淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1009200912164000
中文論文名稱 廢電池不同前處理程序還原六價鉻之可行性探討
英文論文名稱 Using spent alkaline batteries by various pretreatment processes for chromium removal in wastewater
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 曾俞鈞
研究生英文姓名 Yu-Chun Tsen
學號 696480762
學位類別 碩士
語文別 中文
口試日期 2009-06-18
論文頁數 104頁
口試委員 指導教授-李柏青
委員-陳孝行
委員-李奇旺
中文關鍵字 鹼性電池  零價鋅  氧化鋅  六價鉻  氧化還原反應 
英文關鍵字 alkaline batteries  zero-valent zinc  zinc oxide  hexavalent chromium  redox reaction 
學科別分類 學科別應用科學環境工程
中文摘要 本研究是針對廢鹼性電池陽極添加物中之鋅粉以不同前處理程序還原六價鉻廢水之可行性探討。此外,也期望能界定出不同殘餘電壓下鋅粉中零價鋅含量。前處理方式包含:純水水洗系統、硫酸水洗系統及碳酸水洗系統。六價鉻廢水為人工合成廢水,此實驗採用批次瓶杯反應。
陽極添加物中鋅粉經不同前處理程序後,藉由鋅粉之水洗液pH值、XRD、FE-SEM及BET等分析觀察其特性變化。研究中發現,改變前處理程序並不會影響鋅粉中氧化鋅與零價鋅含量比例,並根據實驗結果統計得知鋅粉中零價鋅含量與殘餘電壓有一關係式,可用來說明不同殘餘電壓下,鋅粉中零價鋅含量。
在經過批次瓶杯反應後,發現以硫酸水洗系統對還原六價鉻廢水具有最佳的效果(0.84~3.12 mg Cr6+/g zinc powder/30 min),其次為碳酸水洗系統(0.59~1.84 mg Cr6+/g zinc powder/30 min)最後為純水水洗系統(0.23~2.40 mg Cr6+/g zinc powder/30 min)。研究中發現經過三種系統處理後之鋅粉中零價鋅的利用率皆很低,分別為硫酸水洗系統0.37~28.61%、碳酸水洗系統0.33~13.27%及純水水洗系統0.26~5.99%,這是因為六價鉻還原反應系統中之氫離子濃度有限,隨著pH上升使氧化還原反應停止所導致。如持續提供氫離子於反應系統中,將有助於還原反應進行以提高鋅粉中零價鋅利用率,且反應後廢水中總鉻濃度亦會下降,將有助於達到工業廢水放流水標準。
英文摘要 In this project, the feasibility of the zinc powders from the spent alkaline batteries anode by using various pretreatment to reduce the hexavalent chromium in wastewater has been studied. And we expect to define the amounts of the zero-valent zinc in the zinc powders from various residuary voltages. The hexavalent chromium wastewater was prepared by artificial synthetize wastewater, and the redox reaction experiments were conducted by the batch reaction. The pretreatments include the pure water system, the sulfuric acid system and the carbonic acid system.
After going through various pretreatments, the properties of zinc powders have been examined by XRD、FE-SEM and BET, respectively. And the pH values of the rinsed solution were also measured in the study. According to the result, it showed that switching of pretreatment condition will not alter the weight ratio between zinc oxide and zero-valent zinc in the zinc powders. It also presented that there is a regression equation to indicate the relation between the residuary voltage and the amount of zero-valent zinc in zinc powders via statistics.
The results of the batch test suggest that the optimum pretreatment for reducing chromium was the sulfuric acid system (0.84~3.12 mg Cr6+/g zinc powder/30 min); followed by carbonic acid system (0.59~1.84 mg Cr6+/g zinc powder/30 min), and the pure water system was the last (0.23~2.40 mg Cr6+/g zinc powder/30 min). However, the utilization of zero-valent zinc in the zinc powders was low in reacting with Cr(VI). The utilization of zinc in the sulfuric acid system ,the carbonic system ,and the pure water system were 0.37~28.61%, 0.33~13.27% ,and 0.26~5.99% respectively. It is because that the concentration of the hydrogen ion in the Cr(VI) redox reaction system was finite, and Cr(VI) reduction efficiency was reduced as pH increased. If keep providing hydrogen ion in the solution may either increase Cr(VI) removal or enhance the utilization of zero-valent zinc in zinc powders. In summary, the concentration of total chromium and hexavalent chromium in wastewater can be reduced by the way of using spent alkaline batteries, and it helps to meet the industrial effluent requirement.
論文目次 目錄 I
圖目錄 III
表目錄 IV
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 鹼性電池特性 4
2-1-1 電池介紹 4
2-1-2 鋅錳鹼性電池陽極 6
2-1-3 鋅錳鹼性電池陰極 7
2-1-4 廢棄電池成分構造 9
2-2 電池回收技術 11
2-2-1 物理程序 11
2-2-2 高溫冶金法 12
2-2-3 濕式冶金法 13
2-3 廢電池前處理-溶出試驗 16
2-3-1 中性溶出 16
2-3-2 酸性溶出 16
2-4 氧化還原反應機制 22
第三章 實驗方法、試劑及設備 25
3-1 實驗方法 25
3-1-1 人工合成廢水配製 25
3-1-2 鹼性電池來源及前處理 25
3-1-2-1 鹼性電池來源 25
3-1-2-2 電池分類與拆解 26
3-1-3 水洗前處理設計目的及方法 27
3-1-4 水洗前處理方法流程 29
3-1-4-1 第一階段水洗步驟 30
3-1-4-2 純水水洗系統 30
3-1-4-3 硫酸水洗系統 30
3-1-4-4 碳酸水洗系統 31
3-1-5 批次瓶杯實驗流程 32
3-1-6 實驗條件 32
3-2 實驗材料及設備 34
3-2-1 實驗試劑 34
3-2-2 實驗設備 35
3-2-2-1 火焰式原子吸收光譜儀 35
3-2-2-2 分光光度計 36
3-2-2-3 X-ray diffraction(XRD)分析儀 36
3-2-2-4 Brunamer-Emmett-Teller's(BET)分析儀 37
3-2-2-5 Field emission scanning electron microscopy(FE-SEM) 37
3-3 分析方法 39
3-3-1 六價鉻分析 39
3-3-2 總鉻分析 39
3-3-3 三價鉻分析 39
3-3-4 總鋅分析 40
3-3-5 硝化實驗 40
3-3-6 零價鋅與氧化鋅含量分析實驗 40
3-3-7 篩分析實驗 41
3-3-8 Two-way ANOVA變異數分析(Minitab 14 Edition) 41
第四章 結果與討論 42
4-1 鋅粉經水洗前處理之實驗結果 44
4-1-1 水洗前處理之水洗液pH值 44
4-1-2 經水洗前處理後之鋅粉成分組成(XRD分析) 48
4-1-3 經水洗前處理後鋅粉表面分析(SEM分析) 51
4-1-4 鋅粉比表面積分析與粒徑分佈 56
4-1-5 廢鹼性電池中零價鋅與氧化鋅之含量 59
4-2 批次瓶杯反應實驗結果 64
4-2-1 鋅粉經不同水洗系統對六價鉻還原效率之關係 64
4-2-1-1 純水水洗系統 64
4-2-1-2 硫酸水洗系統 68
4-2-1-3 碳酸水洗系統 71
4-2-1-4 三種水洗系統綜合比較 75
4-2-2 其他水質情況 84
4-2-2-1 鋅粉添加量與反應後廢水中總鋅濃度之關係 84
4-2-2-2 鋅粉添加量與總鉻之關係 89
4-2-3 反應後產物 95
第五章 結論與建議 98
5-1 結論 98
5-2 建議 101
參考文獻 102

圖目錄
圖2 1 鹼性電池組裝過程圖 5
圖2 2 一般處理鋅錳電池前處理流程圖 12
圖2 3 濕式冶金法回收廢電池內金屬物流程圖 14
圖2 4 鋅溶解度與pH之關係圖 23
圖2 5 鉻溶解度與pH之關係圖 24
圖3 1 電池拆解實際情況圖 26
圖3 2 實驗步驟流程圖 29
圖3 3 碳酸水洗系統裝置圖 31
圖4 1 純水系統水洗鋅粉XRD圖(殘餘電壓1.4V) 49
圖4 2 硫酸系統水洗鋅粉XRD圖(殘餘電壓1.4V) 49
圖4 3 碳酸系統水洗鋅粉XRD圖(殘餘電壓1.4V) 50
圖4 4 純水水洗前處理後鋅粉表面SEM圖放大10000倍 52
圖4 5 硫酸水洗前處理後鋅粉表面SEM圖放大10000倍 53
圖4 6 碳酸水洗前處理後鋅粉表面SEM圖放大10000倍 54
圖4 7 同殘餘電壓(1.4V)條件下鋅粉表面SEM圖放大30000倍 55
圖4 8 鋅粉經不同水洗處理後之比表面積關係圖 57
圖4 9 鋅粉粒徑分佈圖(反應條件A-d) 58
圖4 10 零價鋅含量與電池殘餘電壓關係圖 62
圖4 11 純水水洗系統鋅粉添加量與六價鉻還原率關係圖 66
圖4 12 純水水洗系統鋅粉電壓與單位六價鉻還原率關係圖 67
圖4 13 硫酸水洗系統鋅粉添加量與六價鉻還原率關係圖 70
圖4 14 硫酸水洗系統鋅粉電壓與單位六價鉻還原率關係圖 71
圖4 15 碳酸水洗系統鋅粉添加量與六價鉻還原率關係圖 72
圖4 16 碳酸水洗系統電壓與還原效率關係圖 75
圖4-17 六價鉻還原反應系統控制廢水pH值之還原率關係圖 83
圖4 18 鋅粉添加量與廢水中總鋅之關係圖(純水水洗系統) 85
圖4 19 鋅粉添加量與廢水中總鋅之關係圖(硫酸水洗系統) 86
圖4 20 鋅粉添加量與廢水中總鋅之關係圖(碳酸水洗系統) 86
圖4 21 Cr-H2O系統Eh-pH圖 90
圖4 22 鋅粉添加量與總三價鉻關係圖(反應條件A-d) 92
圖4 23 鋅粉添加量與總三價鉻關係圖(反應條件B-d) 93
圖4 24 鋅粉添加量與總三價鉻關係圖(反應條件C-d) 93
圖4 25 純水水洗系統鋅粉反應後XRD圖(反應條件A-d) 95
圖4 26 硫酸水洗系統鋅粉反應後XRD圖(反應條件B-d) 96
圖4 27 碳酸水洗系統鋅粉反應後XRD圖(反應條件C-d) 97

表目錄
表2 1 鹼性電池陽極成分組成 7
表2 2 鹼性電池陰極成分組成 9
表2 3 廢電池中組要成分構成 10
表2 4 鹼性電池酸性溶出研究成果 19
表3 1 不同液固比情況下水洗陽極鋅粉之鉀溶出量 27
表3 2 三水洗系統實驗條件與組數表 33
表3 3 實驗所需藥品 34
表3 4 實驗所需之設備 38
表4 1 廢棄電池數量與電壓統計表 42
表4 2 純水水洗系統水洗液pH值 44
表4 3 硫酸水洗系統水洗液pH值 45
表4 4 碳酸水洗系統水洗液pH值 46
表4 5 三種水洗系統中兩次水洗液之總鋅含量 47
表4 6 粒徑分析結果 58
表4 7 每克鋅粉中所含氧化鋅與零價鋅重量 59
表4 8 鋅粉中零價鋅與氧化鋅含量比例 61
表4 9 不同殘餘電壓條件下鋅粉中零價鋅含量 63
表4 10 純水水洗系統單位鋅粉可還原六價鉻含量分析表 65
表4 11 硫酸水洗系統單位鋅粉可還原六價鉻含量分析表 69
表4 12 碳酸水洗系統單位鋅粉可還原六價鉻含量分析表 73
表4 13 鋅粉中零價鋅還原六價鉻之利用率關係表 79
表4 14 鋅粉中零價鋅利用率分析表 80
表4 15 三系統鋅粉添加量與廢水中總鋅及六價鉻還原量關係表 85
表4 16 濾液與濾餅之總鉻含量 91
表4 17 總三價鉻與濾餅中三價鉻之比例關係表 92


參考文獻 1. Almeida, M. F.; Xara, S. M.; Delgado, J.; Costa, C. A., 2006. Characterization of spent AA household alkaline batteries. Waste Management, Volume 26, Issue 5, Pages 466-476
2. Michelis, D.; Ferella, F.; Karakaya, E.; Beolchini, F.; Veglio, F., 2007. Recovery of zinc and manganese from alkaline and zinc-carbon spent batteries. Journal of Power Sources, Volume 172, Issue 2, Pages 975-983
3. Ferella, F.; Michelis, I. D.; Veglio, F., 2008. Process for the recycling of alkaline and zinc–carbon spent batteries. Journal of Power Sources, Volume 183, Issue 2, Pages 805-811
4. 行政院環保署資源回收管理基金管理委員會. 資源回收網. 2009. http://recycle.epa.gov.tw/epa/index.asp
5. Espinosa, D. C. R.; Bernardes, A. M.; Tenorio, J. A. S., 2004. An overview on the current processes for the recycling of batteries. Journal of Power Sources, Volume 135, Issues 1-2, Pages 311-319
6. Sayilgan, E.; Kukrer, T.; Civelekoglu, G..; Ferella, F.; Akcil, A.; Veglio, F.; Kitis, M., 2009. A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries. Hydrometallurgy, Volume 97, Issues 3-4, Pages 158-166
7. Zhang, X. G., 1996. Corrosion and Electrochemistry of Zinc. Plenum, New York,USA.
8. Frohlich, S.; Sewing, D., 1995. The BATENUS process for recycling mixed battery waste. Journal of Power Sources, Volume 57, Issue 1-2, Pages 27-30
9. Linden, D.; Reddy, T. B., 2002. Handbook of Batteries, third ed. McGraw-Hill,New York, USA
10. Nan, J.; Han, D.; Cui, M.; Yang, M.; Pan, L., 2006. Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials. Journal of Hazardous Materials, Volume 133, Issues 1-3, Pages 257-261
11. Bernardes, A. M.; Espinosa, D. C. R.; Tenorio, J. A. S., 2003. Collection and recycling of portable batteries a worldwide overview compared to the Brazilian situation. Journal of Power Sources, Volume 124, Issue 2, Pages 586-592
12. Li, Y.; Xi, G., 2005. The dissolution mechanism of cathodic active materials of spent Zn–Mn batteries in HCl. Journal of Hazardous Materials, Volume 127, Issues 1-3, Pages 244-248
13. Salgado, A. L.; Veloso, A. M. O.; Pereira, D. D.; Gontijo, G. S.; Salum, A.; Mansur, M. B., 2003. Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with Cyanex 272. Journal of Power Sources, Volume 115, Issue 2, Pages 367-373
14. Kuo, Y. M.; Chang, J. E.; Jin, C. H.; Lin, J. Y.; Chang-Chien, G. P., 2009. Vitrification for reclaiming spent alkaline batteries. Waste Management, Volume 29, Issue 7, Pages 2132-2139
15. Souza, C. C. B. M.; Oliveira, D. C.; Tenorio, J. A. S., 2001. Characterization of used alkaline batteries powder and analysis of zinc recovery by acid leaching. Journal of Power Sources, Volume 103, Issue 1, Pages 120-126
16. Veloso, L. R. S.; Rodrigues, L. E. O. C.; Ferreira, D. A.; Magalhaes, F. S.; Mansur, M. B., 2005. Development of a hydrometallurgical route for the recovery of zinc and manganese from spent alkaline batteries. Journal of Power Sources, Volume 152, Pages 295-302
17. Souza, C. C. B. M.; Tenorio, J. A. S., 2004. Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing. Journal of Power Sources, Volume 136, Issue 1, Pages 191-196
18. El-Nadi, Y. A.; Daoud, J.A.; Aly, H.F., 2007. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries. Journal of Hazardous Materials, Volume 143, Issues 1-2, Pages 328-334
19. Sahoo, R. N.; Naik, P. K.; Das, S. C., 2001. Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution. Hydrometallurgy, Volume 62, Issue 3, Pages 157-163
20. Vatistas, N.; Bartolozzi, M.; Arras, S., 2001. The dismantling of the spent alkaline zinc manganese dioxide batteries and the recovery of the zinc from the anodic material. Journal of Power Sources, Volume 115, Issue 2, Pages 367-373
21. Benjamin, M. M., 2002. Water Chemistry. McGraw-Hill, New York, USA
22. Vatistas, N.; Bartolozzi, M., 1999. Zinc contamination in the cathodic material of exhausted alkaline manganese dioxide batteries. Journal of Power Sources, Volume 79, Pages 199-204
23. Freitas, M. B. J. G..; de Pietre, M. K., 2004. Electrochemical recycling of the zinc from spent Zn–MnO2 batteries. Journal of Power Sources, Volume 128, Pages 343-349
24. Yang, C. C.; Lin, S. J., 2002. Improvement of high-rate capability of alkaline Zn-MnO2 battery. Journal of Power Sources, Volume 112, Issue 1, Pages 174-183
25. Ghavami, R. K.; Rafiei, Z.; Tabatabaei, S. M., 2007. Effects of cationic CTAB and anionic SDBS surfactants on the performance of Zn-MnO2 alkaline batteries. Journal of Power Sources, Volume 164, Issue 2, Pages 934-946
26. Ponder, S.M.; Darab J.G.; Mallouk T.E., 2000. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science and Technology, Volume 34, Issue 12, Pages 2564-2569
27. 劉富雄, 1999, 防蝕技術. 全華科技圖書股份有限公司
28. Benefield, L. D.; Judkins,JR J. F.; Weand, B. L., 1982. Process Chemistry for Water and Wastewater Treatment. Prentice-Hall, New Jersey, USA
29. Pourbaix, M.; 1974. Altlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Pages 262
30. 洪儷瑋, 2006, 以廢鑄鐵還原電鍍廢液中高濃度六價鉻之研究. 國立台北科技大學環境規劃與管理研究所碩士論文.

論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-09-10公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-09-10起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信