淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1008201816041900
中文論文名稱 可撓式透明導電銀網格製備及性質
英文論文名稱 Fabrication and properties of flexible transparent conductive silver grid thin film
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 106
學期 2
出版年 107
研究生中文姓名 鄭君洋
研究生英文姓名 Koon-Yang Tee
學號 606370137
學位類別 碩士
語文別 中文
口試日期 2018-07-04
論文頁數 79頁
口試委員 指導教授-林清彬
委員-廖文毅
委員-劉昭華
委員-林清彬
中文關鍵字 可撓式透明導電薄膜  片電阻  可見光穿透率  可靠度  非ITO  自我組裝模板層 
英文關鍵字 silver grid  flexible transparent conductive film  sheet resistance  optical-transmittance  ITO  Self-forming PVA template 
學科別分類 學科別應用科學機械工程
中文摘要 可撓式透明導電薄膜的導電性質、光學性質、機械性質、可重複撓曲次數與可靠度等,成為該薄膜是否合乎使用薄膜太陽能電池,觸摸螢幕,有機發光二極體,感測器等需求所考量的特性。在眾多透明的導電薄膜製程中,氧化銦錫仍是目前最為廣泛使用的材料,但是氧化銦錫有兩個缺點:(1)需使用稀有金屬銦,導致成本無法降低,甚至因為銦的市場價格,導致薄膜的成本越來越高。(2)氧化銦錫因為硬脆的材料特性而無法撓曲,勢必得尋找新的替代製程。
本研究提出一種簡易、實際且有效率的可撓式透明銀方格導電薄膜製程,在銀基材上蝕刻出金屬網格的結構,利用銀的高導電係數及相對於銦價格上的優勢,用於製備具良好導電性及高透明度之可撓式透明銀方格導電薄膜。其中製程參數包含:(1)模板層的黏滯係數;(2)模板層的厚度;(3)壓頭的壓力;(4)包覆角。其中模板的顯微結構包括孔洞面積比、孔洞數量、有效胞室半徑(Effective Cell Radius, ECR) 及有效肋骨寬度(Effective Cell Width, ECW) 的影響,我們使用四點探針測量片電阻,UV-vis光譜儀測量可見光的透光率,進而探討銀網格的顯微結構與可見光穿透率以及片電阻的關係,最後再觀察已作最佳化的透明導電銀網格薄膜的反覆抗彎折可靠度,證明它作為可撓式電子產品的導電層的能力。整篇論文充分展現此製成有機會放大為R2R(Roll-to-Roll)製程,並且大面積量產的潛力。
英文摘要 The flexible transparent conductive film is used in a thin film solar cell, a touch screen, an organic light emitting diode, a sensor, etc., it must have good electrical conductivity, optical properties, mechanical properties, repeatable deflection times and reliability, etc. Among many transparent conductive films, indium tin oxide (ITO) is still the most widely used material, but indium tin oxide has two disadvantages: (1) The ITO film requires the use of a relatively expensive rare metal indium, resulting in an inability to reduce the cost, resulting in an increasingly high cost of the film. (2) ITO transparent films cannot be flexed due to the hard and brittle material properties, so it is necessary to find a new alternative materials and fabrication process. We demonstrate a conductive silver grid. It is based on an inexpensive and easily manufactured metallic network formed by etching a silver coated PET film covered with a self-forming PVA template film. This electrode shows excellent electro‐optical properties and repeat banding reliability, with the transmittance from 76% (<126.4 Ω/sq) to 50% (<24.8Ω/sq) and sheet resistance decreasing within 15% after a 1000 cycles bending test. In summary, a PVA template method has been proposed to prepare a flexible transparent conductive silver grid thin film. We show that in order to obtain a better electro-optical property, the PVA film should be thinner and its viscosity should be higher, while roll pressing the composite films the nip angle should be smaller and the pressure should be proper handled. Furthermore, we demonstrate its reliability of repeat bending test. Results in a transmittance from 76% (<126.4 Ω/sq) to 50% (<24.8Ω/sq) , and sheet resistance decreasing less than 15% after 1000 cycles. This work shows that PVA template method is suitable for large scale R2R mass production and it’s repeat bending reliability is superior than ITO.
論文目次 目錄
第壹章、導論 1
1.1.前言 1
1.2.文獻回顧 4
1.2.1.透明導電薄膜之性質要求 4
1.2.1.1.光學性質 4
1.2.1.2.電學性質 7
1.2.1.3.可靠度 8
1.2.2.可撓式透明導電薄膜的種類 9
1.2.2.1.透明導電氧化物 9
1.2.2.2.奈米銀線或銅線3D網絡 11
1.2.2.2.1. 展透理論 12
1.2.2.2.2.展形比 12
1.2.2.3.奈米碳管3D網絡 13
1.2.2.4.本質型導電高分子 13
1.2.2.5.石墨烯透明導電薄膜 14
1.2.2.6.金屬網格 15
1.2.3.透明導電薄膜的應用 16
1.2.3.1.太陽能電池 17
1.2.3.2.觸摸面板 19
1.2.3.3.有機發光二極體 23
1.2.3.4.量子點 25
1.2.3.5.感測器 26
1.2.4.金屬網格的製造方法 27
1.2.4.1.微機電製程 27
1.2.4.2.模板法 29
1.2.4.2.1.TiO2裂縫微模板法 29
1.2.4.2.2.晶界模板法 29
1.2.4.2.3.自我組裝模板法 31
1.2.4.3.直接列印 32
1.2.4.3.1.雷射印表機 32
1.2.4.3.2.電液動力 33
1.2.4.3.3.雷射燒結 33
1.2.4.2.4.低溫燒結銀墨水 34
1.2.4.4.奈米轉印 35
1.2.4.5.真空轉印 36
1.3.研究動機 38

第貳章、實驗設計 39
2.1.實驗材料與設備 39
2.1.1.實驗材料 39
2.1.2.實驗設備 40
2.2.實驗步驟 42
2.2.1.銀薄膜製備 43
2.2.2.PVA膠體溶液製備 44
2.2.3.旋轉塗佈 46
2.2.4.離形膜貼合 46
2.2.5. PVA膠體溶液乾燥 48
2.2.6.銀網格複合薄膜蝕刻 49
2.2.7.表面封裝及導線安裝 49
2.3.性質測試 49
2.3.1.顯微結構觀察 49
2.3.2.片電阻量測 50
2.3.3.紫外光-可見光穿透率量測 50
2.3.4重複撓區可靠度試驗 50
第參章、結果與討論 52
3.1.PVA膠體厚度對銀網格特徵尺寸及型態的影響 58
3.2.不同黏滯係數的PVA膠體溶液對銀網格的特徵尺寸及型態的影響 61
3.3.不同黏滯係數的膠體溶液對網格可見光穿透率的影響 67
3.4.不同黏滯係數的膠體溶液對網格可見光穿透率與片電阻的影響 69
3.5.不同的對輥壓力及包覆角對網格可見光穿透率與片電阻的影響 70
3.6.重複撓曲可靠度試驗探討片電阻與重複次數的關係 73
第肆章、結論 74
第伍章、參考文獻 75

圖目錄
圖1- 1、典型透明導電薄膜的穿透、反射與吸收光譜 6
圖1- 2、奈米銀線3D網路製造步驟 11
圖1- 3、PEDOT:PSS穿透率-片電阻-厚度關係圖 14
圖1- 4、奈米銅線太陽能模組 18
圖1- 5、 ITO太陽能模組 19
圖1- 6、(a)2 cm × 2 cm玻璃基材; (b)2 cm × 2 cm PET基材; (c)b圖的SEM顯示奈米銀線的分布狀況; (d)奈米銀線噴塗於2.5 cm × 2.5 cm大小的纖維上; (e)(f)分別為奈米銀線噴塗於纖維上的SEM照片 21
圖1- 7、觸摸面板模組 21
圖1- 8、 電阻式觸摸面板 22
圖1- 9、有機發光二極體 24
圖1- 10、機有發光二極體 24
圖1- 11、量子點模組 26
圖1- 12、壓力感測器模組圖 27
圖1- 13、壓力感測圖 27
圖1- 14、微機電製程應用於銅網格製造 28
圖1- 15、微機電製程 28
圖1- 16、使用會產生裂縫的TiO_2的微機電製程 29
圖1- 17、晶界微機電製成 30
圖1- 18、自我組裝模板法 31
圖1- 19、列印遮罩的製程 32
圖1- 20、電液動力之直接列印 33
圖1- 21、選擇性燒結織直接列印 34
圖1- 22、 觸摸面版用單邊雙層配線金屬網格薄結的放大照片 34
圖1- 23、奈米轉印製程示意圖 35
圖1- 24、奈米銀線網絡製備流程 37
圖2- 1、銀網格的製作原理示意 42
圖2- 2 、銀網格的實驗流程 43
圖2- 3、黏土狀PVA 44
圖2- 4、聚乙烯純分子產生交聯反應 45
圖2- 5、對輥機 47
圖2- 6、對輥機運作示意圖及不同的接觸角與壓力 48
圖2- 7、PVA乾模板 48
圖2- 8、反覆彎折示意圖 51
圖3- 1、氣體擴散進入PVA膠體的拉普拉斯壓力降示意圖 54
圖3- 2、氣體擴散進入PVA膠體內且被捕捉形成球形氣泡的示意圖 54
圖3- 3、氣體擴散進入PVA膠體且被捕捉形成圓扁形氣泡的示意圖 56
圖3- 4、PVA膠體溶液在PET基材之上 56
圖3- 5、轉速與厚度的關係圖 59
圖3- 6、不同厚度(a)2.4um; (b)2.1um; (c)1.9um; (d)1.4um; (e)1.1 PVA厚度與胞室形態之照片 60
圖3- 7、銀網格等效孔洞半徑及等效肋骨寬度示意圖 62
圖3- 8、(a)A3; (b)A4; (c)A5; (d)B3; (e)B4; (f)B5; (g)C1; (h)C2; (i)C3; (j)C4; (k)C5; 膠體溶液所製備的銀網格之照片 64
圖3- 9、N、A%、ECR及ERW與黏滯係數的關係圖 66
圖3- 10、A3-A5、B3-B5及C1-C5在300nm~1000nm波長範圍的穿透率與波長關係圖 67
圖3- 11、不同膠體溶液製備的銀網格的孔洞面積比例與穿透率的關係圖 68
圖3- 12、樣本穿透率與片電阻的關係圖 69
圖3- 13、(a)ap, (b)Ap, (c)aP, (d)AP 不同壓力及接觸角所製備的銀網格之照片 70
圖3- 14、ap, Ap, Ap及AP在300nm~1000nm波長範圍的穿透率與波長關係圖 71
圖3- 15、孔洞率穿透率與片電阻的關係圖 72
圖3- 16、A3及C5薄膜於1000次反覆撓曲試驗之片電阻變化 73

表目錄
表1- 1、產品對片電阻之要求 8
表1- 2、觸摸面板用透明導電薄膜材料 9
表3- 1、旋轉塗佈轉速與PVA膠體厚度的關係 58
表3- 2、不同硼砂與水含量PVA膠體溶液的黏滯係數 62
表3- 3、 A3-A5,B4-B5,C1-C5膠體溶液所製備銀網格的特徵尺寸 65
表3- 4、不同黏滯係數的膠體溶液所製備銀網格的特徵尺寸 65
表3- 5、不同膠體溶液所製備的銀網格的孔洞面積比例與可見光穿透 68
表3- 6、不同膠體溶液所製備的銀網格的可見光穿透率與片電阻 69
表3- 7、不同膠體溶液所製備的銀網格的可見光穿透率與片電阻 71
參考文獻 [1] 楊明輝,透明導電膜,藝軒圖書出版社(2006)
[2] 吳品諺,摻氟氧化錫透明導電膜之特性分析,國立台北科技大學
[3] 工業材料雜誌<觸控面板用透明導電膜材料>,網址:file:///C:/Users/user/Downloads/%E8%A7%A6%E6%8E%A7%E9%9D%A2%E6%9D%BF%E7%94%A8%E9%80%8F%E6%98%8E%E5%AF%BC%E7%94%B5%E8%86%9C%E6%9D%90%E6%96%99.pdf,上網日期:2009 年 2 月。
[4] De, S., King, P. J., Lotya, M., O'Neill, A., Doherty, E. M., Hernandez, Y., ... & Coleman, J. N. (2010). Flexible, transparent, conducting films of randomly stacked graphene from surfactant‐stabilized, oxide‐free graphene dispersions. Small, 6(3), 458-464.
[5] Zhang, X., Wu, J., Wang, J., Zhang, J., Yang, Q., Fu, Y., & Xie, Z. (2016). Highly conductive PEDOT: PSS transparent electrode prepared by a post-spin-rinsing method for efficient ITO-free polymer solar cells. Solar Energy Materials and Solar Cells, 144, 143-149.
[6] Kim, H., Gilmore, C. M., Pique, A., Horwitz, J. S., Mattoussi, H., Murata, H., & Chrisey, D. B. (1999). Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. Journal of Applied Physics, 86(11), 6451 -6461.
[7] Agura, H., Suzuki, A., Matsushita, T., Aoki, T., & Okuda, M. (2003). Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin solid films, 445(2), 263-267..
[8] Yan, X., Venkataraj, S., & Aberle, A. G. (2013). Modified surface texturing of aluminium-doped zinc oxide (AZO) transparent conductive oxides for thin-film silicon solar cells. Energy Procedia, 33, 157-165.
[9] Jeong, S. H., Park, B. N., Yoo, D., Boo, J., & Jung, D. (2007). Al-ZnO thin films as transparent conductive oxides: synthesis, characterization, and application tests. Journal-Korean Physical Society, 50(3), 622.
[10] Lin, C. C., Chiang, M. C., & Chen, Y. W. (2009). Temperature dependence of fluorine-doped tin oxide films produced by ultrasonic spray pyrolysis. Thin Solid Films, 518(4), 1241-1244.
[11] Yates, H. M., Gaskell, J. M., Thomson, M. E., Sheel, D. W., Delaup, B., & Morales-Masis, M. (2015). APCVD of dual layer transparent conductive oxides for photovoltaic applications. Thin Solid Films, 590, 260-265.
[12] Martinez, V., Stauffer, F., Adagunodo, M. O., Forro, C., Vörös, J., & Larmagnac, A. (2015). Stretchable Silver Nanowire–Elastomer Composite Microelectrodes with Tailored Electrical Properties. ACS applied materials & interfaces, 7(24), 13467-13475.
[13] Stewart, I. E., Rathmell, A. R., Yan, L., Ye, S., Flowers, P. F., You, W., & Wiley, B. J. (2014). Solution-processed copper–nickel nanowire anodes for organic solar cells. Nanoscale, 6(11), 5980-5988.
[14] L. Hu, D. S. Hecht, and G. Gru1ner, ” Percolation in Transparent and Conducting Carbon Nanotube Networks” ACS Nano, 2010, 4 (5), pp 2955–2963
[15] Zhang, D., Ryu, K., Liu, X., Polikarpov, E., Ly, J., Tompson, M. E., & Zhou, C. (2006). Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano letters, 6(9), 1880-1886.
[16] Lipomi, D. J., Vosgueritchian, M., Tee, B. C., Hellstrom, S. L., Lee, J. A., Fox, C. H., & Bao, Z. (2011). Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature nanotechnology, 6(12), 788.
[17] Wang, X., Zhi, L., & Müllen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano letters, 8(1), 323-327.
[18] Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., & Dai, H. (2008). Highly conducting graphene sheets and Langmuir–Blodgett films. Nature nanotechnology, 3(9), 538.
[19] 王耀玲, 罗雨, 陈立宝, 李秋红, & 王太宏. (2010). 石墨烯材料的研究进展. 材料導報, 24(S), 85-88.
[20] Lee, J. Y., Connor, S. T., Cui, Y., & Peumans, P. (2008). Solution-processed metal nanowire mesh transparent electrodes. Nano letters, 8(2), 689-692.
[21] De, S., Higgins, T. M., Lyons, P. E., Doherty, E. M., Nirmalraj, P. N., Blau, W. J., ... & Coleman, J. N. (2009). Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS nano, 3(7), 1767-1774.
[22] Yang, L., Zhang, T., Zhou, H., Price, S. C., Wiley, B. J., & You, W. (2011). Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS applied materials & interfaces, 3(10), 4075-4084.
[23] Zhang, C., Zhao, D., Gu, D., Kim, H., Ling, T., Wu, Y. K. R., & Guo, L. J. (2014). An ultrathin, smooth, and low‐loss Al‐doped Ag film and its application as a transparent electrode in organic photovoltaics. Advanced Materials, 26(32), 5696-5701.
[24] Wang, X., Zhi, L., & Müllen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano letters, 8(1), 323-327.
[25] Madaria, A. R., Kumar, A., & Zhou, C. (2011). Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology, 22(24), 245201.
[26] Jing, M. X., Li, M., Chen, C. Y., Wang, Z., & Shen, X. Q. (2015). Highly bendable, transparent, and conductive AgNWs-PET films fabricated via transfer-printing and second pressing technique. Journal of materials science, 50(19), 6437-6443.
[27] Son, D. I., Kim, H. H., Hwang, D. K., Kwon, S., & Choi, W. K. (2014). Inverted CdSe–ZnS quantum dots light-emitting diode using low-work function organic material polyethylenimine ethoxylated. Journal of Materials Chemistry C, 2(3), 510-514.
[28] Lipomi, D. J., Vosgueritchian, M., Tee, B. C., Hellstrom, S. L., Lee, J. A., Fox, C. H., & Bao, Z. (2011). Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature nanotechnology, 6(12), 788.
[29] Park, J. H., Lee, D. Y., Kim, Y. H., Kim, J. K., Lee, J. H., Park, J. H., ... & Cho, J. H. (2014). Flexible and transparent metallic grid electrodes prepared by evaporative assembly. ACS applied materials & interfaces, 6(15), 12380-12387.
[30] Kim, D. J., Kim, H. J., Seo, K. W., Kim, K. H., Kim, T. W., & Kim, H. K. (2015). Indium-free, highly transparent, flexible Cu 2 O/Cu/Cu 2 O mesh electrodes for flexible touch screen panels. Scientific reports, 5, 16838.
[31] Sciacca, B., van de Groep, J., Polman, A., & Garnett, E. C. (2016). Solution‐grown silver nanowire ordered arrays as transparent electrodes. Advanced Materials, 28(5), 905-909.
[32] Han, B., Pei, K., Huang, Y., Zhang, X., Rong, Q., Lin, Q., ... & Giersig, M. (2014). Uniform self‐forming metallic network as a high‐performance transparent conductive electrode. Advanced Materials, 26(6), 873-877.
[33] Gao, T., Wang, B., Ding, B., Lee, J. K., & Leu, P. W. (2014). Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes. Nano letters, 14(4), 2105-2110.
[34] Gupta, R., Walia, S., Hösel, M., Jensen, J., Angmo, D., Krebs, F. C., & Kulkarni, G. U. (2014). Solution processed large area fabrication of Ag patterns as electrodes for flexible heaters, electrochromics and organic solar cells. Journal of Materials Chemistry A, 2(28), 10930-10937.
[35] Jang, Y., Kim, J., & Byun, D. (2013). Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. Journal of Physics D: Applied Physics, 46(15), 155103.
[36] Lee, Y., Jin, W. Y., Cho, K. Y., Kang, J. W., & Kim, J. (2016). Thermal pressing of a metal-grid transparent electrode into a plastic substrate for flexible electronic devices. Journal of Materials Chemistry C, 4(32), 7577-7583.
[37] Hong, S., Yeo, J., Kim, G., Kim, D., Lee, H., Kwon, J., ... & Ko, S. H. (2013). Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS nano, 7(6), 5024-5031.
[38] 田中控股株式會社<證實提升軟性觸控面板的彎曲耐久性, 發展金屬網格薄膜的單邊雙層配線結構>,網址:http://www.acnnewswire.com/clientreports/598/180424_TC.pdf,上網日期:2018 年 4 月 24 日。
[39] Choi, H. J., Choo, S., Jung, P. H., Shin, J. H., Kim, Y. D., & Lee, H. (2015). Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode. Nanotechnology, 26(5), 055305.
[40] Lee, J., Lee, P., Lee, H., Lee, D., Lee, S. S., & Ko, S. H. (2012). Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale, 4(20), 6408-6414.
[41] 國立彰化師範大學理學院化學系<聚乙烯醇與硼砂的交聯作用>,網址:http://blog.ncue.edu.tw/yangsp/doc/26876,上網日期:2011 年 4 月 30 日。
[42] Karszes, W. M., (1992). Solidification process in extrusion coating. Tappi Jounal, 75(7), 203.
[43] Wake, W. C., (1976). Adhesion and Formulation of Adhesives. Applied Science, Fig. 9.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2023-08-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2023-08-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信