§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1008201114021000
DOI 10.6846/TKU.2011.00336
論文名稱(中文) 光纖浸水感測器之設計及實現
論文名稱(英文) Design and Realization of Optical Fiber Sensors for Water Immersion Detection
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 林宣宏
研究生(英文) Hsuan-Hung Lin
學號 698440202
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2011-07-21
論文頁數 87頁
口試委員 指導教授 - 楊淳良(clyang@mail.tku.edu.tw)
委員 - 李三良
委員 - 曹恆偉
委員 - 劉政光
委員 - 李揚漢
關鍵字(中) 光纖感測器
光時域反射儀
浸水偵測
關鍵字(英) Optical fiber sensor
optical time-domain reflectometer (OTDR)
water immersion.
第三語言關鍵字
學科別分類
中文摘要
光纖為網路傳輸系統之最佳傳輸媒介,可提供高速率及長距離的光訊號傳輸,因此光
纖非常適合作為即時、遠端、及分佈偵測。因為許多特性使得光纖成為優異的感測器,可
作為一神經系統並且非常適合於工廠及民生的應用。目前常見的商品化產品有液體準位感
測器(Liquid Level Sensor),其主要用於裝設在單一處所的感測器,其感測器的表面容易因
外在環境因素(如:塵土)而影響其功能,並且不適合架設於光纖偵測線路上。日本NTT研
發團隊研發出一種感測器可用在光纖線路上進行浸水之偵測,其感測原理是使用不織布吸
水膨脹導致光纖產生彎曲損耗, 並配合使用光時域反射儀(Optical Time-Domain
Reflectometer, OTDR)觀察。但此種感測器浸水時之彎曲損耗卻高達10 dB,因此無法在
OTDR上觀察到是否同時多個處所發生浸水狀況,以及容易因為某個偵測點斷裂而癱瘓後
面的偵測線路。
因此我們提出基於OTDR光纖浸水感測器,以利觀察同時多個處所浸水狀況。本偵測
線路拓樸採分支設計,因此不會因為偵測點的故障或分支光纖斷裂而影響其他偵測點及主
幹光纖偵測線路的運作。一旦分支偵測點受損或浸水,只須將感測器模組卸除再換新即可,如此便於施工及維護。
所提出的反射式光纖感測器主要是由一般8 度斜角APC 端面光纖連接器及一塊透水-漫射
反射材料,例如:美耐皿海綿(Melamine Sponge)。我們所設計的感測器可設置在任何
想偵測的區域中,其成本低、結構簡單且輕巧,工作人員容易維護及更換。光纖連接頭
APC 端面與美耐皿海綿構成一個感測介面,因為美耐皿海綿本身內部結構的關係,乾與濕
會讓APC 端面與美耐皿海綿的介面處呈現不同的狀態,乾的接面因未浸水,內部結構較
為乾燥也比較粗糙,產生任意角度漫射現象,因此讓反射光回到光纖的機率變大,OTDR
所量到的脈衝高度(Pulse-Height)也隨之變高。然而,濕的美耐皿海綿因浸水後變得較綿密
且呈現平滑光亮面,在APC 端面與濕美耐皿海綿的介面處則呈現鏡面反射,因此APC 端
面8 度斜角造成反射光不易返回到光纖內而產生較大損耗,OTDR 所量到的脈衝高度也就
下降了。在此美耐皿海綿扮演兩個重要角色:雜質濾水器及光波散光器(Lightwave
Diffuser)。
表
英文摘要
Optical fibers have become the best network transmission media, providing
high-speed and long-distance optical signal transmission, so they are also ideal for
real-time, remote, and distributed sensing. Since many features make optical fibers
excellent sensors, they can be used as a nerve system and are very suitable for plant and
civil applications. A commercialized optical liquid level sensor is made up of an infrared
LED and a phototransistor that need to be accurately positioned at the base of the sensor’s
tip, which is unsuitable for deploying in optical fiber networks and susceptible to external
factors such as dust depositing and improper mounting to affect its function. NTT R&D
group developed a sensing apparatus based on the fiber bending mechanism to be used in
optical fiber links for detecting water immersion of underground ducts. The water sensors
implemented in the optical fiber links can always be monitored by an optical time-domain
reflectometer (OTDR). However, such sensors present higher bending loss while they are
immersed in water, and therefore water immersion occurring at overmuch premise
couldn’t simultaneously be discovered.
In this paper, we propose novel OTDR-based optical fiber sensors, which are especially
suitable for simultaneous multipoint sensing. Belonging to the quasi-distributed branch
topology, it will be helpful to reach its sensing ranges and to avoid the failure of sensing
points introducing an interruption to the rear sensing networks. Once the branched sensing
points are damaged or immersed in water, their relative states can immediately be observed from an OTDR, and then those sensing points can easily be located and repaired
to facilitate the construction and maintenance.
The proposed sensors, which possess low-cost, compact and easily do-it-yourself (DIY)
features, normally present the diffuse reflection at the boundary between the two media of
melamine sponge and 8-degree APC end facet. After water immersion, they instantly
change into the specular reflection at this boundary. Owing to the diffuse reflection at the
dry boundary, the pulse-height measured by the OTDR becomes higher while the incident
light backscattered into the fiber becomes larger. However, under water immersion the wet
boundary results in specular reflection; and the 8-degree APC end facet can largely
suppress the reflected light back to the optical fiber, which leads to a large return loss to
the sensor and reduces the pulse-height shown on OTDR. Here, the melamine sponge
plays two key roles as a water impurity filter and a lightwave diffuser.
第三語言摘要
論文目次
第一章 緒論
1.1 前言----------------------------------------------------------------------------1
1.2 論文架構----------------------------------------------------------------------3
第二章 光纖感測器之介紹
2.1 前言----------------------------------------------------------------------------5
2.2光纖感測器種類--------------------------------------------------------------6
第三章 光纖感測之技術與應用
3.1光纖溫度感測器------------------------------------------------------------14
3.2光纖壓力感測器------------------------------------------------------------15
3.3光纖流量流速感測器------------------------------------------------------15
3.3.1壓差流量感測器----------------------------------------------------16
3.3.2光纖渦流流量計----------------------------------------------------16
3.4結構健康監測技術---------------------------------------------------------16
3.5液位光纖感測器------------------------------------------------------------18
第四章光時域反射儀之介紹
4.1 光時域反射儀簡介--------------------------------------------------------22
4.2 一般光時域反射儀--------------------------------------------------------23
4.2.1原理與參數----------------------------------------------------------24
4.3 布里淵光時域反射儀-----------------------------------------------------35
4.3.1布里淵光時域分析技術-------------------------------------------37
4.4拉曼光時域反射儀---------------------------------------------------------39
第五章 光纖浸水感測系統之設置及分析
5.1 前言--------------------------------------------------------------------------40
5.2 光纖感測網路之拓樸簡介-----------------------------------------------41
5.2.1 樹狀拓樸------------------------------------------------------------42
5.2.2 環狀拓樸------------------------------------------------------------42
5.2.3 匯流排拓樸---------------------------------------------------------43
5.2.4 網狀拓樸------------------------------------------------------------43
5.3 光纖浸水感測器之設計與製作-----------------------------------------44
5.3.1 APC與PC光纖端面之介紹--------------------------------------44
5.3.2 光纖浸水感測器之設計------------------------------------------46
5.3.3 光纖浸水感測器之製作------------------------------------------50
    5.4 理論分析與實驗結果----------------------------------------------------56
       5.4.1實驗設置--------------------------------------------------------------56
       5.4.2理論分析--------------------------------------------------------------58
       5.4.3 實驗結果-------------------------------------------------------------69
第六章  結論與未來研究方向
6.1 成果與討論-----------------------------------------------------------------81
6.2 未來研究方向--------------------------------------------------------------81
參考文獻-------------------------------------------------------------------------------83













圖目錄
圖2.1光纖感測器基本形式(a)功能型,(b)傳光型-------------------------------7
圖3.1 光纖液位探測器(a)Y型光纖;(b)U型光纖;(C)稜鏡耦合------------19
圖3.2 探測兩種液體的分界面----------------------------------------------------20
圖3.3 返回光強與折射率的關係-------------------------------------------------21
圖4.1 玻璃光纖衰減特性之波長相關-------------------------------------------23
圖4.2 OTDR內部系統架構方塊圖-----------------------------------------------25
圖4.3不同的光脈衝寬度下空間解析度與SNR的差異-----------------------27
圖4.4光脈衝遇到事件之圖解說明-----------------------------------------------28
圖4.5事件死區的示意圖-----------------------------------------------------------28
圖4.6鬼影示意圖--------------------------------------------------------------------30
圖4.7含有反射峰值的鬼影軌跡圖-----------------------------------------------30
圖4.8軌跡圖範例--------------------------------------------------------------------31
圖4.9動態範圍與量測範圍--------------------------------------------------------32
圖4.10光纖斷點處,在OTDR上所呈現的軌跡圖-----------------------------33
圖4.11光纖彎曲造成:(a)損耗,(b)光纖裂痕------------------------------------34
圖4.12光纖中間斷裂造成後段光纖超出OTDR可偵測範圍----------------35
圖4.13 BOTDA感測原理-----------------------------------------------------------39
圖5.1 PC與APC端面圖------------------------------------------------------------45
圖5.2紅光經過光纖浸水感測器透射出的光點圖-----------------------------47
圖5.3紅光經過已浸水光纖浸水感測器透射出的光點圖--------------------48
圖5.4光纖浸水感測器1之設計架構---------------------------------------------49
圖5.5光纖浸水感測器2之設計架構---------------------------------------------49
圖5.6光纖浸水感測器3之設計架構---------------------------------------------50
圖5.7光纖浸水感測器1之實體圖------------------------------------------------51
圖5.8美耐皿海綿內部纖維電子顯微圖-----------------------------------------52
圖5.9美耐皿海綿未擠壓之內部結構圖-----------------------------------------53
圖5.10美耐皿海綿擠壓之內部結構圖-------------------------------------------54
圖5.11光纖浸水感測器2之實體圖-----------------------------------------------55
圖5.12光纖浸水感測器3之實體圖----------------------------------------------56
圖5.13 實驗架構圖------------------------------------------------------------------57
圖5.14 PC端面浸水與未浸水之實驗與理論對照圖--------------------------59
圖5.15 量測感測器浸水與未浸水之損耗---------------------------------------60
圖5.16 脈衝寬度10ns時之感測器浸水、未浸水及鑑別度對照圖----------61
圖5.17 脈衝寬度100ns時之感測器浸水、未浸水及鑑別度對照圖--------62
圖5.18 脈衝寬度1us時之感測器浸水、未浸水及鑑別度對照圖-----------63
圖5.19脈衝寬度10us時之感測器浸水、未浸水及鑑別度對照圖-----------64
圖5.20 SPB: 10%之各脈衝寬度實驗與理論值對照圖-------------------------65
圖5.21 SPB: 10%之各公里實驗與理論值對照圖-------------------------------66
圖5.22 SPB: 50%之各公里實驗與理論值對照圖-------------------------------67
圖5.23 SPB: 100%之各公里實驗與理論值對照圖-----------------------------68
圖5.24 脈衝寬度100ns之各分光比實驗與理論值對照圖-------------------69
圖5.25光纖22.5km之連接損耗示意圖------------------------------------------70
圖5.26分光器與感測器對照圖----------------------------------------------------71
圖5.27感測器1之各公里未浸水圖----------------------------------------------72
圖5.28感測器1之各公里浸水圖-------------------------------------------------73
圖5.29感測器2之各公里未浸水圖----------------------------------------------74
圖5.30感測器2之各公里浸水圖-------------------------------------------------75
圖5.31感測器3之各公里未浸水圖----------------------------------------------76
圖5.32感測器3之各公里浸水圖-------------------------------------------------77
圖5.33感測器重複二十次乾/濕之測試結果------------------------------------78
表目錄
表2.1光纖感測器所用的主要物理效應與檢測----------------------------------8
表2.2光纖特性及測量時所適用的範圍-----------------------------------------10
表2.3光纖特性及測量時所適用的範圍-----------------------------------------11
表2.4光纖感測器的應用及目前技術水準--------------------------------------12
表2.5一些主要工業應用領域及所用感測器-----------------------------------13
參考文獻
[1]	T. Koonen, “Fiber to the Home/Fiber to the Premises: What, Where, and When,” IEEE Proceedings, vol. 94, no. 5, pp. 911-934, May 2006.
[2]	主編:楊淳良、趙亮琳,作者:李揚漢、許立根、譚昌文、洪鴻文、 曹士林,光纖通信網路,五南圖書出版股份有限公司,Jul. 2007.
[3]	C. H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the Home Using a PON Infrastructure,” IEEE/OSA J. Lightwave Technol., vol. 24, no. 12, pp. 4568-4582, Dec. 2006.
[4]	馮國璋, “光纖到家市場攻防戰起E-PON/G-PON兩強對峙,” 新通訊《趨勢眺望》, 84期, Feb. 2008.
[5]	安毓英、曾小東,光學感測與測量,五南圖書出版股份有限公司,Mar. 2004.
[6]	F. J. Arregui, I. R. Matias, K. L.Cooper, and R. O. Claus, “Simultaneous Measurement of Humidity and Temperature by Combining a Reflective Intensity-based Optical Fiber Sensor and a Fiber Bragg Grating,” IEEE Sensors Journal, vol. 2,no. 5, pp. 482-487, Oct. 2002.
[7]	G.W. Housner, L.A. Bergman, T.K.Caughey, et a1, “Structural Control:Past, Present, and Future,”Journal of Engineering Mechanics,vol. 123,no. 9, pp. 897-971 , 1997.
[8]	Z. S. Wu, “Structural Health Monitoring and Intelligent Infrastructure,” A.A. Balkema Publishers, pp.153-167, 2003, Tokyo, Japan.
[9]	Z. H. Zong, T. L.Wang, and D. Z. Huang,et a1, “State of the Art Report of Bridge Health Monitoring,”Journal of Fuzhou University(Natural Science),vol. 30,no. 2, pp. 127-152, Apr. 2002. 
[10]	M.P.Whelan, D.Albrecht,and A.Capsoni, “Remote Structural Monitoring of the Cathedral of Como Using An Optical Fiber Bragg Sensor System,”Smart Structures and Materials 2002,vol.4694, pp. 242-252, Jun. 2002.
[11]	Jose Miguel Lopez-Higuera, and Luis Rodriguez Cobo, “ Fiber Optic Sensors in Structural Health Monitoring,” Journal of Lightwave Technology, vol. 29, no. 4, Feb. 15, 2011. 
[12]	S. D. Personick, “Photon Probe - An Optical Fiber Time Domain Reflectometer,” Bell Syst. Tech. J., vol. 56, pp. 355-366, Mar. 1977.
[13]	S. Kher, G. Srikant, S. Chaube, A. L. Chakraborty, T. P. S. Nathan, and D. D. Bhawalkar, “Design, Development and Studies on Raman-Based Fibre-Optic Distributed Temperature Sensor,” Current Science, vol. 83, no. 11, pp.1365-1368, Dec. 10, 2002. 
[14]	L.F. Zou, X.Y. Bao and Y.D.Wan, et.al, “Coherent Pprobe-Pump-Based Brillouin Sensor Forcentimeter-Crack Detection,” Optics Letters, vol. 30, no. 4, pp. 370-372, Jul. 2005. 
[15]	The Great Sensing Technology: Brillouin Optical Time Domain Analysis http://www.botda.com/
[16]	楊淳良, “單元五光纖斷點的量測介紹與實驗,” 98年教育部顧問室「資通訊科技人才培育先導型計畫」寬頻有線教學推動聯盟中心「DWDM技術實驗教材」。
[17]	W. R. Woodward, “Optical Time Domain Reflectometer – Basic Theory and Application,” W R Systems Ltd.
[18]	Tech Optics Optical Time Domain Reflectometers (OTDRs), http://www.techoptics.com/pages/OTDR/OTDR%20Intro.html
[19]	G. Lucas Leclin, T. Avignon, and L. Jacubowiez, “An Optical Time Domain Reflectometry Set-Up for Laboratory Work at Ecole Superieure d'Optique,” Conference on Education and Training in Optics & Photonics Marseille, pp.152-155,Oct. 27, 2005.
[20]	B. Huttner, B. Gisin, and N. Gisin, “Distributed PMD Measurement with a Polarisation-OTDR in Optical Fibers,”Journal of Lightwave Technology,vol. 17,no. 10, pp.1843-1848, Oct. 1999.
[21]	許仕, “單元七OTDR光纖損耗之量測,” 94年教育部通訊教改計畫「光纖製備與量測多媒體教材」。
[22]	Data sheet: OTDR MT9083A, http://www.eu.anritsu.com/files/MT9083A_OTDR_AccessMaster.pdf
[23]	M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, “Optical Time Domain Reflectometer,” OSA Appl. Opt., vol. 16, no. 9, pp. 2375-2379, Sept. 1977. 
[24]	Liquid  Level  Sensors http://www.sstsensing.com/Products/Liquid-Level-Sensors/60
[25]	http://www.ntt.co.jp/journal/0911/files/jn200911042. pdf
[26]	http://www.ntt.co.jp/RD/OFIS/active/2008pdf/pdf/h_nw05.pdf
[27]	林宣宏、楊淳良, “光纖浸水感測器之設計及實現,” 全國電信研討會( National Symposium on Telecommunications, NST 2010), Paper ID 642, Dec. 3-4, 2010. (主辦單位:長庚大學)
[28]	林宣宏、楊淳良, “基於OTDR光纖浸水感測器之設計及實現,” 2010年民生電子研討會( 2010 Workshop on Consumer Electronics, WCE 2010), Paper No. OT-09 (Paper ID 200), Nov. 5, 2010. (主辦單位:南台科技大學)
[29]	W. Aiello, S. N. Bhatt, F. R.K. Chung, A. L. Rosenberg, and R. K. Sitaraman, “Augmented Ring Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 12, no.6 , pp. 598-609, Jun. 2001. 
[30]	S. Diaz, B. Cerrolaza, G.Lasheras, and M. Lopez-Amo , “ Double Raman Amplified Bus Networks for Wavelength-Division Multiplexing of Fiber-Optic Sensors,” Journal of Lightwave Technology, vol. 25, no. 3, pp. 733-739, Mar. 2007. 
[31]	淡江大學電機系助理教授 楊淳良、助教 曹中瀚 編撰。
[32]	Magic Eraser cleaning pad http://www.reefbuilders.com/wp-content/uploads/2009/03/melamine-150x150.jpg
[33]	Melamine Resin Foam http://www.plasticsportal.net/wa/plasticsEU/portal/show/content/products/foams/basotect
[34]	Basotect-ProductBrochure.vailable: http://www.plasticsportal.net/wa/plasticsEU~en_GB/function/conversions:/publish/common/upload/foams/Basotect_brochure.pdf
[35]	C.L. Yang, H.H. Lin, and S.L. Lee, “Demonstration of Optical Fiber Sensors for Water Immersion Detection,” Wireless and Optical Communications Conference 2011 (WOCC 2011), Session no. O2, Paper no. 1569403409, Apr. 15-16, 2011, Newark, New Jersey, USA. 
[36]	光纖傳感器技導書,燕山大學信息科學與工程學院光電系術實驗室。
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信