§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1008201515435700
DOI 10.6846/TKU.2015.00260
論文名稱(中文) 聚偏二氟乙烯薄膜在玻尿酸分離純化應用之研究
論文名稱(英文) A study on the separation and purification of hyaluronic acid by using polyvinylidene fluoride membrane
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 吳彥儒
研究生(英文) Yen-Ju Wu
學號 602400565
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-17
論文頁數 89頁
口試委員 指導教授 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 童國倫
關鍵字(中) 濃縮過濾
透析過濾
玻尿酸
純化
電解質
聚偏二氟乙烯
平板薄膜
關鍵字(英) Concentrate filtration
Diafiltration
Hyaluronic acid
Purification
Electrolyte
Polyvinylidene fluoride (PVDF)
Flat-sheet membrane
第三語言關鍵字
學科別分類
中文摘要
本研究是利用實驗室合成的聚偏二氟乙烯(Polyvinylidene fluoride, PVDF)平板式薄膜,來組裝模組進行濃縮過濾和透析過濾用於玻尿酸分離純化之效能探討,合成薄膜的組成為PVDF、磷酸三乙酯(Triethyl phosphate, TEP)及Tween-20的混合溶液,將改變沉澱槽之組成成分以製備不同結構之薄膜,探討其薄膜結構對蒸餾操作之影響。以單成分HA溶液以及HA/LY雙成分溶液為實驗對象,並採用批次恆壓型式,針對攪拌速度、電解質種類和電解質濃度等操作變數之改變進行實驗分析。
研究結果顯示,隨著沉澱槽TEP wt%的比例增加,在濃縮過濾其濃縮程度都會優於沒改質的薄膜其濾液累積體積比沒改質的還來的多,而在HA透析過濾其濾速都會高於沒改質的薄膜,是由於隨著TEP在沉澱槽的比例增加薄膜表面皮層結構不易形成,且大孔洞數變多。加入攪拌可有效降低過濾阻力而提高濾速,電解質離子強度越大,使玻尿酸分子萎縮捲曲的程度越大,使得HA堆積形態越為緊密,濾速相對較低;而電解質造成LY與薄膜以及HA之間的靜電作用力降低,使LY不易吸附於膜面上,較易通過薄膜,提高移除效率。
英文摘要
The synthesized polyvinylidene fluoride (PVDF) flat-sheet membrane was used in concentrate filtration and diafiltration for separation and purification of hyaluronic acid. The flat membranes were prepared from the dope solution of PVDF, Triethyl phosphate(TEP) and Tween-20, and varying the concentration of TEP in the coagulation bath. The membrane structures were observed by the SEM analysis. In this study, the HA solution and the mixture solution of HA/LY were used as the feed solution, and experimented by adopting Concentrate filtration and diafiltration in a dead-end stirred cell. The experimented results were discussed under different operating conditions such as stirred rate, electrolyte type and electrolyte concentration.
The results shows that concentrate filtration’s concentration and accumulation filtrate better than original membranes which prepared by higher weigh percent of TEP solution. In the diafiltration for HA the flux higher performance than original membranes. Membrane have large pore size in the top surface is increasing the weight percent of TEP in coagulant bath. Addition of stirring can reduce the filtration resistance and improve the permeate flux. The permeate flux decreases with the increase of ion strength of electrolyte which causes the HA molecules become more shrunken and then form a compact deposited layer on membrane surface. However, the LY molecules can pass through the membrane more easily as the electrolyte is added. The strength of electrode ion will hinder the surface charge of LY, and decrease the electrostatic interference between LY molecules and membrane.
第三語言摘要
論文目次
目錄
致謝 I
中文摘要 II
英文摘要 III
目錄 IV
圖目錄 VII
表目錄 IX
第1章 緒論 1
1.1 前言 1
1.2 薄膜分離 1
1.3 薄膜型態與模組 5
1.4 濃度極化與結垢現象 6
1.5 研究目的 8
第2章 文獻回顧 11
2.1 玻尿酸 11
2.1.1 玻尿酸之發現 12
2.1.2 玻尿酸之純化 13
2.1.3 玻尿酸之應用 15
2.2 透析過濾相關研究 17
2.2.1 透析過濾之理論分析 17
2.2.2 透析過濾純化效果之研究 18
2.2.3 透析過濾之應用 20
2.3 影響濾速之因素 20
2.4 提升濾速之方法 22
2.5 濾速分析模式 23
2.6 薄膜製備方法 28
第3章 實驗裝置與方法 33
3.1 實驗裝置 33
3.2 實驗藥品 34
3.3 薄膜製備 35
3.4 實驗步驟 36
3.5 薄膜性質分析 36
3.5.1 薄膜的形態和表面孔洞分析 36
3.5.2 薄膜膜厚及孔隙度測試 37
3.5.3 接觸角測試 37
3.6 操作條件 38
3.7 分析方法 38
3.7.1 玻尿酸含量之測定 38
3.7.2 蛋白質含量之測定 40
3.7.3 阻隔率(Rejection, Rj) 41
3.7.4 移除率(Reduction, Rd) 42
3.7.5 保留液濃度 42
3.8 實驗後薄膜之清洗 42
第4章 結果與討論 45
4.1 薄膜特性與結構分析 45
4.1.1 薄膜SEM結構分析 45
4.1.2 薄膜之孔隙度 46
4.1.3 薄膜之接觸角 46
4.2 薄膜純水濾速 47
4.3 濃縮過濾之過濾行為 48
4.3.1 攪拌速度對濃縮過濾之影響 48
4.3.2 不同PVDF薄膜對濃縮過濾之影響 48
4.4 單成分溶液之透析過濾行為 49
4.4.1 攪拌速度對單成份溶液之影響 49
4.4.2 不同PVDF薄膜對HA濾液通量之影響 49
4.4.3 不同PVDF薄膜對HA阻隔濾之影響 50
4.4.4 進料濃度對單成分溶液之影響 50
4.4.5 電解質對單成分溶液之影響 51
4.5 雙成分HA/LY溶液之透析過濾行為 51
4.5.1 電解質種類 51
4.5.2 電解質濃度 52
4.5.3 分離效率 52
4.5.4 HA之阻隔率 53
4.5.5 過濾之阻力分析 54
4.5.6 PVDF-T40與不膜材濾速比較 54
4.5.7 不同膜材性能比較 54
4.5.8 電解質之移除 55
第5章 結論 76
參考文獻 80
附錄A 88
附錄B 89

		圖目錄
Fig. 1-1 The classification of membrane separation process [2].	9
Fig. 1-2 The diagram of (a)dead end filtration and (b)cross-flow filtration [3].	10
Fig. 2-1 The biosynthetic pathway for HA production in S. zooepidemicus[53]. 25
Fig. 2-2 The processes of HA production in S. zooepidemicus[53]. 26
Fig. 2-3 The Schematic diagram of diafiltration. 27
Fig. 2-4 Typical methods to reduce concentration polarization and fouling in pressure driving membrane processes [2].	28
Fig. 2-5 Schematic representation of the isothermal phase behavion of a nonsolvent-solvent-polymer system consisting of a one-phase region (І),a two-phase region (П) and a gel (Ш) [54] .	31
Fig. 2-6 Schematic representation of mass transfer occurring at the membrane/ coagulant surface.  :flux of coagulant,  :flux of solvent [54]	32
Fig. 3-1 The experimental set-up of diafiltration operation.	43
Fig. 4-1 PVDF平板薄膜之SEM 5k倍率上表面結構圖	56
Fig. 4-2 PVDF平板薄膜之SEM 10k倍率上表面結構圖	57
Fig. 4-3 PVDF平板薄膜之SEM 5k倍率下表面結構圖	58
Fig. 4-4 PVDF平板薄膜之SEM截面結構圖 59
Fig. 4-5 PVDF平板薄膜之SEM 3k倍率之上截面結構圖	60
Fig. 4-6不同PVDF薄膜之純水濾速	61
Fig. 4-7 不同壓力下 PVDF(T40)之純水濾速	61
Fig. 4-8固定時間不同攪拌速度下PVDF(T40)其濃縮過濾下HA率速對時間比較圖	62
Fig. 4-9 濃縮過濾在固定狀態下不同PVDF薄膜之濃縮過濾下HA濾速對時間比較圖 62
Fig. 4-10在固定120分鐘下攪拌速度對濃縮過濾之濾液累積體積之影響	63
Fig. 4-11 不同攪拌速度下PVDF(T40)其透析過濾HA濾速比較圖	63
Fig. 4-12 在固定120分鐘下不同攪拌速度再透析過濾對濾速的影響	64
Fig. 4-13 在壓力200kPa跟轉速400rpm不同PVDF薄膜HA的阻隔率	64
Fig. 4-14 不同進料濃度對透析過濾濾速影響	65
Fig. 4-15 不同電解質濃度對HA透析過濾濾速影響	65
Fig. 4-16 不同電解質對HA/LY過濾濾速之影響	66
Fig. 4-17不同電解質對HA/LY透析過濾濾速之影響	66
Fig. 4-18不同電解質對HA/LY透析過濾濾速之影響	67
Fig. 4-19 不同電解質濃度(NaCl)對HA/LY透析過濾之影響	67
Fig. 4-20 不同電解質濃度(KCl)對HA/LY透析過濾之影響	68
Fig. 4-21 不同電解質濃度(MgCl2)對HA/LY透析過濾之影響	68
Fig. 4-22  HA/LY溶液中不同種類的電解質對的LY穿透濃度影響	69
Fig. 4-23  不同濃度MgCl2對HA/LY溶液的LY穿透濃度影響-69
Fig. 4-24  HA/LY溶液中不同的電解質和濃度對HA阻隔濾之影響	70
Fig. 4-25 電解質濃度對阻力的影響	70
Fig. 4-26 不同電解質(0.01M)之阻力分析	71
Fig. 4-27不同電解質(0.5M)之阻力分析	71
Fig. 4-28 PVDF(T40)薄膜跟商業模的濾速比較	72
Fig. 4-29 PVDF(T40)與商業模之LY穿透濃度比較	72
Fig. 4-30 PVDF(T40)與商業模之HA阻隔率比較	73
Fig. 4-31 商業膜之阻力分析	73
Fig. 4-32電解質移除與透析體積圖	74

表目錄
表 1-1 The classification of driving force in different operation process [2].	9
表 3-1製膜液組成與製備條件	44
表 3-2 玻尿酸之性質	44
表 3-3溶菌酶之性質	44
表 4-1 PVDF薄膜基本結構與物性分析	74
表 4-2商業膜之性質	75
參考文獻
1.	Murkes, J., and Carlsson, C. G., “Crossflow Filtration-Theory and Practice”, John Wiley & Sons, New York (1988).
2.	Cheryan, M., “Ultrafiltration and Microfiltration Hand Book”, Tech-nomic Publishing Co. Inc. Pennsylvania (1998).
3.	呂維明編著,“固液過濾技術”, 高立圖書有限公司 (2004).
4.	陳毓華、陳松青,“透明質酸與其生醫應用”,化工資訊與商情,第37期 (2006).
5.	李明軒,”以超過濾去除玻尿酸發酵液中微量蛋白質之製程開發”,碩士論文,成功大學,台南,台灣 (2007).
6.	Rapport, M. M., Weissman B., and Linker A., “Isolation of a crystalline disaccharide hyalobiuronic acid from hyaluronic acid”, Nature, 168(10) (1951).
7.	Scott, J. E., Heatley F., and Hull W. E., “Secondary structure of hyaluronate in solution. A 1H-nmr investigation at 300 and 500 MHz in [2H6] dimethyl sulphoxide solution”, Biochem. J., 220, 197-205 (1984).
8.	Balazs, E. A., Laurent, T. C., and Jeanloz, R. W., “Nomenclature of hyaluronic acid ”, Biochem. J., 235, 903 (1986).
9.	Brake, J. W., and Thacker, K., “Hyaluronic acid from bacterial culture”, U. S. Pat. 4517295 (1985).
10.	Nimrod, A., Greenman, B., Kanner, D., Landsberg, M. and Beck, Y., “Methodof producing high molecular weight sodium hyallronate by fermentation of streptococcus”, U. S. Pat. 4780414 (1988).
11.	Carlino, S., and Magnette, F. C. O., “Process for purifying high molecular weighthyaluronic acid”, U. S. Pat. 6489467 (2002).
12.	Zhou, H., Ni, J., Huang, W., and Zhang, J., “Separation of Hyaluronic Acid from Fermentation Broth by Tangential Flow Microfiltration and Ultrafiltration”, Sep. Purif. Technol., 52, 29-38 (2006).
13.	Rangaswamy, V., and Jain, D., “An efficient process for production and purification of hyaluronic acid from Streptococcus equi subsp.
zooepidemicus”, Biotechnol. Lett., 30, 493-496 (2008).
14.	Sharif, M., “Serum hyaluronic acid levels as a predictor of disease  progression in osteoarthritis of the knee”, Arthritis Rheum., 38, 760-767 (1995).
15.	Saettone, M. F., Giannaccini, B., Teneggi, A., Savigni, P., and Tellini, N., “Vehicle effects on ophthalmic bioavailability: the influence of different polymers on the activity of pilocarpine in rabbit and man”, J. Pharm. Pharmacol., 34(7), 464-466 (1982).
16.	Drobink, J., “Hyaluronan in drug delivery”, Adv. Drug Delivery Rev., 7, 295-308 (1991).
17.	Duranti, F., Salti, G., Bovani, B., Calandra, M., and Rosati, M. L.,  “Injectable hyaluronic acid gel for soft tissue augmentation”, Dermatol. Surg., 24, 1317-1325 (1998).
18.	Jaffrin, M. Y., and Charrier, J. P., “Optimization of ultrafiltration and diafiltration processes for albumin production”, J. Membr. Sci., 97, 71-81 (1994).
19.	Bowen, W. R., and Mohammad, A. W., “Diafiltration by nanofiltration: Prediction and optimization”,  AlChE J., 44(8), 1799-1812 (1998).
20.	Barba, D., Beolchini, F., and Veglio, F., “Water saving in a two stage diafiltration for the production of whey protein concentrates”, Desalination., 119, 187-188 (1998).
21.	Barba, D., and Beolchini, F., “Minimizing water use in diafiltration of whey protein concentrates”, Sep. Sci. Technol., 35, 951-965 (2000).
22.	Foley, G., “Minimisation of process time in ultrafiltration and continuous diafiltration: the effect of incomplete macrosolute rejection”, J. Membr. Sci., 163, 349-355 (1999).
23.	Foley, G., and Garcia, J., “Ultrafiltration flux theory based on viscosity and osmotic effects: application to diafiltration optimization”, J. Membr. Sci., 176, 55-61 (2000).
24.	Foley, G., “Ultrafiltration with variable volume diafiltration: a novel approach to water saving in diafiltration processes”, Desalination, 199, 220-221 (2006).
25.	Yazdanshenas, M., Tabatabaeenezhad, A. R., Roostaazad, R., and Khoshfetrat, A. B., “Full scale analysis of apple juice ultrafiltration and optimization of diafiltration”,  Sep. Purif. Technol., 47, 52-57 (2005).
26.	Moreno-Villoslada, I., Miranda, V., Jofré, M., Chandía, P., Villatoro, J. M., Bulnes, J. L., Cortés, M., Hess, S., and Rivas, B. L., “Simultaneous interactions between a low molecular-weight species and two high molecular-weight species studied by diafiltration”, J. Membr. Sci., 272, 137-142 (2006).
27.	Vanreis, R., and Saksena, S., “Optimization Diagram for Membrane Separations”, J. Membr. Sci., 129(1), 19-29 (1997).
28.	Romero, J., and Zydney, A. L., “pH and salt effects on chiral separations using affinity ultrafiltration”, Desalination, 148, 159-164 (2002).
29.	Romero, J., and Zydney, A. L., “Staging of affinity ultrafiltration processes for chiral separations”,  J. Membr. Sci., 209(1), 107-119 (2002).
30.	Meacle, F., Aunins, A., Thornton, R., and Lee, A., “Optimization of the membrane purification of a polysaccharide-protein conjugate vaccine using backpulsing”, J. Membr. Sci., 161, 171-184 (1999).
31.	Lipnizki, F., Boelsmand, J., and Madsen, R. F., “Concepts of industrial-scale diafiltration systems”, Desalination, 144, 179-184 (2002).
32.	Britten, M., and Pouliot, Y., “Characterization of whey protein isolate obtained from milk microfiltration permeate”, Lait, 76,  255-265 (1996).
33.	Pouliot, M., Pouliot, Y., and Britten, M., “On the conventional cross-flow microfiltration of skim milk for the production of native  phosphocaseinate”, Int. Dairy J., 6(1), 105-111 (1996).
34.  Nadia, O., Pierrick, L., Alice, B., Christelle, H. S., Emmanuel, R., Stéphane, M., Ivan, M., Romain, K., “A simple methodology for predicting the performances of hyaluronic acid purification by diafiltration”, J. Membr. Sci., 490,152-159 (2015) 
35.	Crum, R. H., Murphy, E. M., and Keller, C. K., “A non-adsorptive method for the isolation and fractionation of natural dissolved organic carbon”, Water Resour., 30, 1304-1311 (1996).
36.	Zydney, A. L., “Protein separations using membrane filtration: New opportunities for whey fractionation”, Int. Dairy J., 8, 243-250 (1998).
37.	Berot, S., Popineau, Y., Compoint, J. P., Blassel, C., and Chaufer, B., “Ultrafiltration to fractionate wheat polypeptides”, J. Chromatogr. B, 753, 29-35 (2001).
38.	Cho, C. W., Lee, D. Y., and Kim, C. W., “Concentration and purification of soluble pectin from mandarin peels using crossflow microfiltration system”, Carbohydr. Polym., 54, 21-26 (2003).
39.  Vivek, R., Gunaseelan, D., Ramkrishna, S., “Improved performance of cross-flow ultrafiltration for the recovery and purification of Ca2+ conditioned lipopeptides in diafiltration mode of operation”, J. Membr. Sci., 454, 436-443 (2014)
40.	Fell, C. J. D., Kim, K. J., Chem, V., Wiley, D. E., and Fane, A. G., “Factors Determining Flux and Rejection of Ultrafiltration Membranes”, Chem. Eng. Process., 27, 165 (1990).
41.	Fane, A. G., Fell, C. J. D., and Suki, A., “The Effect of pH and Ionic Environment on the Ultrafiltration of Protein Solutions with Retentive Membranes”, J. Membr. Sci., 16, 195 (1983).
42.	Gill, W. N., Wiley, D. E., Fell, C. J. D., and Fane, A. G., “Effect of Viscosity on Concentration Polarization in Ultrafiltration”, AIChE J., 34, 1563 (1988).
43.	Winzeler, H. B., and Belfort, G., “Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities”, J. Membr. Sci., 80, 35-47 (1993).
44.	Mulder, M., “Basic Principles of Membrane Technology”, Kluwer Academic Publishers, The Netherlands (1996).
45.	Nel, R. G., Oppenheim, S. F., and Rodgers, V. G. J., “Effect of solution properties on solute permeate flux in bovine serum albumin-IgG ultrafiltration”, Biotechnol. Prog., 10, 539-542 (1994).
46.	Bauser, H., Chmiel, H., Stroh, N., and Walitza, E., “Control of concentration polarization and fouling of membranes in medica, food and biotechnical application”, J. Membr. Sci., 27, 195-202 (1986).
47.	Mir, L., “Positive-charged ultrafiltration membrane for the seperation of cathodic/electro deposition Paint composition”, U. S. Patent., 4, 412 (1983).
48.	Chong, R., Jelen, P., and Wang, W., “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Sep. Sci. Technol., 20, 393-402 (1985).
49.	Kim, B.S., and Chang, H. N., “Effects of periodic backflushing on ultrafiltration Performance”, Bioseparation , 2 , 9-23 (1991).
50.	Mercier-Bonin, M., Fonade, C., and Lafforgue-Delorme, C., “How slug Flow can enhance the ultrafiltration flux in mineral tubular membrane”, J. Membr. Sci., 128, 103-113 (1997).
51.	Cheng, T. W., Yeh, H. M., and Gau, C. T., “Enhancement of Permeate Flux by Gas Slugs for Crossflow Ultrafiltration in Tubular Membrane Module”, Sep. Sci. Technol., 33, 2295-2309 (1998).
52.	Cheng, T. W. and Pan, S. Y., “Recovery of Sizing Agent by Gas Sparging Ultrafiltration”, J. Chin. Inst. Chem. Engrs., 32, 431-436 (2001).
53.	Chong, B. F., and Nielsen, L. K., “Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase”, Biochem. Eng. J., 16(2), 153-162 (2003).
54. Mulder, M. “Basic principles of membranes technology”, Kluwer 
   Academic Publishers, Dordrecht/Boston/London, 1996.
55. Boom, R.M. Boomgaard, T.V., Smolders, C.A., “Mass transfer and 
   thermodynamics during immersion precitation for two-polymer 56. 
   Altena, F.W., Smolders, C.A., “Calculation of liquid-liquid phase 
   separation in a ternary system of a polymer in a mixture of a solvent 
   and a nonsolvent”, Macromolecules, 15, 1491(1982).
57. Zeman, L., Tkacik, G., “Thermodynamic analysis of a membrane 
   forming system water/n-methyl-2-pyrrolidone/polysulfone”, J. 
   Membr. Sci., 36, 119(1988).
58. Flory, P.J., “Principles of polymer chemistry ”,  Cornell University 
   Press. New York, (1953).
59. 陳勝昌, 以非溶劑誘導相轉移法製備多孔性薄膜, 淡江大學化
   學工程與材料工程學系碩士論文, (2013).
60. Tompa, H., “Polymer solutions”, Butterworths, London(1956).
61. Zeman, L., Tkacik, G., “Thermodynamic analysis of amembrane 
   forming system water/n-methyl-2-pyrrolidone/polysulfone”,  J. 
   Memb. Sci., 36, 119(1988).
62. Kamide, K., “Thermodynamics ofpolymer solutions ”, Elsevier. Sci. 
   Publishers B.V.,Amsterdam, The Netherlands, (1990).
63.	Bitter, T., Muir, H. M., “A modified uronic acid carbazole reaction”, 
    Anal. Biochem., 4, 330-334 (1962).

64.	Bradford, M. M., “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding”, Anal. Biochem., 72, 248-254 (1976).
65.	Yin, N., Yang, G., Zhong, Z., and Xing, W., “Separation of ammonium salts from coking wastewater with nanofiltration  combined with diafiltration”, Desalination, 268(1), 233-237 (2011).
66.	Pisarcik, M., Bakos, D., Ceppan, M., “Non-Newtonia properties of hyaluronic acid aqueous solution”, Colloids Surf., 97, 197-202 (1995).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信