 2-1.WO3 相關催化劑之整理……………………………………………………25
表 4-1.製備方法之選擇系列催化劑……………………………………………81
表 4-2.E-TEK Pt/C、Pt/C-EGR 與 Pt/Cs 電催化劑之性質參數……………90
表 5-1.PtW/Cs450 電催化劑之命名……………………………………………92
表 5-2.PtW/C450 與 PtW/Cs450 系列電催化劑之性質參數…………………102
表 5-3.PtW/C450 與 PtW/Cs450 系列電催化劑之 MOR 性質參數…………105
表 5-4.PtW/Cs200 系列電催化劑之命名 ………………………………………108
表 5-5.PtW/Cs200 系列電催化劑之性質參數…………………………………113
表 5-6.PtW/Cs200 系列電催化劑之 MOR 性質參數…………………………116
表 5-7.綜合三系列中最佳 MOR 效能電催化劑之性質參數…………………119
參考文獻 [1] 衣寶廉, 燃料電池-原理與應用, 五南圖書出版公司 (2007)
[2] 黃鎮江, 燃料電池, 全華科技圖書股份有限公司 (2003)
[3] “DMFCs:From Fundamental Aspects to Technology Development”, Arico, A.S.; Srinivasan, S; Antonucci, V.; Fuel Cells 2001, 1, 133-161.
[4] “Semi-empirical model to elucidate the effect of methanol crossover on direct methanol fuel cell”, Tu, H.-C.; Wang, Y.-Y.; Wan, C.-C.; Hsueh, K.-L.; J. Power Sources 2006, 159, 1105–1114.
[5] “Potential dependence of intermediates in methanol oxidation observed in the steady state by FTIR spectroscopy”, Chandrasekaran, K.; Wass, J.C.; Bockris, J.
O'M.; J.Electrochem. Soc. 1990, 137, 518-524.
[6] “On the role of Ru and Sn as promoters of methanol electro-oxidation over Pt”, Frelink, T.; Visscher, W.; van Veen, J.A.R.; Surf. Sci. 1995, 335, 353-360.
[7] “Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate”, Rauhe, J.B.R.; McLamon, F.R.; Caims, E.J.; J. Electrochem. Soc. 1995, 142, 1073-1084.
[8] “Ellipsometry and dems study of the electrooxidation of methanol at Pt and Ru-and Sn-promoted Pt”, Frelink, T.; Visscher, W.; Cox, A.P.; van Veen, J.A.R.; Electrochim. Acta 1995, 40, 1537-1543.
[9] “Mechanism and electrocatalysis in the direct methanol fuel cell”, Hamnett, A; Catal. Today 1996, 38, 445-457.
[10] ”The oxidation of small organic molecules. A survey of recent fuel cell related research”, Parsons, R.; VanderNoot, T.; J. Electroanal. Chem. 1988, 257, 9-45.
[11] ”Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation of methanol”, Talasu, Y. ; Fujiwara, T. ; Murakami, Y. ; Sasaki, K. ; Oguri, M. ; Asaki, T. ; Sugimoto, W. ;, J.Electrochem. Soc. 2000, 147, 4421-4427.
[12] “Facile synthesis of PtRu/C electrocatalyst with high activity and high loading for passive direct methanol fuel cell by synergetic effect of ultrasonic radiation and mechanical stirring”, Wang, X.; Liao, J.; Liu, C.; Xing, W.; Lu, T.; Electrochem. Commun. 2009, 11, 198-201.
[13] “Effects of Alloyed and Oxide Phases on Methanol Oxidation of Pt-Ru/C Nanocatalysts of the Same Particle Size”, Godoi, D. R. M.; Perez, J.; Villullas, H. M.; J. Phys. Chem. C 2009, 113, 8518-8525.
[14] “MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells”, Zhou, C.; Wang, H.; Peng, F.; Liang, J.; Yu, H.; Yang, J.; Langmuir 2009, 25, 7711-7717.
[15] “Nanoporous PtRu Alloys for Electrocatalysis”, Xu, C.; Wang, L.; Mu, X.; Ding, Y.; Langmuir 2010, 26, 7437-7443.
[16] “Nb-doped TiO2 as a support of Pt and Pt-Ru anode catalyst for PEMFCs”, Gojković, S. Lj.; Babić, B. M.; Radmilović, V. R.; Krstajić, N. V.; J. Electroanal. Chem. 2010, 639, 161-166.
[17] “High energy ballmilled Pt-Mo catalysts for polymer electrolyte fuel cells and their tolerance to CO”, Gouerec, P.; Denis, M.C.; Guay, D.; Dodelet, J.P.; Schulz, R.;, J.Electrochem. Soc. 2000, 147, 3989-3996.
[18] “CO oxidation on carbon-supported PtMo electrocatalysts:Effect of the platinum particle size”, Ordonez, L.C.; Roquero, P.; Sebastian, P.J.; Ramirez, J.; Int. J. Hydrog. Energy 2007, 32, 3147-3153.
[19] “Nano-architectured Pt-Mo anode electrocatalyst for high CO-tolerance in PEM Fuel cells”, Hu, J.E.; Liu, Z.; Eichhorn, B.W.; Jackson, G.S.; ECS Transactions 2009, 19, 1-12.
[20] “Pt-Co supported on single-walled carbon nanotubes as an anode catalyst for direct methanol fuel cells”, Shen, J.; Hu, Y.; Li, C.; Qin, C.; Ye, M.; Electrochim. Acia 2008, 53, 7276-7280.
[21] “Preparation of Pt-Co nanocatalysts on carbon nanotube electrodes for direct methanol fuel cells”, Hsieh, C.-T.; Wei, J.-L., Lin, J.-Y.; Yang, B.-H.; Diam. Relat. Mat. 2011, 20, 1065-1071.
[22] “Sythesis of Pt-Co nanoparticles on multi-walled carbon nanotubes for methanol oxidation in H2SO4 solution”, Amin, R.S.; El-Khatib, K.M.; Hameed, R.M.A.; Souaya, E.R.; Etman, M.A.; Appl. Catal. A-Gen. 2011, 407, 195-203.
[23] “Synthesis and Characterization of PtSn/Carbon and Pt3Sn/Carbon Nanocomposites as Methanol Electrooxidation Catalysts”, Jone lll, F.E.; Milne, S.B.; Gurau, B.; Smotkin, E.S.; Stock, S.R.; Lukehart, C.M.; J. Nanosci. Nanotechnol. 2002, 2, 81-87.
[24] “Pt-Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid”, Colmati,F.; Antolini, E.; Gonazlez, E.R.; Electrochim. Acta 2005, 50, 5496-5503.
[25] “Electrodeposited Pt and Pt-Sn nanoparticles on Ti as anodes for direct methanol fuel cells”, Hassan, H.B.; J. Fuel Chem. Technol. 2009, 37, 346-354.
[26] “Effect of a thermal treatment on the activity of carbon-supported Pt, Pt+W and Pt+Mo electrocatalysts for methanol oxidation reactions”, Gokaǧac, G.; Leger, J.-M.; Hahn, F.; J. Chem. Sci. 2001, 56, 1306-1314.
[27] “Syntheses, characterization, and catalytic oxygen electroreduction activities of carbon-supported PtW nanoparticle catalysts”, Xing, L.; More, K.L.; He, T.; J. Power Sources 2010, 195, 2570-2578.
[28] ”Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol”, Watanabe, M.; Uchida, M.; Motoo, S.; J. Electroanal. Chem., 1987, 229, 395-406.
[29] “Electrocatalytic activity of Ru-modified Pt(111) electrodes toward CO oxidation”, Lin, W.F.; Zei, M.S.; Eiswirth, M.; Ertl, G.; Iwasita, T.; Vielstich, W.; J. phys. Chem. B 1999, 6968-6977.
[30] “How to make electrocatalysts more active for direct methanol oxidation - avoid PtRu bimetallic alloys!”, Long, J.W.; Stroud, R.M.; Swider-Lyons, K.E.; Rolison, D.R.; J. Phys. Chem. B 2000, 104, 9772-9776.
[31] “Electrocatalysis of methanol oxidation”, Iwasita, T. ; Electrochimica Acta, 2002, 47, 3663-3674.
[32] “Surface science studies of model fuel cell electrocatalysts”, Markovi, N.M.; Ross Jr, P.N.; Surf. Sci. Rep. 2002, 45, 117-229.
[33] “Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells”, Liu, Z.; Lin, X.; Lee, J.Y.; Zhang, W.; Han, M.; Gan, L.M.; Langmuir 2002, 18, 4054-4060.
[34] “Mixed conducting catalyst support materials for the direct methanol fuel cell”, Lasch, K.; Hayn, G.; Jorissen, L..; Garche, J.; besenhardt, O.; J. Power Sources 2002, 105, 305-310.
[35] “In situ X-ray absorption studies of a Pt-Ru electrocatalyst”, McBreen, J.; Mukerjee, S.; J. Electrochem. Soc. 1995, 142, 3399-3404.
[36] “Measurement of the Ru surface content of electrocodeposited PtRu electrodes with the electrochemical quartz crystal microbalance: Implications for methanol and CO electrooxidation”, Frelink, T. ; Visscher, W. ; Van Veen, J.A.R. ;, Langmuir, 1996, 12, 3702-3708.
[37] “Anode catalysts for enhanced methanol oxidation: An in situ XANES study of PtRu/C and PtMo/C catalysts”, Mylswamy, S.; Wang, C.Y.; Liu, R.S.; Lee, J.-F.; Tang, M.-J.; Lee, J.-J.; Weng, B.-J.; Chem. Phys. Lett. 2005, 412, 444-448.
[38] “Performance of direct methanol fuel cells with sputter-deposited anode catalyst layers”, Witham, C.K.; Chum, W.; Valdez, T.I.; Narayanan, S.R.;, Electrochem. Solid State Lett. 2000, 3, 497-500.
[39] “Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate”, Rauhe, B.R.; McLarnon, F.R.; Cairns, E.J.; J. Electrochem. Soc. 1995, 142, 1073-1084.
[40] “Electrooxidation of CO and H2/CO Mixtures on a Well-Characterized Pt3Sn Electrode Surface”, Gasteiger, H.A.; Markovic, N.M.; Ross Jr., P.N.; J. Phys. Chem. 1995, 99, 8945-8949.
[41] “Intraalloy electron transfer and catalyst performance: A spectroscopic and electrochemical study”, Goodenough, J.B.; Manoharan, R.; Shukla, A.K.; Ramesh, K.V.; Chem. Mat. 1989, 1, 391-398.
[42] “Binary and ternary anode catalysts formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas”, Gotz, M. ; Wendt, M. ; Electrochim. Acta. 1998, 43, 3637-3644.
[43] “Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC”, Neburchilov, V. ; Wang, H. ; Zhang, J. ; Electrochem. Commun. 2007, 9, 1788-1792.
[44] “Preparation and methanol oxidation catalysis of Pt-CeO2 electrode”, Campos, C.L.; Roldan, Z.; Aponte, M.; Ishikawa, Y.; Cabrera, C.R.; J. Electroanal. Chem. 2005, 581, 206-215.
[45] “Preparation and anode property of Pt-CeO2 electrodes supported on carbon black for direct methanol fuel cell applications”, Takahashi, M.; Mori, T.; Vinu, A.; Kobayashi, H.; Drennan, J.; Ou, D.-R.; J. Mater. Res. 2006, 21, 2314-2322.
[46] “Promoting the current for methanol electro-oxidation by mixing Pt-based catalysts with CeO2 nanoparticles”, Wang, J.; Deng, X.; Xi, J.; Chen, L.; Zhu, W.; Qiu,X.; J. Power Sources 2007, 170, 297-302.
[47] ”Promoting the current for methanol electro-oxidation by mixing Pt-based catalysts with CeO2 nanoparticles”, Wang, J.; Deng, X.; Xi,J.; Chen, L.; Zhu, W.; Qiu, X.; J. Power Sources 2007, 170, 297-302.
[48] “Pt-CeO2/C anode catalyst for direct methanol fuel cells”, Scibioh, M.A.; Kim, S.-K.; Cho, E.A.; Lim, T.-H., Hong, S.-A.; Ha, H.Y.; App. Cata. B: Envir. 2008, 84,773-782.
[49] “Preparation of Pt/CeO2/HCSs anode electrocatalysts for direct methanol fuel cells”, Zhao, Y.; Wang, F.; Tian, J.; Yang, X.; Zhan, L.; Electrochim. Acta 2010, 55, 8998-9003.
[50] “Direct oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase”, Formo, E.; Peng, Z.; Lee, E.; Lu, X.; Yang, H.; Xia, Y.; J. Phys. Chem. C 2008, 112, 9970-9975.
[51] “Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation”, Chen, C.-S.; Pan, F.-M.; Appl. Catal. B 2009, 91, 663-669.
[52] “Fabrication and characterization of Pt/C - TiO2 nanotube arrays as anode materials for methanol electrocatalytic oxidation”, Yang, L.; Xiao, Y.; Zeng, G.; Luo, S.; Kuang, S.; Cai, Q.; Energ. Fuel. 2009, 23, 3134–3138.
[53] “Excellent dispersion and electrocatalytic properties of Pt nanoparticles supported on novel porous anatase TiO2 nanorods”, Guo, X.; Guo, D.-J.; Qiu, X.-P.; Chen, L.-Q.; Zhu, W.-T.; J. Power Sources 2009, 194 , 281–285.
[54] “Design and preparation of highly active carbon nanotube-supported sulfated TiO2 and platinum catalysts for methanol electrooxidation”, Song, H.; Xiao, P.; Qiu, X.; Zhu, W.;, J. Power Sources 2010, 195, 1610-1614.
[55] “Building three-dimensional Pt catalysts on TiO2 nanorod arrays for effective ethanol electrooxidation”,He, X.; Hu, C.; J. Power Sources 2011, 196 , 3119–3123.
[56] “The role of WOx ad-component to Pt and PtRu catalyst in the electrochemical CH3OH oxidation reaction”, Yang, L. X.; Bock, C.; MacDougall, B.; Park, J.; J. Appl. Electrochem. 2004, 34, 427-438
[57]“Synthesis and Characterization of Pt-WO3 as Methanol Oxidation Catalysts for Fuel Cells”, Jayaraman, S.; Jaramillo, T.F.; Baeck, S.-H.; McFarland, E.W.; J. Phys. Chem. B 2005, 109, 22958-22966.
[58] “Platinum/Mesoporous WO3 as a Carbon-Free Electrocatalyst with Enhanced Electrochemical Activity for Methanol Oxidation ”, Cui, X.; Shi, J.; Chen, H.; Zhang, L.; Guo, L.; Gao, J.; Li, J.; J. Phys. Chem. B 2008, 112, 12024-12031.
[59] “Unique CO-tolerance of Pt–WOx materials”, Micoud, F.; Maillard, F.; Gourgaud, A.; Chatenet, M.; Electrochem. Commun. 2009, 11, 651-654.
[60] “Electrocatalytic Activity and CO Tolerance Properties of Mesostructured Pt/WO3 Composite as an Anode Catalyst for PEMFCs”, Xiangzhi, C.; Limin, G.; Fangming, C.; Qianjun, H.; Jianlin, S.; J. Phys. Chem. C 2009, 113, 4134-4138.
[61]“A facile method to synthesize well-dispersed PtRuMoOx and PtRuWOx nanoparticles and their electrocatalytic activities for methanol oxidation”, Huang, T.; Zhang, D.; Xue, L.; Cai, W.-B.; Yu, A.; J. Power Sources 2009, 192, 285-290.
[62] ”High activity of Pd-WO3-C catalyst for direct formic acid fuel cell”, Feng, L.; Yan, L.; Cui, Z.; Liu, C.; Xing, W.; J. Power Sources, 2011, 196, 2469–2474.
[63] “Single cell study of electrodeposited cathodic electrodes based on Pt–WO3 for polymer electrolyte fuel cells”, Martin, A. J.; Chaparro, A. M.; Daza, L.; J. Power Soureces 2011, 196, 4187-4192.
[64] Lee, E. ; Manthiram, A ; “One-step reverse microemulsion synthesis of Pt-CeO2/C catalysts with improved nanomorphology and their effect on methanol electrooxidation reaction”, Journal of Physical Chemistry C, 2010, 114, 21833-21839.
[65] Lebedeva, N.-P. ; Rosca, V. ; Janssen, G.-J.-M. ; ” CO oxidation and CO2 reduction on carbon supported PtWO3 catalyst”, Electrochimica Acta, 2010, 55, 7659-7668.
[66] Ye, J. ; Liu, J. ; Zou, Z. ; Gu, J. ; Yu, T. ; ” Preparation of Pt supported on WO3-C with enhanced catalytic activity by microwave-pyrolysis method”, Journal of power sources, 2010, 195, 2633-2637.
[67] Cui, Z.; Feng, L.; Liu, C.; Xing, W.; ”Pt nanoparticles supported on WO3/C hybrid materials and their electrocatalytic activity for methanol electro-oxidation”, Journal of Power Sources, 2011, 196, 2621–2626.
[68] Haung, J. C. ; Sen, R. K. ; Yeager, E. ; “Oxygen Reduction On Platinum In 85% Orthophosphoric Acid”, Journal of the Electrochemical Society, 1979, 126, 786-792.
[69] “The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts”, Prado-Burguete, C.; Linares-Solano, A.; Rodriguez-Reinoso, F.; de Lecea, C.S.-M.; J. Catal. 1989, 115, 98-106.
[70] “The role of WOx ad-component to Pt and PtRu catalyst in the electrochemical CH3OH oxidation reaction”, Yang, L.X.; Bock, C.; MacDougall, B.; Park, J.; J. Appl. Electrochem., 2004, 34, 427-438.
[71] ”Is carbon-supported Pt-WOx composite a CO-tolerant material?”, Maillard, F.; Peyrelade, E.; Soldo-Olivier, Y.; Chatenet, M.; Chainet, E.; Faure, R.; Electrochim. Acta 2007, 52, 1958-1967.
[72] “Electro-Oxidation of Ethanol on Pt-WO3/C Electrocatalyst”, Zhang, D.-Y.; Ma, Z.-F.; Wang, G.; Konstantinov, K.; Yuan, X.; Liu, H.-K.; Electrochem. Solid State Lett. 2006, 9, A423-A426.
[73] “Development of composite anode electrocatalyst for direct methanol fuel cells”, Li, X.; Qiu, X.; Zhao, L.; Chen, L.; Zhu, W.; J. Appl. Electrochem. 2009, 39, 1779-1787.
[74] “Pt–WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells”, Rajesh, B.; Karthik, V.; Karthikeyan, S.; Ravindranathan Thampi, K.; Bonard, J.-M.; Viswanathan, B.; Fuel 2002, 81, 2177-2190.
[75] “An electrocatalyst for methanol oxidation based on tungsten trioxide microspheres and platinum”, Ganesan, R.; Lee, J.S.; J. Power Sources 2006, 157, 217-221.
[76] “Catalytic activity of platinum/tungsten oxide nanorod electrodes towards electro-oxidation of methanol”, Maiyalagan, T.; Viswanathan, B.; J. Power Sources 2008, 175, 789-793.
[77] “Performance of CO-electrodeposited Pt-Ru/WO3 electrodes for the electrooxidation of formic acid at room temperature”, Shen, P.K.; Chen, K.Y. ; Tseung, A.C.C. ; J. Electroanal. Chem. 1995, 389, 223-225.
[78] ”PtRu Alloy and PtRu-WO3 Nanocomposite Electrodes for Methanol Electrooxidation Fabricated by a Sputtering Deposition Method”, Park, K.-W.; Choi, J.-H.; Ahn, K.-S.; Sung, Y.-E.; J. Phys. Chem. B, 2004, 108, 5989-5994.
[79] “Electrodeposition preparation of Pt–HxWO3 composite and its catalytic activity toward oxygen reduction reaction”, Hung, Y.J.; Dai, H.H.; Li, W.S.; Li, G.L.; Shu, D.; Chen, H.Y.; J. Power Sources 2008, 184, 348-352.
[80] ”H2O2 treated carbon black as electrocatalyst support for polymer electrolyte membrane fuel cell applications”, Carmo, M.; Linardi, M.; Poco, J.G.R.; Int. J. Hydrog. Energy 2008, 33, 6289-6297.
[81] “Citric acid functionalized carbon materials for fuel cell applications”, Roh, C.K.; Lim, S.H.; Pan, H.; Lin, J.; Lee, J.Y.; J. Power Sources 2008, 176, 70-75.
[82] “Characterization of nitric acid functionalized carbon black and its evaluation as electrocatalyst support for direct methanol fuel cell applications”, Carmo, M.; Linardi, M.; Poco, J.G.R.; Appl. Catal. A-Gen. 2009, 355, 132-138.
[83] “Carbon-coated tungsten oxide nanowires supported Pt nanoparticles for oxygen reduction”, Saha, M.S.; Zhang, Y.; Cai, M.; Sun, X.; Int. J. Hydrog. Energy 2011, XXX, 1-6.
[84] “Study of core–shell platinum-based catalyst for methanol and ethylene glycol oxidation”, Kaolan, D.; Alon, M.; Burstein. L.; Rosenberg, Yu.; Peled, E.;, J. Power Sources 2011, 196, 1078-1083.
[85] “Study on the formation of Pt/C catalysts by non-oxidized active carbon support and a sulfur-based reducing agent”, Antolini, E.; Cardellini, F.; Squadrito, G.; J. Mate. Sci. 2002, 37, 133-139.
[86] “Influence of the synthesis method on the properties of Pt catalysts supported on carbon nanocoils for ethanol oxidation”, Lazaro, M.-J.; Celorrio, V.; Calvillo, L.; Pastor, E.; Moliner, R.; J. Power Sources 2011, 196, 4236-4241.
[87] “Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles”, Liu, Z.; Lee, J.Y.; Chen, W.; Han, M.; Gan, L.M.; Langmuir 2004, 20, 181-187.
[88] “The effect of particle size on the interaction of Pt catalyst particles with a carbon black support”, Lin, G.; Du, H.-D.; Li, B.-L.; Kang, F.-Y.; New Carbon Mater. 2010, 25, 53-59.
[89] ”WO3 thin film coating from H2O-controlled peroxotungstic acid and its electrochromic properties”, Kim, C.-Y.; Lee, M.; Huh, S.-H.; J. Sol-Gel Sci. Technol. 2010, 53, 176–183.
[90] “Electron Transfer Reactions and Flat-Band Potentials of WO3 Colloids”, Nenadović, M.-T.; Rajh, T.; Mićić, O.-I.; Nozik, A.-J.; J. Phys. Chem. 1984, 88, 5827-5830.
[91] “Electrochromic and photoelectrochromic behavior of thin WO3 films prepared from quantum size colloidal particles”, Hotchandani, S.; Bedja, I.; Fessenden, R.W.; Kamat, P.V.; Langmuir 1994, 10, 17-22.
[92] “Highly Sensitive WO3 Hollow-Sphere Gas Sensors”, Li, X.-L.; Lou, T.-J.; Sun, X.-M.; Li, Y.-D.; Inorg. Chem. 2004, 43, 5442-5449.
[93] “Influence of particle size on the properties of Pt-RuC catalysts prepared by a microemulsion method”, Godoi, D.R.M.; Perez, J.; Mercedes Villullas, H.; J. Electrochem. Soc. 2007, 154, B474-B479.
WO3 200℃
[94] “WO3 thin film coating from H2O-controlled peroxotungstic acid and its electrochromic properties”, Kim, C.-Y.; J. Sol-Gel Sci. 2010, 53, 176-183.
[95] “Surface and electrochemical investigations of a fullerene soot”, Silva, S. A. M.; Perez, J.; Torresi, R. M.; Luengo, C. A.; Ticianelli, E. A.; Electrochim. Acta, 1999, 44, 3565-3574.
[96] “Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties”, Chen, J.P.; Wu, S.; Langmuir, 2004, 20, 2233-2242.
[97]“Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids”, Li, L.; Wu, G.; Xu, B.-Q.; Carbon, 2006, 44, 2973-2983.
[98] “Activated carbon oxygen content influence on water and surfactant adsorption”, Pendleton, P.; Wu, S.H.; Badalyan, A.; J. Colloid Interface Sci. 2002, 246, 235-240.
XRD
[99] “Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts”, Park, K.-W.; Sung, Y.-E.; Han, S.; Yun, Y.; Hyeon, T.; J. Phys. Chem. B 2004, 108, 939-944.
[100] “Electrooxidation of methanol and 2-propanol mixtures at platinum single crystal electrodes”, Santasalo, A.; Vidal-lglesias, F.J.; Solla-Gullon, J.; Berna, A.; Kallio, T.; Feliu, J.M.; Electrochim. Acta 2009, 54, 6576-6583.
[101] “Formic acid oxidation on shape-controlled Pt nanoparticles studied by pulsed voltammetry”, Grozovski, V.; Solla-Gullon, J.; Climent, V.; Herrero, E.; Feliu, J.M.; J. Phys. Chem. C 2010, 114, 13802-13812.
[102] “Mechanisms of carbon monoxide and methanol oxidation at single-crystal electrodes”, Lai, S.C.S.; Lebedeva, N.P.; Housmans, T.H.M.; Koper, M.T.M.; Top歐Catal. 2007, 46, 320-333.
[103] “Synthesis of tungsten oxide nanoparticles by acid precipitation method”, Supothina, S.; Seeharaj, P.; Yoriya, S.; Sriyudthsak, M.; Ceram. Int. 2007, 33, 931-936.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-02-08公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-02-08起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信