§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1008201110555100
DOI 10.6846/TKU.2011.00333
論文名稱(中文) 機器人雙指抓取接觸分析
論文名稱(英文) Contact force analysis on two-fingered robot grasping
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 陳俊儒
研究生(英文) Jiun-Ru Chen
學號 698370078
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2011-07-14
論文頁數 73頁
口試委員 指導教授 - 劉昭華
委員 - 陳正光
委員 - 王銀添
委員 - 劉昭華
關鍵字(中) 二指抓取
接觸力分析
夾緊位移量
關鍵字(英) Two-fingered grasping
Contact force analysis
tightening displacement
第三語言關鍵字
學科別分類
中文摘要
本論文提出兩指抓取圓球之逆向動力學的力量分析程序,亦即在物體的線性加速度及角加速度皆已知的情況,求出手指的挾持力。由於剛體模型會造成不確定性,本研究建議加入彈性變形,利用赫式接觸之力與位移關係式、相容方程式、以及運動方程式合併解題。本文針對二指抓取彈性球體時的情況,從事以下兩種情況的逆向動力分析:第一,針對物體的線性加速度及角加速度為已知,且兩指間的相對位移向量亦為已知的情況,求得挾持力的數值解。由於運動方程式具一階不確定性,這表示可選取一個抓取力當作主要變數,而其他的抓取力都表示成這個力的函數,因此數值程序僅包含單一未知數,可快速求出接觸力。第二,針對特定的線性加速度及角加速度,若兩指間的夾緊方向亦為已知,本文可求出手指不會滑動所需的最低夾緊量、以及這時的接觸力,而且是以閉合解呈現。
英文摘要
In this thesis a procedure for inverse dynamics analysis of two-fingered grasping of a sphere is proposed. Contact forces may be found for given linear and angular accelerations of a spherical body. Elastic force-displacement relations predicted by Hertz contact theory are used to remove the indeterminancy produced by rigid body model. Two types of inverse dynamics analysis are performed for two-fingered grasping of a sphere. Firstly, as linear and angular accelerations, as well as the relative displacement vector of the finger tips, are given, grasping forces may be obtained by a numerical procedure. In this procedure one degree of indeterminancy produced by the equations of motion are utilized. Specifically, one particular contact force may be chosen as the principal unknown, and all other contact forces are expressed in terms of this force. The numerical procedure is hence very efficient since it contains only one principal unknown. Secondly, for given linear and angular accelerations, if the relative grasping direction of the two fingers is also known, then the closed form solution for the minimum tightening displacement for sliding not to occur can be obtained.
第三語言摘要
論文目次
目錄
中文摘要.............................................I
英文摘要............................................II
目錄....................................................III
圖目錄...............................................IV
第一章 緒論.......................................1
1.1 前言..............................................1
1.2 文獻回顧.....................................1
1.3 研究目的.....................................5
第二章 運動方程式..........................6
2.1 簡介..............................................6
2.2 運動方程式.................................7
第三章 研究方法	............................11
3.1 研究方法....................................11
3.2 解題方法....................................14
第四章 結果與討論.........................17
第五章 結論及未來展望................21
參考文獻...........................................22
附錄...................................................26

圖目錄
圖1     半徑為r的球體,A點受力為N1,T1,T2,B點受力為N2,T3, T4...................................................................................................................................45
圖2     N1在x軸挾角及z軸挾角皆為π/2,只有z方向質心加速度且沒有此球體角加速度,y方向挾緊量為0.09mm時與x z方向挾緊位移的關係......46
圖3    當z軸挾角為π/2,在不同x軸挾角情況下且只有z方向質心加速度,角加速度向量α=0時N1 與y方向夾緊位移的關係.........................................47
圖4    當z軸挾角為π/2,在不同x軸挾角情況下且只有z方向質心加速度,角加速度向量α=0時N1 與AB方向挾緊位移的關係......................................48
圖5    當z軸挾角為π/2,在不同x軸挾角情況下且只有y方向質心加速度,角加速度向量α=0時N1 與AB方向挾緊位移的關係......................................49
圖6    當z軸挾角為π/2,在不同x軸挾角情況下且只有z方向質心加速度,質心加速度向量a=0時N1 與AB方向挾緊位移的關係...................................50
圖7    當x軸挾角為π/2,在不同z軸挾角情況下且只有z方向質心加速度,角加速度向量α=0時N1 與AB方向挾緊位移的關係.......................................51
圖8    當x軸挾角為π/2,在不同z軸挾角情況下且只有z方向質心加速度,角加速度向量α=0時N1 與AB方向挾緊位移的關係.......................................52
圖9    至少所需夾緊量d與x y方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/2,且沒有z方向質心速度及角加速度向量α=0....................53
圖10  至少所需夾緊量d與此球體質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/2,且沒有z方向質心速度及角加速度向量α=0....................54
圖11  至少所需夾緊量d與y z方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/2,且沒有x方向質心速度及角加速度向量α=0...................55
圖12  至少所需夾緊量d與z x方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/2,且沒有y方向質心速度及角加速度向量α=0...................56
圖13  至少所需夾緊量d與z x方向角加速度的關係此時B點與x軸挾角及z軸挾角皆為π/2,且沒有y方向角速度及質心加速度向量a=0.........................57
圖14  至少所需夾緊量d與x y方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有z方向質心速度及此角加速度向量α=0................58
圖15  至少所需夾緊量d與y z方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有x方向質心速度及此角加速度向量α=0................59
圖16  至少所需夾緊量d與z x方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有y方向質心速度及此角加速度向量α=0................60
圖17  至少所需夾緊量d與x y方向角加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有z方向角速度及質心加速度向量a=0.........................61
圖18  至少所需夾緊量d與y z方向角加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有x方向角速度及質心加速度向量a=0.........................62
圖19  至少所需夾緊量d與z x方向角加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有y方向角速度及質心加速度向量a=0..........................63
圖20  至少所需夾緊量d與x y方向質心加速度的關係此時B點與x軸挾角為π/2、z軸挾角為π/4,且沒有z方向質心速度及此角加速度向量α=0.........64
圖21  至少所需夾緊量d與y z方向質心加速度的關係此時B點與x軸挾角為π/2、z軸挾角為π/4,且沒有x方向質心速度及此角加速度向量α=0.........65
圖22  至少所需夾緊量d與z x方向質心加速度的關係此時B點與x軸挾角為π/2、z軸挾角為π/4,且沒有y方向質心速度及此角加速度向量α=0.........66
圖23  至少所需夾緊量d與y z方向角加速度的關係此時B點與x軸挾角為π/2、z軸挾角為π/4,且沒有x方向角速度及質心加速度向量a=0...................67
圖24  至少所需夾緊量d與x y方向質心加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有z方向質心速度及此角加速度向量α=0..........68
圖25  至少所需夾緊量d與y z方向質心加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有x方向質心速度及此角加速度向量α=0..........69
圖26  至少所需夾緊量d與z x方向質心加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有y方向質心速度及此角加速度向量α=0..........70
圖27  至少所需夾緊量d與x y方向角加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有z方向角速度及質心加速度向量a=0....................71
圖28  至少所需夾緊量d與y z方向角加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有x方向角速度及質心加速度向量a=0....................72
圖29  至少所需夾緊量d與z x方向角加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有y方向角速度及質心加速度向量a=0....................73
參考文獻
[1]	Monkman, G.J., Hesse, S., Steinmann, R., and Schunk, H.,   
        Robot Grippers, Weinheim : Wiley-VCH, 2007.
[2]	Dunn, G. B. , Segen, J., Automatic Discovery of Robotic 
        Grasp Configurations, Proceedings - 1988 IEEE 
        International Conference on Robotics and Automation, 
        p 396-401, 1988.
[3]	Carloni, R. , Recatala, G., Melchiorri, C., Sanzt, P.J., and  
        Cervera, E., Homography-based Grasp Tracking for 
        Planar Objects, Proceedings - IEEE International 
       Conference on Robotics and Automation, v 2004, n 1, p   
       795-800, 2004.
[4]	Recatala, G., Sanz, P.J., Cervera, E., and Del Pobil, A.P.  
       Grasp-based Visual Servoing for Gripper-to-object 
       Positioning, 2004 IEEE/RSJ International Conference on 
       Intelligent Robots and Systems (IROS), v 1, p 118-123, 
      2004.
[5]	Khan, U., Nierobisch, T., and Hoffmann, F., Two-finger 
       Grasping for Vision Assisted Object Manipulation, 
       Lecture Notes in Control and Information Sciences, v 
       360, p 89-98, 2007.
[6]	Fearing, R.S., Simplified Grasping and Manipulation With
       Dextrous Robot Hands, Proceedings of the American 
       Control Conference, v 1, p 32-38, 1984.
[7]	Droessler, N.J., Hall, D.K., Tyler, M.E., and Ferrier, N.J., 
        Tongue-based Electrotactile Feedback to Perceive
       Objects Grasped by a Robotic Manipulator: Preliminary 
       Results, Annual Reports of the Research Reactor 
       Institute, Kyoto University, v 2, p 1404-1407, 2001.
[8]	Ohka, M., Takata, J., Kobayashi, H., Yussof, H., and 
       Mitsuya, Y., Object Handing With a Robotic Hand 
      Equipped With Optical Three-axis Tactile Sensors, 
      Proceedings of the 13th IASTED International 
     Conference on Robotics and Applications, RA 2007 and 
     Proceedings of the IASTED International Conference on 
     Telematics, p 304-309, 2007.
[9]	Annaswamy, A.M. and Seto, D., Manipulation of 
       Compliant Objects With Compliant Fingerpads in the 
       Presence of Nonlinear Dynamics, Proceedings of the
       30th Conference on Decision and Control, p 2124-2129, 
       1991.
[10] Pedreno-Molina, J.L., Guerrero-Gonzalez, A., and 
        Lopez-Coronado, J., Neural Controller for a Robotic 
       Hand With Artificial Tactile Skins in Grasping Tasks, 
       Proceedings of the IEEE International Conference on 
       Systems, Man and Cybernetics, v 1, p 161-165, 2000.
[11] Nguyen, P.T.A., Ozawa, R., and Arimoto, S., 
         Manipulation of a Circular Object by a Pair of Multi-
        DOF Robotic Fingers, IEEE International Conference on 
        Intelligent Robots and Systems, p 5669-5674, 2006.
[12] Shimada, A. Sonoda, K., and Satoh, Y., Sensor-less 
        Grasping Control on Two-fingered Robot Hands, 
        ICCAS-SICE 2009 - ICROS-SICE International Joint 
       Conference 2009, p 40-45, 2009.
[13] Soliman, A.M., Zaki, A.M., Mahgoub, O.A., and Ragai, 
         A.M., New Fuzzy Control- Based Grasping Algorithm 
         for a Novel Compliant Robot Gripper, Proceedings of 
         the IEEE International Conference on Industrial 
         Technology, 2009, Article number: 4939552, 2009.
[14] Sonoda, K.I., and Shimada, A., A Joint Angle Sensorless 
        Grasping Control on Two-fingered Robot Hands, 
        Proceedings of The 11th IEEE International Workshop 
        on Advanced Motion Control, p 774-779, 2010.
[15] Ottaviano, E., Toti, M., and Ceccarelli, M., Grasp Force 
        Control in Two-finger Grippers with Pneumatic 
         Actuation, Proceedings: IEEE International Conference 
        on Robotics and Automation, v 2, p 1976-1981, 2000.
[16] Faverjon, B., and Ponce, J., On Computing Two-finger 
         Force-closure Grasps of Curved 2D Objects, 
         Proceedings - IEEE International Conference on 
         Robotics and Automation, v 1, p 424-429, 1991.
[17] Chen, I-M., and Burdick, J.W., Finding Antipodal Point 
         Grasps on Irregularly Shaped Objects, IEEE Transactions 
         on Robotics and Automation, v 9, n 4, p 507-512, 
         1993.
[18] Nguyen, V., Constructing Force-Closure Grasps, 
         International Journal of Robotics Research, v 7, n 3, pp 
         3-16, 1988.
[19] Boivin, E., Sharf, I. and Doyon, M., Optimum Grasp of 
         Planar and Revolute Objects With Gripper Geometry 
         Constraints, Proceedings - IEEE International 
         Conference on Robotics and Automation, v 2004, n 1, p 
         326-332, 2004.
[20] Ozawa, R., Arimoto, S.; Nguyen, P.T.A.; Yoshida, M.; and 
         Bae, J.-H., Manipulation of a circular object in a 
         horizontal plane by two finger robots Proceedings - 
         2004 IEEE International Conference on Robotics and 
         Biomimetics, p 517-522, 2004.
[21] Adan, A., Vazquez, A.S., and Molina, F., 3D Grasping 
         Solutions Through MWS Models, Proceedings of 2005 
         International Conference on Advanced Robotics, v 
         2005, p 186-193, 2005.
[22] Christopoulos, V.N., and Schrater, P., Handling Shape
         and Contact Location Uncertainty in Grasping Two-
         dimensional Planar Objects, Proceedings of the IEEE 
         International Conference on Intelligent Robots and 
        Systems, p 1557-1563, 2007.
[23] Phoka, T., Vongmasa, P., Nilwatchararang, C., 
         Pipattanasomporn, P., and Sudsang, A., Planning 
         Optimal Independent Contact Regions for Two-
         Fingered Force-Closure Grasp of a Polygon, 
         Proceedings of the 2008 IEEE International Conference 
         on Robotics and Automation, pp. 1175-1180, 2008.
[24] Shapiro, A., Rimon, E., and Burdick, J.W., Passive Force 
         Closure and Its Computation in Compliant-rigid 
         Grasps, IEEE International Conference on Intelligent 
         Robots and Systems, v 3, p 1769-1775, 2001.
[25] Bouanane, K., and Fenton, R.G., Complete grasp 
         stability: the general case, Technical Paper - Society of 
         Manufacturing Engineers. MS, n MS94-192, p MS94-
         244-1-11, 1994.
[26] Shimojima, H., Yamamoto, K., and Kawakita, K., Study of 
        Grippers With Multiple Degrees of Mobility, JSME 
        International Journal, v 30, n 261, p 515-522, 1987.
[27] Kelley, R.B., Tsai, J., Bethel, J., and Peiffer, J., Gripper for 
         Truss Structure Assembly, Proceedings of SPIE - The 
         International Society for Optical Engineering, v 1387, p 
        38-46, 1991.
[28] Takaki, T., and Omata, T., Load-sensitive Continuously 
         Variable Transmission for Powerful and Inexpensive 
         Robot Hands, 2004 1st IEEE Technical Exhibition Based 
         Conference on Robotics and Automation, Proceedings, 
         TExCRA 2004, p 45-46, 2004.
[29] Lanni, C., and Ceccarelli, M., An Optimization Problem 
        Algorithm for Kinematic Design of Mechanisms for Two-
        finger Grippers, Open Mechanical Engineering Journal, v 
        3, p 49-62, 2009.
[30] Yussof, H.; Ohka, M., Takata, J., Yamano, M., and Nasu, 
         Y., Application of Contact-based Sensors for Self-
         localization and Object Recognition in Humanoid Robot 
         Navigation Tasks, Proceedings - 16th IEEE International 
         Workshop on Robot and Human Interactive 
         Communication, p 188-193, 2007.
[31] 陳偉恩,多指抓取之接觸力分析,淡江大學機械與機電工
         程學系碩士論文資格考試,2010。
[32] 成怡,機械手臂抓取接觸力分析,淡江大學機械與機電工
         程學系博士論文,2011。
[33] Walker, I. D., Freeman, R. A., and Marcus, S.I., Analysis of 
         motion and internal loading of objects grasped by 
         multiple cooperating manipulators, International 
         Journal of Robotics Research, v 10, n 4, p 396-409, 
        1991.
[34] Cheng, F-T., and Orin, D. E., Efficient Algorithm for 
         Optimal Force Distribution-The Compact-dual LP 
         Method, IEEE Transactions on Robotics and 
         Automation, v 6, n 2, p 178-187, 1990.
[35] Park, J, Determining Contact Force Distribution for 
         Enveloping Grasps: Subspace Structure and Dynamic 
         Balance, Proceedings of the 2002 IEEE International 
         Conference on Robotics and Automation, pp. 2912-
         2917, 2002.
[36] Yoshikawa, T., and Nagai, K., Manipulating and 
         Grasping Forces in Manipulation by Multifingered 
         Robot Hands, IEEE Transactions on Robotics and 
         Automation, v 7, n 1, p 67-77, 1991.
[37] Strang, G., Introduction to Linear Algebra, 3rd ed., 
        Wellesley-Cambridge Press, MA, 2003.
[38] Johnson, K., Contact Mechanics, Cambridge University 
        Press, 1985.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信