§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1008201721321500
DOI 10.6846/TKU.2017.00343
論文名稱(中文) 多輸入多輸出中繼器之通道容量最佳化
論文名稱(英文) Capacity Optimization of Multi-input Multi-output Relay Channel
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 楊承樺
研究生(英文) Cheng-Hwa Yang
學號 604440213
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-06-28
論文頁數 65頁
口試委員 指導教授 - 丘建青(chiu@ee.tku.edu.tw)
委員 - 林丁丙(dblin@ntut.edu.tw)
委員 - 李慶烈(chingliehli@gmail.com)
關鍵字(中) 多輸入多輸出
中繼器
自我適應之動態差異型演化法
最大放大轉發
關鍵字(英) MIMO
SBR/Image method
indoor environments
capacity
outage
optimization
MRC,SADD
Selection
第三語言關鍵字
學科別分類
中文摘要
本論文模擬室內環境電波傳輸現象並計算多輸入多輸出之傳輸通道容量,並在環境中增加放大後轉發(Amplify-and-Forward)的多輸入多輸出中繼器,使用最大比例合成式(Maximum ratio combinig,MRC )比較各種不同天線數量的線性陣列以及極化分集天線陣列(Polarzation Diversity Array)的通道容量。首先利用射線彈跳追蹤法 (Ray-Tracing Model)模擬,考慮路徑中多種反射、繞射、透射等多路徑效應(Multi-path Effect),計算中繼器路徑及直接路徑的頻率響應(Frequency Response)配合發射訊號對雜訊比,吾人即可算出對應的通道容量。在複雜並且空間較大的環境中,如果只在環境的對稱且等分的位置設置一個單輸入單輸出的傳送天線及中繼天線,環境的失效率會因障礙物、環境大小及系統功率而增加,使得環境的通訊品質下降。故藉由採用多輸入多輸出的傳送天線及中繼天線,明顯的提升通道容量及降低失效率,然而仍有部分失效點的存在,再利用自我適應之動態差異型演化法(Self-Adaptive Dynamic Differential Evolution)搜尋中繼天線及傳輸天線的最佳位置,並探討三種不同線性天線陣列(1x1,2x2,3x3)與3x3極化分集天線陣列的通道容量,可以明顯的看出多輸入多輸出傳送天線位置配合中繼天線位置做最佳化,避免了更多障礙物的影響,進而提升環境的平均通道容量及降低失效率,另外吾人也比較在這四種情況中能夠在零失效點狀況的最低能量需求。從數值結果中可以看出在使用3x3極化分集天線陣列比起3x3線性天線陣列能夠提升約100%的通道容量,此外在零失效率的情況下也證明了3x3極化分集天線陣列比起3x3線性天線陣列能夠降低約6dB。
英文摘要
In this thesis, we use Self-Adaptive Dynamic Differential Evolution (SADDE) to search multi-input multiple output relay location and transmitter location for reducing outage probability in indoor environment. Amplify-and-forward(AF) multi-input multiple output relay is chosen to improve the performance of environment. we compare the channel capacities for the linear antenna with 1x1,2x2,3x3 antenna array of different and 3x3 polarization diversity antenna arrays. We use the shooting and bouncing ray/image (SBR/Image) method to compute frequency response, which is used to compute capacity by Maximum ratio combining (MRC).First, we deploy relay and transmitter at equipartition area. It is found there are some outage receiving points. Thus , the SADDE are employed to optimize the position of relay and transmitter for reducing the outage probability. Numerical results show that the outage probability for relay and transmitter location is reduced a lot by SADDE. Moreover, It is found that the channel capacity for polarization diversity antenna array are increased about 100%,compared to 3x3 linear antenna array. For the new outage probability requirement the signal to noise for the polarization antenna array is lower 6dB than that for 3x3 linear antenna array.
第三語言摘要
論文目次
目錄

第一章、概論...............................................................................................P.1

1.1	研究背景.........................................................................................P.1

1.2	研究動機.........................................................................................P.7

1.3 研究方法.........................................................................................P.9

第二章、系統理論......................................................................................P.10

2.1 中繼器........................................................................................P.10

2.2 單輸入單輸出窄頻系統................................................................P.12

2.3 窄頻系統通道容量........................................................................P.13

2.4 最大比例合成式............................................................................P.14

2.5.多輸入多數出之最大比例合成式.................................................P.18

第三章、超寬頻通道計算模型..................................................................P.21

3.1 無線電波傳播通道分析................................................................P.21

3.2 通道計算模型分析........................................................................P.22

3.2.1 利用射線彈跳追蹤法程式計算頻率響應.................................P.23

3.2.2 利用射線彈跳追蹤法程式流程分析.........................................P.25

第四章、隨機式全域最佳化演算法..........................................................P.28 
4.1自我適應之動態差異型演化法.....................................................P.28 
第五章、數值結果.....................................................................................P.35

5.1 環境建構........................................................................................P.35

5.2 參數設定及無搜尋結果分析........................................................P.38

5.3三種輸出方式的數值搜尋結果.....................................................P.53

5.4 極化天線陣列................................................................................P.58
.
5.5 不同輸出方式比較及分析............................................................P.59

第六章結論.................................................................................................P.62

參考文獻..............................................................................................P.63 



圖目錄

圖2.1中繼器通道示意圖	P.10

圖2.2系統通道及合成器示意圖	P.11

圖2.3多輸入多輸出中繼器通道示意圖	P.11

圖3.1求得通道頻率響應	P.22

圖3.2 SBR/Image 程式流程圖	P.27

圖4.1 自我適應之動態差異型演算法流程圖	P.29

圖4.2自我適應之動態差異型進化法中突變方法一的示意圖	P.31

圖4.3自我適應之動態差異型進化法中突變方法二的示意圖	P.32

圖4.4自我適應之動態差異型進化法中的交配向量於一個二維目標函數等位線圖描述的示意圖	P.33

圖5.1室內環境俯視圖	P.36

圖5.2室內環境放入60個接收點之俯視圖	P.37

圖5.3無演算法搜尋之Tx環境失效點分佈圖(失效容量為小於0.2)	P.42

圖5.4無演算法搜尋之1對1環境失效點分佈圖(失效容量為小於0.2)
	P.43

圖5.5無演算法搜尋之1對1環境失效點分佈圖(失效容量為小於0.3)
	P.44

圖5.6 無演算法搜尋之1對1環境失效點分佈圖(失效容量為小於0.4)
	P.45

圖5.7 無演算法搜尋之2對2環境失效點分佈圖(失效容量為小於0.2)
	P.46
圖5.8 無演算法搜尋之2對2環境失效點分佈圖(失效容量為小於0.3)
	P.47

圖5.9 無演算法搜尋之2對2環境失效點分佈圖(失效容量為小於0.4)
	P.48

圖5.10 無演算法搜尋之3對3環境失效點分佈圖(失效容量為小於0.2)  	P.49

圖5.11 無演算法搜尋之3對3環境失效點分佈圖(失效容量為小於0.3)  	P.50

圖5.12 無演算法搜尋之3對3環境失效點分佈圖(失效容量為小於0.4)  	P.51

圖5.13無演算法所搜尋到的環境平均通道容量	P.52

圖5.14三種線性天線輸出下的搜尋過程	P.54

圖5.15對1搜尋結果之環境失效點及天線分圖	P.55

圖5.16  2對2搜尋結果之環境失效點及天線分圖	P.56

圖5.17  3對3搜尋結果之環境失效點及天線分圖	P.57

圖5.18線性天線與極化天線陣列示意圖	P.58

圖5.19環境平均通道容量比較	P.60



表目錄
表5.1 自我適應之動態差異型演化法設定參數	P.39

表5.2  無演算法之測試參數	P.40

表5.3 無演算法搜尋的失效率及失效點數	P.52

表5.4  在SADDE的情況下三種線性天線輸出失效容量標準表	P.54

表5.5 不同情況之比較表	P.61

表5.6  在零失效點的情況下求出最低能量需求比較表	P.61
參考文獻
參考文獻

[1]	R. Madan, N. B. Mehta, A. F. Molisch and J. Zhang, ”Energy efficient cooperative relaying over fading channels with simplerelay selection,” Mitsubishi Electric Reserach laboratories Technique Report: TR2006-075, Nov 2006.
[2]	Federal Communications commission, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems”, FIRST PEPORT AND ORDER, “ ET Docket 98-153, FCC 02-48,February 14, 2002, pp. 1-118.
[3]	Yasuda, K. and I wasaki, N., “Adaptive particle swarm optimizationusing velocity information of swarm,” IEEE International Conference, Vol. 4, Oct. 2004, pp. 3475-3481.
[4]	Yeonggyu Shim, Student Member, IEEE, Wan Choi, Senior Member, IEEE, and Hyuncheol Park, Senior Member, IEEE,” Beamforming Design for Full-Duplex Two-Way Amplify-and-Forward MIMO Relay”, IEEE Transactions on Wireless Communications, Vol. 15, No. 10, October 2016
[5]	Chia-Chang Hu, Member, IEEE, Guan-Fu Liu, and Bo-Hung Chen,” Joint Relay/Antenna Selection and Precoding Design for Two-Way MIMO Amplify-and-Forward Relaying Systems”, IEEE Transactions on Wireless Communications, Vol. 65, No. 7, July 2016
[6]	B. Uguen, E. Plouhinee, Y. Lostanlen, and G. Chassay, “A deterministicultra-wideband channel modeling”, IEEE Conference on Ultra-Wideband System  Technology, May 2002 s, pp. 1-5.
[7]	Huynh, H.Q., Husain, S.I., Yuan, J., Razi, A. and Taubman, D.S., ” Performance analysis of serial cooperative communications with decode-and-forward relaying and blind-EGC reception under nakagami fading channels”, Wireless Communications, IEEE Transactions on , Vol. 8, Issue:11, 2009, pp. 1 – 5
[8]	Enlong Che, Hoang Duong Tuan, Member, IEEE, and Ha H. Nguye,’’ Joint Optimization of Cooperative Beamforming and Relay Assignment in Multi-User Wireless Relay Networks’’, IEEE Transactions on Wireless Communications, Vol.13, No. 10, October 2014
[9]	Yu-Ting Cheng . Chien-Ching Chiu,’’ Optimization of the Antenna Location for Relay Cooperative System by APSO”, Published online 5 April 2015 Springer Science, Business Media New York 2015
[10]	Navod Suraweera, Student Member, IEEE, and Norman C. Beaulieu, Fellow, IEEE,” Optimum Combining With Joint Relay and Antenna Selection for Multiple-Antenna Relays in the Presence of Co-Channel Interference,’’ IEEE Communications Letters, Vol. 18, NO. 8, August 2014
[11]	G. D. Durgin, Space-Time Wireless Channels. New Jersey: PrenticeHall PTR, 2003.
[12]	D. Tse and P. Viswanath, Fundamentals of Wireless Communication. United Kingdom: Cambridge University Press, 2005.
[13]	A. J. Paulraj, R. Nabar and D. Gore, Introduction to Space-TimeWireless Communication. U.K.: Cambridge Univ. Press, 2003.
[14]	David Borges, Paulo Montezuma, Rui Dinis,’’ LOW COMPLEXITY MRC AND EGC BASED RECEIVERS FOR SC-FDE MODULATIONS WITH MASSIVE MIMO SCHEMES,’’ IEEE 10.1109/GlobalSIP.2016.7905927 24 April 2017
[15]	Xumin Pu, Shihai Shao, Member, IEEE, Kai Deng, and Youxi Tang,” Analysis of the Capacity Statistics for 2 × 2 3D MIMO Channels in Short-Range Communications”, IEEE COMMUNICATIONS LETTERS, VOL. 19, NO. 2, FEBRUARY 2015
[16]	Seyyed Saleh Hosseini, Siamak Talebi, Jamshid Abouei,” Comprehensive study on a 2 × 2 full-rate and linear decoding complexity space–time block code”, Published in IET Communications Received on 14th April 2014
[17]	Marwa Qaraqe, Student Member, IEEE, Qammer H. Abbasi, Member, IEEE, Akram Alomainy, Senior Member, IEEE, and Erchin Serpedin, Fellow, IEEE,” Experimental Evaluation of MIMO Capacity for Ultra-wideband Body-Centric Wireless Propagation Channels,” IEEE Antennas and Wireless Propagation Letters, Vol. 13, 2014
[18]	S. H. Chen and S. K. Jeng ,“An SBR/Image approach for indoorradio propagation in a corridor”, IEICE TRANSACTIONS on Electronics, Vol. E78-C, No.8, August 1995, pp. 1058-1062.
[19]	 S. H. Chen and S. K. Jeng, “SBR/Image approach for radio wave propagation in tunnels with and without traffic”, IEEE Transactions on Vehicular Technology, Vol. 45, No.3, August 1996, pp. 570-578.
[20]	Yin Fu-rong, Song Dan, Chen Feng, Liu Yuan-jian,” Study on the Propagation Characteristics of Radio Wave in Tunnels by the Method of SBR/Image”, 2014 3rd Asia-Pacific Conference on Antennas and Propagation
[21]	Shin-Hon Chen and Shyh-Kang Jeng, Member, IEEE,” An SBR/Image Approach for Radio Wave Propagation in Indoor Environments with Metallic Furniture,’’ IEEE Transactions on Antennas and Propagation, Vol. 45, No. 1, January 1997
[22]	Zhang Xuexia , Chen Weirong Member, IEEE, P.N. Suganthan Senior, IEEE,’’ Optimal Multi-objective Reactive Power Dispatch Considering Static Voltage Stability Based on Dynamic Multi-group Self-adaptive Differential Evolution Algorithm’’, 2011 IEEE DOI 10.1109/ISdea.2011.35
[23]	R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
[24]	C. H. Sun and C. C. Chiu “Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, Issue 5, - 82 - pp. 579–585, Sept. 2013. 
[25]	C. C. Chiu, C. H. Sun, C. L. Li and C. H. Huang, “Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder in Slab Medium,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, pp. 2302–2315, Apr. 2013.
[26]	Ching-Tang Hsieh, Shu-Han Liao, Chien-Ching Chiu, Min-Hui Ho,” Capacity Analysis of MIMO-WLAN Systems with Single Co-Channel Interference,” Online ISSN 1848-3380, Print ISSN 0005-1144 ATKAFF 55(2), 143–152(2014)
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信