§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1101200712485400
DOI 10.6846/TKU.2007.00289
論文名稱(中文) 風險值衡量與風險值避險法
論文名稱(英文) Value-at-Risk Measures and Value-at-Risk based Hedging Approach
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 財務金融學系博士班
系所名稱(英文) Department of Banking and Finance
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 1
出版年 96
研究生(中文) 洪瑞成
研究生(英文) Jui-Cheng Hung
學號 891490053
學位類別 博士
語言別 英文
第二語言別
口試日期 2006-12-30
論文頁數 84頁
口試委員 指導教授 - 邱建良(100730@mail.tku.edu.tw)
共同指導教授 - 李命志(mlee@mail.tku.edu.tw)
委員 - 俞海琴
委員 - 邱建良
委員 - 莊武仁
委員 - 張倉耀
委員 - 聶建中
委員 - 王凱立
關鍵字(中) 風險值
跳躍
絕對風險值避險比率
雙變量馬可夫狀態轉換模型
多期絕對風險值避險比率
最小變異避險比率
關鍵字(英) Value-at-Risk
Jump
zero-VaR hedge ratio
Bivariate Markov regime switching model
Multi-period zero-VaR hedge ratios
Minimum hedge ratios
第三語言關鍵字
學科別分類
中文摘要
本論文著重在風險值的衡量與以風險值為基礎的避險比率上,共包含三個部份,分別為「在動態跳躍與訊息不對稱下的風險值計算」、「絕對風險值避險比率」與「以雙變量馬可夫狀態轉換模型估計多期的絕對風險值避險比率與最小變異避險比率」。
    將此三部份的內容簡敘如下。第一部分使用GARJI、ARJI與不對稱GARCH等三個模型在估計一天的相對風險值之績效。本文使用此三個模型計算兩個股價指數(道瓊指數與S&P 500指數)與一個匯率(日圓)的多部位風險值,其用意在於探討價格跳躍與訊息不對稱效果對於衡量風險值績效的影響。實證結果發現,在資產報酬率具有隨時間變動的跳躍現象以及訊息不對稱的效果下,由GARJI與ARJI模型所估算出來的風險值無論信心水準的高低,均能提供令人信賴的準確度。另外,由MRSB顯示,GARJI所估算出的風險值最具效率性。
    第二部份本文以風險值為基礎,推出以絕對風險值為目標函數的絕對風險值避險比率。當期貨報酬率服從單純平賭過程或是風險趨避程度趨於無窮大的條件下,絕對風險值避險比率將縮減成為最小變異避險比率。於實證過程中,本文採用包含誤差修正項的雙變量固定相關係數GARCH(1,1)模型估計計算最小變異避險比率所需的參數,並且比較其與Hsin et al. (1994)所提出的以極大化效用函數為目標的避險比率。
    第三部份本文推廣單期的絕對風險值避險比率(Hung et al., 2006)成為多期的情況,並使用四狀態雙變量馬可夫轉換模型和雙變量對角化VECH GARCH(1,1)模型估計道瓊指數與S&P 500的絕對風險值避險比率與最小變異避險比率。與Bollen et al. (2000)不同之處在於,本文分別從樣本內與樣本外避險績效的角度,探討在雙變量的情況下,狀態轉換與GARCH這兩種方法何者對於樣本內的配適度以及樣本外的變異數預測較佳。實證結果顯示狀態轉換的方式提供較佳的樣本內配適度;然而,於大多數的情況下,GARCH在樣本外的變異數預測上較具有優勢。
英文摘要
This study focuses on VaR measurement and VaR-based hedge ratio, and it contains three parts. The first part is titled “Estimation of Value-at-Risk under Jump Dynamics and Asymmetric Information”, the second part is named “Hedging with Zero-Value at Risk Hedge Ratio”, and the last one is “Bivariate Markov Regime Switching Model for Estimating Multi-period zero-VaR Hedge Ratios and Minimum Variance Hedge Ratios”.
  A brief introduction of these three parts is described as follow: The first part employs GARJI, ARJI and asymmetric GARCH models to estimate the one-step-ahead relative VaR and compare their performances among these three models. Two stock indices (Dow Jones industry index and S&P 500 index) and one exchange rate (Japanese yen) are used to estimate the model-based VaR, and we investigate the influences of price jumps and asymmetric information on the performance of VaR measurement. The empirical results demonstrate that, while asset returns exhibited time-varying jump and the information asymmetric effect, the GARJI-based and ARJI-based VaR provide reliable accuracy at both low and high confidence levels. Moreover, as MRSB indicates, the GARJI model is more efficient than alternatives. 
  In the second part, a mean-risk hedge ratio is derived on the foundation of Value-at-Risk. The proposed zero-VaR hedge ratio converges to the MV hedge ratio under a pure martingale process or an infinite risk-averse level. In empirical section, a bivariate constant correlation GARCH(1,1) model with an error correction term is adopted to calculate zero-VaR hedge ratio, and we compare it with the one proposed by Hsin et al. (1994) which maximized the utility function as their objective.
The last part extends one period zero-VaR hedge ratio (Hung et al., 2006) to the multi-period case, and also employed a four-regime bivariate Markov regime switching model and diagonal VECH GARCH(1,1) model to estimate both zero-VaR and MV hedge ratios for Dow Jones and S&P 500 stock indices. Dissimilar with Bollen et al. (2000), the in-sample fitting abilities and out-of-sample variance forecasts between regime-switching and GARCH approaches are investigated in a bivariate case through in- and out-of-sample hedging performances. The empirical evidences show that the regime switching approach provides better in-sample fitting ability; however, GARCH approach has better out-of-sample variance forecast ability for most cases.
第三語言摘要
論文目次
TABLE OF CONTENTS                                     
                       Page
ACKNOWLEDGEMENT        ii
ABSTRACT IN CHINESE    iii
ABSTRACT IN ENGLISH    iv
LIST OF TABLES         ix
LIST OF FIGURES        x

PART I	1
Estimation of Value-at-Risk under Jump Dynamics and Asymmetric Information
ABSTRACT	2
CHAPTER
1. Introduction	3
1.1 Motivations and Objectives	3
1.2 Flow Chart	5
2. Literature Review	6
3. Model-based VaR Estimates and Evaluation Methods	8
3.1 VaR Definition	8
3.2 Evaluation Methods	9
3.2.1 General Loss Functions	9
3.2.2 Binary Loss Function	9
3.2.3 Quadratic Loss Function	10
3.2.4 Likelihood Ratio Tests	10
3.2.5 Mean Relative Scaled Bias	11
4. Econometric Methodology	12
4.1 GARJI Model	12
4.2 Asymmetric GARCH Model	15
5. Empirical Results and Analysis	17
5.1 Data Description and Preliminary Analysis	17
5.2 Empirical Results and Analysis	17
5.2.1 Estimation and Analytical Computation of Model-based VaR	17
5.2.2 Prediction Performance of the Model-based VaR	22
6. Conclusions	27
BIBLIOGRAPHY	28

PART II	30
Hedging with Zero-Value at Risk Hedge Ratio
ABSTRACT	31
CHAPTER
1. Introduction	32
1.1 Motivations and Objectives	32
1.2 Flow Chart	34
2. Literature Review of The Hedge Ratios	35
3. The Derivation of Zero-VaR Hedge Ratio	38
4. Econometric Methodology	42
4.1 Bivariate Constant-Correlation GARCH Model	42
4.2 Evaluation of Hedging Effectiveness	44
5. Empirical Results	45
5.1 Data Description	45
5.2 Empirical Results	46
6. Conclusions	53
BIBLIOGRAPHY	54
Appendix A	57
Appendix B	58

PART III	59
Bivariate Markov Regime Switching Model for Estimating Multi-period zero-VaR Hedge Ratios and Minimum Variance Hedge Ratios
ABSTRACT	60
CHAPTER
1. Introduction	61
1.1 Motivations and Objectives	61
1.2 Flow Chart	64
2. Multi-period Zero-VaR Hedge Ratio	65
2.1 Derivation of Multi-period Zero-VaR hedge ratio	65
2.2 Relationship Between Multi-period Zero-VaR Hedge Ratios and Risk-
averse Level	66
2.3 Relationship Between Multi-period Zero-VaR Hedge Ratios and Hedging Horizon	66
3. Econometric Methodology	68
3.1 Four-regime Bivariate Markov Switching Model	68
3.2 The Diagonal VECH GARCH Model	71
3.3 Evaluation of Hedging Performance	72
4. Empirical Results	74
4.1 Data Description	74
4.2 Empirical Results	75
4.2.1 Estimation of Four-regime Bivariate Markov Switching Model	75
4.2.2 Estimation of Diagonal VECH GARCH(1,1) Model	78
4.2.3 In- and Out-of-sample Hedging Performance	79
5. Conclusions	82
BIBLIOGRAPHY	83


 
LIST OF TABLES
                                                      Page
PART I
Table 1. Descriptive statistics of daily return	17
Table 2. Estimation results of GARJI model	18
Table 3. Estimation results of ARJI model	19
Table 4. Estimation results of asymmetric GARCH model	20
Table 5. Forecasting performance summary for different VaR models at 95%
confidence level	23
Table 6. Forecasting performance summary for different VaR models at 99% 
confidence level	24
Table 7. Forecasting performance summary for different VaR models at 99.5% 
confidence level	25
Table 8. Forecasting performance summary for different VaR models at 99.9%  
confidence level	26

PART II
Table 1. Summary statistics of the spot and futures returns of S&P 500	45
Table 2. Bivariate constant correlation GARCH(1,1) model	47
Table 3. HKL and zero-VaR hedge ratios for different risk-averse levels	51
Table 4. Comparison of within-sample hedging effectiveness	52

PART III
Table 1. Summary statistics of the spot and futures returns for daily stock indices	74
Table 2. Estimation results of four-regime bivariate Markov switching model	76
Table 3. Estimation results of diagonal VECH GARCH(1,1) model	79
Table 4. Comparison of hedging performance	81




LIST OF FIGURES
                                                     Page
PART I

Figure 1. Conditional jump intensity for Dow Jones industry index	21
Figure 2. Conditional jump intensity for S&P 500	22
Figure 3. Conditional Jump Intensity for Japanese yen	22

PART II
Figure 1. MV hedge ratio and zero-VaR hedge ratio	48
Figure 2. Comparison of MV, HKL2.5, and zero-VaR75% hedge ratios	50

PART III
Figure 1. The relationship between multi-period zero-VaR hedge ratio and risk-averse 
level	67
Figure 2. The relationship between multi-period zero-VaR hedge ratio and hedging 
horizon	67
Figure 3. Ex-post probabilities of high variance regime for spot and futures of Dow Jones	77
Figure 4. Ex-post probabilities of high variance regime for spot and futures of S&P 500.	78
參考文獻
BIBLIOGRAPHY

Ball, C. A., & Torous, W. N. (1983). A simplified jump process for common stock returns. Journal of Financial and Quantitative Analysis, 18, 53-65.
Ball, C. A., & Torous, W. N. (1985). On jumps in common stock prices and their impact on call option pricing. Journal of Finance, 40(1), 155-173.
Bates, D. S. (1991). The crash of ’87: was it expected? the evidence from the options markets. Journal of Finance, 46, 1009-1044.
Billio, M. & Pelizon, L. (2000). Value-at-Risk: a multivariate switching regime approach. Journal of Empirical Finance, 7, 531-554.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasiticity. Journal of Econometrics, 31(3), 307–327.
Bollerslev, T. (1987). A conditionally heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics, 69, 542–547.
Chan, W. H. and J. M. Maheu (2002). Conditional jump dynamics in stock market return. Journal of Business & Economic Statistics, 20(3), 377-389.
Ding, Z. C., Granger, W. J. & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance 1, 83–106.
Duffie, D., & Pan, J. (2001). Analytical Value-at-Risk with jumps and credit risk. Finance and Stochastics, 5, 155-180.
Engle, R. (1982). Autoregressive conditional heterosedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.
Engle, J., & Gizycki, M. (1999). Conservatism, accuracy and efficiency: comparing Value-at-Risk models. Working Paper Series Number wp0002. Australian Prudential Regulation Authority.
Gibson, M. S. (2001). Incorporating event risk into Value-at-Risk. Trading Risk Analysis Section, Division of Research and Statistics, Federal Reserve Board, Working paper.
Giot, P., & Laurent, S. (2003a). Market risk in commodity markets: a VaR approach. Energy Economics, 25, 435-457.
Giot, P., & Laurent, S. (2003b). Value-at-Risk for long and short trading positions. Journal of Applied Econometrics, 18, 641-664.
Giot, P., & Laurent, S. (2004). Modelling daily Value-at-Risk using realized volatility and ARCH type models. Journal of Empirical Finance, 11, 379-398.
Hendricks, D. (1996). Evaluation of Value-at-Risk models using historical data Federal Reserve Bank of New York. Economic Policy Review, April, 39-69.
Huang, Y. C., & Lin, B. J. (2004). Value-at-Risk analysis for Taiwan stock index futures: fat tails and conditional asymmetries. Review of Quantitative Finance and Accounting, 22, 79-95.
Jorion, P. (1988). On jump processes in the foreignexchange and stock markets. Review of Financial Studies, 1, 427-445.
Jorion, P. (2000). Value at Risk: The New Benchmark for controlling market risk. McGraw-Hill.
Kupiec, P. (1995). Techniques for verifying the accuracy of risk management models. Journal of Derivatives, 3, 73–84.
Lopez, J. (1998). Methods for evaluating Value-at-Risk estimates. Federal Reserve Bank of New York, Research Paper No. 9802.
Maheu, J. M., & McCurdy, T. H. (2004). News arrival, jump dynamics and volatility components for individual stock returns. Journal of Finance, 59(2), 755-793.

BIBLIOGRAPHY

Adams, J., & Montesi, C. J. (1995). Major issues related to hedge accounting. Newark, CT: Financial Accounting Standard Board.
Baillie, R. T., & Myers, R. J. (1991). Bivariate GARCH estimation of the optimal commodity futures hedge. Journal of Applied Econometrics, 6(2), 109-124.
Baillie, R. T., & Bollerslev, T. (1989). Common stochastic trends in a system of exchange rates, Journal of Finance, 44, 167-181.
Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial Economics, 2, 95-121.
Bawa, V. S. (1978). Safety-first, stochastic dominance and optimal portfolio choice. Journal of Financial and Quantitative Analysis, 33(2), 255-271.
Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH approach. Review of Economics and Statistics, 72, 498-505.
Cecchetti, S. G.., Cumby, R. E., & Figlewski, S. (1988). Estimation of the optimal futures hedge. Review of Economics and Statistics, 70, 623-630.
Chen, S. S., Lee, C. F., & Shrestha, K. (2001). On a mean-generalized semi-variance approach to determining the hedge ratio. Journal of Futures Markets, 21, 581-598.
Chen, S. S., Lee, C. F., & Shrestha, K. (2003). Futures hedge ratios: a review. Quarterly Review of Economics and Finance, 43, 433-465.
De Jong, A., De Roon, F., & Veld, C. (1997). Out-of sample hedging effectiveness of currency futures for alternative models and hedging strategies. Journal of Futures Markets, 17, 817-837.
Eftekhari, B. (1998). Lower partial moment hedge ratio. Applied Financial Economics, 8(6), 645-652.
Engle, R. F., & Granger, C. W. J. (1987). Cointegration and error correction: representation, estimation and testing. Econometrica, 55, 251-276.
Fishburn, P. J. (1977). Mean-risk analysis with risk associated with below-target returns. American Economic Review, 67(2), 116-126.
Gregory-Allen, R. B., & Shalit, H. (1999). The estimation of systematic risk under differentiated risk-aversion: a mean-extended Gini approach. Review of Quantitative Finance and Accounting, 12, 135-157.
Hakkio, K. S., & Rush, M. (1989). Market efficiency and cointegration: an application to the Sterling and Deutschemark exchange rates. Journal of International Money and Finance, 8, 75-88.
Hsin, C. W., Kuo, J., & Lee, C. F. (1994). A new measure to compare the hedging effectiveness of foreign currency futures versus options. Journal of Futures Markets, 14(6), 685-707.
Howard, C. T., & D’Antonio, L. J. (1984). A risk-return measurement of hedging effectiveness. Journal of Financial and Quantitative Analysis, 19, 101-112.
Ingersoll, J. (1987). The theory of financial decision making. Lanham, MA: Rowman and Littlefield.
Jarque, C. M., & Bera, A. K. (1987). A test for normality of observations and regression residuals. International Statistics Review, 55, 163-172.
Johnson, L. L. (1960). The theory of hedging and speculation in commodity futures. Review of Economic Studies, 27, 139-151.
Jorion, P. (2000), Value-at-Risk2nd: the new benchmark for controlling market risk. University of California, Irvine.
Kolb, R. W., & Okunev, J. (1992). An empirical evaluation of the extended mean-Gini coefficient for futures hedging. Journal of Futures Markets, 12, 177-186.
Kolb, R. W., & Okunev, J. (1993). Utility maximizing hedge ratios in the extended mean Gini framework. Journal of Futures Markets, 13, 597-609.
Kroner, K. F., & Claessens, S. (1991). Optimal dynamic hedging portfolios and the currency composition of external debt. Journal of International Money and Finance, 10, 131-148.
Lien, D., & Luo, X. (1993). Estimating the extended mean-Gini coefficient for futures hedging. Journal of Futures Markets, 13, 665-676.
Lien, D., & Tse, Y. K. (1998). Hedging time-varying downside risk. Journal of Futures Markets, 18, 705-277.
Lien, D., & Tse, Y. K. (2000). Hedging downside risk with futures contracts. Applied Financial Economics, 10(2), 163-170.
Lien, D., Tse, Y. K., & Tsui, A. K. C. (2002). Evaluating the hedging performance of the constant-correlation GARCH model. Applied Financial Economics, 12(11), 791-798.
Kroner K. F., & Sultan, J. (1993). Time-varying distributions and dynamic hedging with foreign currency futures. Journal of Financial and Quantitative Analysis, 28(4), 535-551.
Park, T. H., & Switzer, L. N. (1995). Bivariate GARCH estimation of the optimal hedge ratios for stock index future: a note. Journal of Futures Markets, 15(1), 61-67.
Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75, 335-346.
Harris, R. D. F., & Shen, J. (2006). Hedging and Value at Risk. Journal of Futures Markets, 26(4), 369-390. 
Shalit, H. (1995). Mean-Gini hedging in futures markets. Journal of Futures Markets, 15, 617–635.

BIBLIOGRAPHY
Alizadeh, A., & Nomikos, N. (2004). A Markov regime switching approach for hedging stock indices. Journal of Futures Markets, 24(7), 649-647.
Bollen, N. P. B., Gray, S. F., & Robert, E. W. (2000). Regime switching in foreign exchange rates: evidence from currency option prices. Journal of Econometrics, 94, 239-276.
Brooks, C., & Chong, J. (2001). The cross-currency hedging performance of implied versus statistical forecasting models. Journal of Futures Markets, 21, 1043-1069. 
Chen, S. S., Lee, C. F., & Shrestha, K. (2003). Futures hedge ratios: a review. Quarterly Review of Economics and Finance, 43, 433-465.
Chiu, C. L., Wu, P. S., Chen, C. D., & Cheng, W. H. (2005). Hedging with Floor-traded and E-mini stock futures. Quarterly Journal of Business and Economics, 44, 49-68.
Ederington, L. H. (1979). The hedging performance of the new futures markets. Journal of Finance, 34, 157-170.
Garcia, R. (1998). Asymptotic null distribution of the likelihood ratio test in Markov switching models. International Economic Review, 39(3), 763-788.
Gray, S. F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42, 27-62.
Hamilton, J. D. (1988). Rational expectations econometric analysis of changes in regime: an investigation of the term structure of interest rates. Journal of Economic Dynamics and Control, 12, 385-423.
Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57, 357-384.
Hamilton, J. D. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 64, 307-333.
Hansen, B. E. (1992). The likelihood ratio test under nonstandard conditions: testing the Markov switching model of GNP. Journal of Applied Econometrics, 7, S61-S82.
Hansen, B. E. (1996). Erratum: the likelihood ratio test under nonstandard conditions: testing the Markov switching model of GNP. Journal of Applied Econometrics, 11, 195-198.
Howard, C. T., & D’Antonio, L. J. (1991). Multiperiod hedging using futures: A risk minimization approach in the presence of autocorrelation. Journal of Futures Markets, 11, 697-710.
Hung, J. C., Chiu, C. L., & Lee, M. C. (2006). Hedging with zero-Value at Risk hedge ratio. Applied Financial Economics, 16(3), 259-269.
Jarque, C. M., & Bera, A. K. (1987). A test for normality of observations and regression residuals. International Statistical Review, 55, 163-172.
Jorion, P. (2000). Value-at-Risk2nd: The New Benchmark for Managing Financial Risk. McGraw-Hill International Edition.
Lien, D., & Tse, Y. K. (2002). Some recent developments in futures hedging. Journal of Economic Surveys, 16, 357-396.
Lee, H. T. & Yoder, J. (2006) A bivariate markov regime switching GARCH spproach to estimate time varying minimum variance hedge ratios. Applied Economics, forthcoming. 
Lien, D., & Luo, C. (1993). Estimating extended mean-Gini coefficient for futures hedging. Journal of Futures Markets, 13, 665-676.
Lien, D., & Luo, C. (1994). Multiperiod hedging in the presence of conditional heteroskedasticity. Journal of Futures Markets, 14, 927-955.
Phillips, P., & Perron, P. (1988). Testing for a unit root in time series regressions. Biometrica, 75, 335-346.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信