淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1008201110555100
中文論文名稱 機器人雙指抓取接觸分析
英文論文名稱 Contact force analysis on two-fingered robot grasping
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 陳俊儒
研究生英文姓名 Jiun-Ru Chen
學號 698370078
學位類別 碩士
語文別 中文
口試日期 2011-07-14
論文頁數 73頁
口試委員 指導教授-劉昭華
委員-陳正光
委員-王銀添
委員-劉昭華
中文關鍵字 二指抓取  接觸力分析  夾緊位移量 
英文關鍵字 Two-fingered grasping  Contact force analysis  tightening displacement 
學科別分類 學科別應用科學機械工程
中文摘要 本論文提出兩指抓取圓球之逆向動力學的力量分析程序,亦即在物體的線性加速度及角加速度皆已知的情況,求出手指的挾持力。由於剛體模型會造成不確定性,本研究建議加入彈性變形,利用赫式接觸之力與位移關係式、相容方程式、以及運動方程式合併解題。本文針對二指抓取彈性球體時的情況,從事以下兩種情況的逆向動力分析:第一,針對物體的線性加速度及角加速度為已知,且兩指間的相對位移向量亦為已知的情況,求得挾持力的數值解。由於運動方程式具一階不確定性,這表示可選取一個抓取力當作主要變數,而其他的抓取力都表示成這個力的函數,因此數值程序僅包含單一未知數,可快速求出接觸力。第二,針對特定的線性加速度及角加速度,若兩指間的夾緊方向亦為已知,本文可求出手指不會滑動所需的最低夾緊量、以及這時的接觸力,而且是以閉合解呈現。
英文摘要 In this thesis a procedure for inverse dynamics analysis of two-fingered grasping of a sphere is proposed. Contact forces may be found for given linear and angular accelerations of a spherical body. Elastic force-displacement relations predicted by Hertz contact theory are used to remove the indeterminancy produced by rigid body model. Two types of inverse dynamics analysis are performed for two-fingered grasping of a sphere. Firstly, as linear and angular accelerations, as well as the relative displacement vector of the finger tips, are given, grasping forces may be obtained by a numerical procedure. In this procedure one degree of indeterminancy produced by the equations of motion are utilized. Specifically, one particular contact force may be chosen as the principal unknown, and all other contact forces are expressed in terms of this force. The numerical procedure is hence very efficient since it contains only one principal unknown. Secondly, for given linear and angular accelerations, if the relative grasping direction of the two fingers is also known, then the closed form solution for the minimum tightening displacement for sliding not to occur can be obtained.
論文目次 目錄
中文摘要.............................................I
英文摘要............................................II
目錄....................................................III
圖目錄...............................................IV
第一章 緒論.......................................1
1.1 前言..............................................1
1.2 文獻回顧.....................................1
1.3 研究目的.....................................5
第二章 運動方程式..........................6
2.1 簡介..............................................6
2.2 運動方程式.................................7
第三章 研究方法 ............................11
3.1 研究方法....................................11
3.2 解題方法....................................14
第四章 結果與討論.........................17
第五章 結論及未來展望................21
參考文獻...........................................22
附錄...................................................26

圖目錄
圖1 半徑為r的球體,A點受力為N1,T1,T2,B點受力為N2,T3, T4...................................................................................................................................45
圖2 N1在x軸挾角及z軸挾角皆為π/2,只有z方向質心加速度且沒有此球體角加速度,y方向挾緊量為0.09mm時與x z方向挾緊位移的關係......46
圖3 當z軸挾角為π/2,在不同x軸挾角情況下且只有z方向質心加速度,角加速度向量α=0時N1 與y方向夾緊位移的關係.........................................47
圖4 當z軸挾角為π/2,在不同x軸挾角情況下且只有z方向質心加速度,角加速度向量α=0時N1 與AB方向挾緊位移的關係......................................48
圖5 當z軸挾角為π/2,在不同x軸挾角情況下且只有y方向質心加速度,角加速度向量α=0時N1 與AB方向挾緊位移的關係......................................49
圖6 當z軸挾角為π/2,在不同x軸挾角情況下且只有z方向質心加速度,質心加速度向量a=0時N1 與AB方向挾緊位移的關係...................................50
圖7 當x軸挾角為π/2,在不同z軸挾角情況下且只有z方向質心加速度,角加速度向量α=0時N1 與AB方向挾緊位移的關係.......................................51
圖8 當x軸挾角為π/2,在不同z軸挾角情況下且只有z方向質心加速度,角加速度向量α=0時N1 與AB方向挾緊位移的關係.......................................52
圖9 至少所需夾緊量d與x y方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/2,且沒有z方向質心速度及角加速度向量α=0....................53
圖10 至少所需夾緊量d與此球體質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/2,且沒有z方向質心速度及角加速度向量α=0....................54
圖11 至少所需夾緊量d與y z方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/2,且沒有x方向質心速度及角加速度向量α=0...................55
圖12 至少所需夾緊量d與z x方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/2,且沒有y方向質心速度及角加速度向量α=0...................56
圖13 至少所需夾緊量d與z x方向角加速度的關係此時B點與x軸挾角及z軸挾角皆為π/2,且沒有y方向角速度及質心加速度向量a=0.........................57
圖14 至少所需夾緊量d與x y方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有z方向質心速度及此角加速度向量α=0................58
圖15 至少所需夾緊量d與y z方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有x方向質心速度及此角加速度向量α=0................59
圖16 至少所需夾緊量d與z x方向質心加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有y方向質心速度及此角加速度向量α=0................60
圖17 至少所需夾緊量d與x y方向角加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有z方向角速度及質心加速度向量a=0.........................61
圖18 至少所需夾緊量d與y z方向角加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有x方向角速度及質心加速度向量a=0.........................62
圖19 至少所需夾緊量d與z x方向角加速度的關係此時B點與x軸挾角及z軸挾角皆為π/4,且沒有y方向角速度及質心加速度向量a=0..........................63
圖20 至少所需夾緊量d與x y方向質心加速度的關係此時B點與x軸挾角為π/2、z軸挾角為π/4,且沒有z方向質心速度及此角加速度向量α=0.........64
圖21 至少所需夾緊量d與y z方向質心加速度的關係此時B點與x軸挾角為π/2、z軸挾角為π/4,且沒有x方向質心速度及此角加速度向量α=0.........65
圖22 至少所需夾緊量d與z x方向質心加速度的關係此時B點與x軸挾角為π/2、z軸挾角為π/4,且沒有y方向質心速度及此角加速度向量α=0.........66
圖23 至少所需夾緊量d與y z方向角加速度的關係此時B點與x軸挾角為π/2、z軸挾角為π/4,且沒有x方向角速度及質心加速度向量a=0...................67
圖24 至少所需夾緊量d與x y方向質心加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有z方向質心速度及此角加速度向量α=0..........68
圖25 至少所需夾緊量d與y z方向質心加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有x方向質心速度及此角加速度向量α=0..........69
圖26 至少所需夾緊量d與z x方向質心加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有y方向質心速度及此角加速度向量α=0..........70
圖27 至少所需夾緊量d與x y方向角加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有z方向角速度及質心加速度向量a=0....................71
圖28 至少所需夾緊量d與y z方向角加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有x方向角速度及質心加速度向量a=0....................72
圖29 至少所需夾緊量d與z x方向角加速度的關係此時B點與x軸挾角為π/4、z軸挾角為π/2,且沒有y方向角速度及質心加速度向量a=0....................73
參考文獻 [1] Monkman, G.J., Hesse, S., Steinmann, R., and Schunk, H.,
Robot Grippers, Weinheim : Wiley-VCH, 2007.
[2] Dunn, G. B. , Segen, J., Automatic Discovery of Robotic
Grasp Configurations, Proceedings - 1988 IEEE
International Conference on Robotics and Automation,
p 396-401, 1988.
[3] Carloni, R. , Recatala, G., Melchiorri, C., Sanzt, P.J., and
Cervera, E., Homography-based Grasp Tracking for
Planar Objects, Proceedings - IEEE International
Conference on Robotics and Automation, v 2004, n 1, p
795-800, 2004.
[4] Recatala, G., Sanz, P.J., Cervera, E., and Del Pobil, A.P.
Grasp-based Visual Servoing for Gripper-to-object
Positioning, 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), v 1, p 118-123,
2004.
[5] Khan, U., Nierobisch, T., and Hoffmann, F., Two-finger
Grasping for Vision Assisted Object Manipulation,
Lecture Notes in Control and Information Sciences, v
360, p 89-98, 2007.
[6] Fearing, R.S., Simplified Grasping and Manipulation With
Dextrous Robot Hands, Proceedings of the American
Control Conference, v 1, p 32-38, 1984.
[7] Droessler, N.J., Hall, D.K., Tyler, M.E., and Ferrier, N.J.,
Tongue-based Electrotactile Feedback to Perceive
Objects Grasped by a Robotic Manipulator: Preliminary
Results, Annual Reports of the Research Reactor
Institute, Kyoto University, v 2, p 1404-1407, 2001.
[8] Ohka, M., Takata, J., Kobayashi, H., Yussof, H., and
Mitsuya, Y., Object Handing With a Robotic Hand
Equipped With Optical Three-axis Tactile Sensors,
Proceedings of the 13th IASTED International
Conference on Robotics and Applications, RA 2007 and
Proceedings of the IASTED International Conference on
Telematics, p 304-309, 2007.
[9] Annaswamy, A.M. and Seto, D., Manipulation of
Compliant Objects With Compliant Fingerpads in the
Presence of Nonlinear Dynamics, Proceedings of the
30th Conference on Decision and Control, p 2124-2129,
1991.
[10] Pedreno-Molina, J.L., Guerrero-Gonzalez, A., and
Lopez-Coronado, J., Neural Controller for a Robotic
Hand With Artificial Tactile Skins in Grasping Tasks,
Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, v 1, p 161-165, 2000.
[11] Nguyen, P.T.A., Ozawa, R., and Arimoto, S.,
Manipulation of a Circular Object by a Pair of Multi-
DOF Robotic Fingers, IEEE International Conference on
Intelligent Robots and Systems, p 5669-5674, 2006.
[12] Shimada, A. Sonoda, K., and Satoh, Y., Sensor-less
Grasping Control on Two-fingered Robot Hands,
ICCAS-SICE 2009 - ICROS-SICE International Joint
Conference 2009, p 40-45, 2009.
[13] Soliman, A.M., Zaki, A.M., Mahgoub, O.A., and Ragai,
A.M., New Fuzzy Control- Based Grasping Algorithm
for a Novel Compliant Robot Gripper, Proceedings of
the IEEE International Conference on Industrial
Technology, 2009, Article number: 4939552, 2009.
[14] Sonoda, K.I., and Shimada, A., A Joint Angle Sensorless
Grasping Control on Two-fingered Robot Hands,
Proceedings of The 11th IEEE International Workshop
on Advanced Motion Control, p 774-779, 2010.
[15] Ottaviano, E., Toti, M., and Ceccarelli, M., Grasp Force
Control in Two-finger Grippers with Pneumatic
Actuation, Proceedings: IEEE International Conference
on Robotics and Automation, v 2, p 1976-1981, 2000.
[16] Faverjon, B., and Ponce, J., On Computing Two-finger
Force-closure Grasps of Curved 2D Objects,
Proceedings - IEEE International Conference on
Robotics and Automation, v 1, p 424-429, 1991.
[17] Chen, I-M., and Burdick, J.W., Finding Antipodal Point
Grasps on Irregularly Shaped Objects, IEEE Transactions
on Robotics and Automation, v 9, n 4, p 507-512,
1993.
[18] Nguyen, V., Constructing Force-Closure Grasps,
International Journal of Robotics Research, v 7, n 3, pp
3-16, 1988.
[19] Boivin, E., Sharf, I. and Doyon, M., Optimum Grasp of
Planar and Revolute Objects With Gripper Geometry
Constraints, Proceedings - IEEE International
Conference on Robotics and Automation, v 2004, n 1, p
326-332, 2004.
[20] Ozawa, R., Arimoto, S.; Nguyen, P.T.A.; Yoshida, M.; and
Bae, J.-H., Manipulation of a circular object in a
horizontal plane by two finger robots Proceedings -
2004 IEEE International Conference on Robotics and
Biomimetics, p 517-522, 2004.
[21] Adan, A., Vazquez, A.S., and Molina, F., 3D Grasping
Solutions Through MWS Models, Proceedings of 2005
International Conference on Advanced Robotics, v
2005, p 186-193, 2005.
[22] Christopoulos, V.N., and Schrater, P., Handling Shape
and Contact Location Uncertainty in Grasping Two-
dimensional Planar Objects, Proceedings of the IEEE
International Conference on Intelligent Robots and
Systems, p 1557-1563, 2007.
[23] Phoka, T., Vongmasa, P., Nilwatchararang, C.,
Pipattanasomporn, P., and Sudsang, A., Planning
Optimal Independent Contact Regions for Two-
Fingered Force-Closure Grasp of a Polygon,
Proceedings of the 2008 IEEE International Conference
on Robotics and Automation, pp. 1175-1180, 2008.
[24] Shapiro, A., Rimon, E., and Burdick, J.W., Passive Force
Closure and Its Computation in Compliant-rigid
Grasps, IEEE International Conference on Intelligent
Robots and Systems, v 3, p 1769-1775, 2001.
[25] Bouanane, K., and Fenton, R.G., Complete grasp
stability: the general case, Technical Paper - Society of
Manufacturing Engineers. MS, n MS94-192, p MS94-
244-1-11, 1994.
[26] Shimojima, H., Yamamoto, K., and Kawakita, K., Study of
Grippers With Multiple Degrees of Mobility, JSME
International Journal, v 30, n 261, p 515-522, 1987.
[27] Kelley, R.B., Tsai, J., Bethel, J., and Peiffer, J., Gripper for
Truss Structure Assembly, Proceedings of SPIE - The
International Society for Optical Engineering, v 1387, p
38-46, 1991.
[28] Takaki, T., and Omata, T., Load-sensitive Continuously
Variable Transmission for Powerful and Inexpensive
Robot Hands, 2004 1st IEEE Technical Exhibition Based
Conference on Robotics and Automation, Proceedings,
TExCRA 2004, p 45-46, 2004.
[29] Lanni, C., and Ceccarelli, M., An Optimization Problem
Algorithm for Kinematic Design of Mechanisms for Two-
finger Grippers, Open Mechanical Engineering Journal, v
3, p 49-62, 2009.
[30] Yussof, H.; Ohka, M., Takata, J., Yamano, M., and Nasu,
Y., Application of Contact-based Sensors for Self-
localization and Object Recognition in Humanoid Robot
Navigation Tasks, Proceedings - 16th IEEE International
Workshop on Robot and Human Interactive
Communication, p 188-193, 2007.
[31] 陳偉恩,多指抓取之接觸力分析,淡江大學機械與機電工
程學系碩士論文資格考試,2010。
[32] 成怡,機械手臂抓取接觸力分析,淡江大學機械與機電工
程學系博士論文,2011。
[33] Walker, I. D., Freeman, R. A., and Marcus, S.I., Analysis of
motion and internal loading of objects grasped by
multiple cooperating manipulators, International
Journal of Robotics Research, v 10, n 4, p 396-409,
1991.
[34] Cheng, F-T., and Orin, D. E., Efficient Algorithm for
Optimal Force Distribution-The Compact-dual LP
Method, IEEE Transactions on Robotics and
Automation, v 6, n 2, p 178-187, 1990.
[35] Park, J, Determining Contact Force Distribution for
Enveloping Grasps: Subspace Structure and Dynamic
Balance, Proceedings of the 2002 IEEE International
Conference on Robotics and Automation, pp. 2912-
2917, 2002.
[36] Yoshikawa, T., and Nagai, K., Manipulating and
Grasping Forces in Manipulation by Multifingered
Robot Hands, IEEE Transactions on Robotics and
Automation, v 7, n 1, p 67-77, 1991.
[37] Strang, G., Introduction to Linear Algebra, 3rd ed.,
Wellesley-Cambridge Press, MA, 2003.
[38] Johnson, K., Contact Mechanics, Cambridge University
Press, 1985.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-08-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信