淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1008201108203500
中文論文名稱 板翅式微裝置之模擬分析與最佳化設計
英文論文名稱 Simulation analysis and optimal design of micro plate-fin devices
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 施偉晨
研究生英文姓名 Wei-Chen Shih
學號 698401188
學位類別 碩士
語文別 中文
口試日期 2011-07-22
論文頁數 142頁
口試委員 指導教授-張煖
委員-程學恆
委員-陳錫仁
中文關鍵字 微反應器  微熱交換器  微燃料處理系統  計算流體力學  多目標最佳化 
英文關鍵字 plate-fin  micro heat exchanger  microreactor  CFD  optimization  transfer coefficients 
學科別分類
中文摘要 藉由微加工技術,近年來使用各種微裝置之微化工程序技術已獲得快速的發展。微裝置因其微小尺寸,可提供許多優異熱質傳特性,但也因為許多尺度效性與裝置配置特性,無法使用傳統尺寸裝置之理論或關聯式描述其傳輸特性。針對廣為使用之板翅式微通道裝置,本論文利用實驗設計與計算流體力學模擬,完成了傳輸係數分析,並建立了摩擦因子、熱傳係數與質傳係數關聯式,且與文獻關聯式進行比較,結果顯示有相當程度之差異。本論文並進一步利用所建立之關聯式,使用基因演算法,針對單一相態之微熱交換器及甲醇微反應器完成了多目標最佳化分析。就單一相態微熱交換器,考量摩擦因子及熱傳係數之雙目標函數,就甲醇微反應器則另考量了質傳係數。最佳化分析結果提供了裝置參數之設計方向。
英文摘要 Due to its small dimensions, micro devices provide many excellent heat and mass transfer characteristics. On the other hand, due to many scaling effects and particular device configurations, conventional theoretical equations or correlations of transfer characteristics are not applicable to micro devices. In this study, for the widely employed plate-fin type micro devices in single-phase flow applications, the transfer coefficients are systematically studied by computational fluid dynamics simulation. Air and liquid water are adopted for the fluid flow and heat transfer analysis. The gaseous mixture of methanol and steam is used for mass transfer analysis. The flow is limited in laminar region. Correlations are obtained for friction factor, Nusselt number and Sherwood number in terms of fluid flow conditions, fluid properties and device parameters. With respect to transfer coefficients, the comparisons indicate that the major benefit of micro plate-fin devices is on the heat transfer. These correlations are useful to the analysis and design of plate-fin micro devices. In this study, using these correlations and applying the genetic algorithm, multiobjective optimization analysis are accomplished for heat exchanger and reactor applications. The multiple objective functions considered include the friction factor, Nusselt number and Sherwood number. The analysis provides multiple solutions with trade-off relations and reveals the optimal values of decision variables.
論文目次 中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機與方法 8
1.3 論文組織與架構 10
第二章 文獻回顧 11
2.1 微裝置之傳輸係數 11
2.2 微裝置之最佳化 15
第三章 計算流體力學模式之建立 20
3.1 系統配置與網格建立 20
3.2 理論模式 26
3.2.1 基本統制方程式 26
3.2.2 物理與輸送性質模式 28
3.3 數值方法 31
3.3.1 離散方法 31
3.3.2 速度-壓力耦合方法 32
3.3.3 收斂準則與疊代參數 32
第四章 板翅式微裝置之計算流體力學模擬 34
4.1 摩擦因子 34
4.1.1 實驗設計 35
4.1.2 基本個案特性分析 40
4.1.3 個案模擬結果 45
4.1.4 關聯式迴歸與比較 51
4.2 熱傳係數 57
4.2.1 實驗設計 58
4.2.2 基本個案特性分析 62
4.2.3 個案模擬結果 68
4.2.4 關聯式迴歸與比較 72
4.3 質傳係數 77
4.3.1 實驗設計 78
4.3.2 基本個案特性分析 81
4.3.3 個案模擬結果 85
4.3.4 關聯式迴歸與比較 88
第五章 板翅式微裝置最佳化 91
5.1 最佳化問題定義 91
5.2 基因演算法 93
5.3 微熱交換器最佳化結果 97
5.4 微反應器最佳化結果 123
第六章 結論 132
符號說明 134
參考文獻 138



圖目錄
圖1.1 整合式微反應/熱交換器(MRHE) 5
圖1.2 應用整合式微裝置之微燃料處理系統 5
圖1.3 板翅式微裝置 5
圖1.4 整合式最佳化系統 8
圖3.1 板翅型微裝置配置與頂底板 20
圖3.2 通道寬度方向之網格無關化分析結果 22
圖3.3 通道高度方向之網格無關化分析結果 22
圖3.4 通道長度方向之網格無關化分析結果 23
圖3.5 歧管區長度方向之網格無關化分析結果 23
圖3.6 通道區網格 25
圖3.7 歧管區網格 25
圖4.1 板翅式微裝置與規格參數 35
圖4.2 B1個案之壓力分佈(Pa) 43
圖4.3 B2個案之壓力分佈(Pa) 43
圖4.4 B1個案之速度分佈(m/s) 44
圖4.5 B2個案之速度分佈(m/s) 44
圖4.6 通道區摩擦因子與雷諾數關係 48
圖4.7 歧管區摩擦因子與雷諾數關係 48
圖4.8 通道區摩擦因子模擬值與迴歸值之比較 50
圖4.9 歧管區摩擦因子模擬值與迴歸值之比較 53
圖4.10 通道區Poiseuille數之模擬值與迴歸值比較 54
圖4.11 歧管區Poiseuille數之模擬值與迴歸值比較 55
圖4.12 摩擦因子迴歸式與文獻關聯式之比較 56
圖4.13 熱傳分析之裝置 57
圖4.14 CWT-BC流體溫度分佈(K) 65
圖4.15 CWHF-BC流體溫度分佈(K) 65
圖4.16 CWT-BC近流體接觸面金屬固體之溫度分佈(K) 66
圖4.17 CWHF-BC近流體接觸面固體之溫度分佈(K) 66
圖4.18 CWT-BC固體外壁熱通量分佈(W/m2) 67
圖4.19 CWHF-BC固體外壁熱通量分佈(W/m2) 67
圖4.20 固定壁溫之Nusselt數模擬值與迴歸值比較 73
圖4.21 固定熱通量之Nusselt數模擬值與迴歸值比較 74
圖4.22 熱傳係數分析迴歸式與文獻關聯式之比較 76
圖4.23 質傳分析之裝置示意圖 77
圖4.24 通道區流體中間層CH3OH質量分率分佈 84
圖4.25 流體界面觸媒層CH3OH質量分率圖 84
圖4.26 觸媒層外壁CH3OH質量分率 85
圖4.27 Sherwood數模擬值與迴歸值比較 89
圖4.28 質傳分析迴歸式與文獻關聯式之比較 90
圖 5.1 NSGA-II演算流程 95
圖5.2 MEX-CWT最佳化之基因演算法參數分析 97
圖5.3 MEX-CWHF最佳化之基因演算法參數分析 98
圖5.4 MEX-CWT最佳解分佈 101
圖5.5 MEX-CWHF最佳解分佈 102
圖5.6 MEX-CWT最佳化目標函數-變數分佈-H2O 115
圖5.7 MEX-CWT最佳化目標函數-變數分佈-Air 117
圖5.8 MEX-CWHF最佳化目標函數-變數分佈-H2O 119
圖5.9 MEX-CWHF最佳化目標函數-變數分佈-Air 121
圖5.10 微反應器最佳化之基因演算法參數分析 123
圖5.11微反應器最佳化最佳解分佈 125
圖5.12 微反應器最佳化之目標函數F1-變數分佈 129
圖5.13 微反應器最佳化之目標函數F2-變數分佈 130
圖5.14 微反應器最佳化之目標函數F3-變數分佈 131

表目錄
表2.1 傳輸係數關聯式 14
表2.2 板翅式微反應器最佳化之相關研究 17
表2.3 板翅式微反應器之最佳化設計 19
表3.1 網格無關化分析結果 24
表3.2網格無關化分析個案之網格繪製結果 24
表3.3 物理與輸送性質溫度函數係數 29
表3.4原子與官能基擴散體積增量 30
表3.5 離散方法設定 32
表3.6 鬆弛因子設定 32
表3.7 收斂準則 33
表4.1 流力分析各無因次變數之可變範圍 37
表4.2 流力與熱傳分析之實驗設計規劃結果 37
表4.3 流力與熱傳分析個案條件-無因次變數 38
表4.4 流力與熱傳分析個案條件-實際變數 39
表4.5 流力與熱傳分析個案之截面積與進口速度 40
表4.6 流力模擬邊界條件 41
表4.7 流力分析基本個案裝置與操作條件 42
表4.8 流力分析基本個案模擬之壓降結果 42
表4.9 通道區摩擦因子分析結果 46
表4.10 歧管區摩擦因子分析結果 47
表4.11 分佈均一性分析結果 50
表4.12 通道區摩擦因子迴歸結果 51
表4.13 歧管區摩擦因子迴歸結果 52
表4.14 通道區Poiseuill數與摩擦因子之模擬值與迴歸值的比較 54
表4.15 歧管區Poiseuill數與摩擦因子之模擬值與迴歸值的比較 55
表4.16 流力分析之文獻關聯式 56
表4.17 固定壁溫熱傳分析個案之進口速度與溫度設定 59
表4.18 固定壁熱通量熱傳分析個案之進口速度與熱通量設定 60
表4.19 固定壁溫熱傳分析邊界條件設定 62
表4.20 固定壁熱通量熱傳分析邊界條件 62
表4.21 熱傳分析基本個案之條件設定 63
表4.22 CWT熱傳係數分析結果 69
表4.23CWHF熱傳線數分析結果 70
表4.24 CWT熱傳分析迴歸結果 72
表4.25 CWHF熱傳分析回歸結果 74
表4.26 熱傳分析之文獻關聯式 75
表4.27 質傳分析各無因次變數之可變範圍 79
表4.28 質傳分析之實驗設計規劃結果 79
表4.29 質傳分析個案條件-無因次變數 80
表4.30 質傳分析個案條件-實際變數 80
表4.31 質傳分析之濃度、流速與流量設定 81
表4.32 質傳分析邊界條件 81
表4.33 質傳分析基本個案之條件設定 82
表4.34 質傳分析個案之質傳係數 86
表4.35質傳分析迴歸結果 88
表5.1 基因演算法參數分析個案 96
表5.4 MEX-CWT最佳解-H2O 103
表5.5 MEX-CWT最佳解-Air 106
表5.6 MEX-CWHF最佳解-H2O 109
表5.7 MEX-CWHF最佳解-Air 112
表5.8微反應器最佳化解 126
參考文獻 Anxionnaz, Z., Cabassud, M., Gourdon, C., Tochon, P., “Heat exchanger/reactors (HEX reactors): concepts, technologies: state-of-the-art,” Chemical Engineering and Processing, 2008, 47, 2029-2050.
Becht, S., Franke, R., Geiselmann, A., Hahn, H., “Micro process technology as a means of process intensification,” Chemical Engineering Technology, 2007, 30, 295-299.
Carpenter, W.C., “Effect of design selection on response surface performance,” NASA CR-4520, 1993.
Chang, H., Hou, W.-C., “Optimization of membrane gas separation systems using genetic algorithm,” Chemical Engineering Science, 2006, 61, 16, 5355-5368.
Cheng, S.-H., Chang, H. , Chen, Y.-H., Chen, H.-J., Chao, Y.-K., Liao, Y.-H., “Computational Fluid Dynamics-Based Multiobjective Optimization for Catalyst Design,” Industrial & Engineering Chemistry Research, 2010, 49, 10153-11120.
Cheng, S.-H., Chen, H.-J., Chang, H., Chang, C.-K., Chen, Y.-M., “Multi-objective optimization for two catalytic membrane reactors - methanol synthesis and hydrogen production,” Chemical Engineering Science, 2008, 63, 6, 1428-1437.
Choi, S.B., Barron, R.F., Warrington, R.O., “Fluid flow and heat transfer in microtubes,” Micromechanical Sensors, Actuators and Systems, ASME DSC 32, Atlanta, GA, 1991, 123–134.
Commenge, J.M., Falk, L., Corriou, J.P., Matlosz, M., “Optimal design for flow uniformity in microchannel reactors,” AIChE Journal, 2002, 48(2), 345-358.
Copiello, D., Fabbri, G., “Multi-objective genetic optimization of the heat transfer from longitudinal wavy fins,” International Journal of Heat and Mass Transfer, 2009, 52, 1167-1176.
Deb, K., Patap, A., Agarwal, S., Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ,” IEEE Transactions on Evolutionary Computation, 6, 182-197, 2002.
Delsman, E.R., De Croon, M.H.J.M., Pierik, A., Kramer, G.J., Cobden, P.D., Hofmann, C., Cominosc, V., Schouten, J.C., “Design and operation of a preferential oxidation microdevice for a portable fuel processor,” Chemical Engineering Science, 2004, 59, 4795-4802.
Delsman, E.R., Laarhoven, J.P.F., De Croon, M.H.J.M., Kramer, G.J., Schouten, J.C., “Comparison between conventional fixed-bed and microreactor technology for a portable hydrogen production case,” Chemical Engineering Research and Design, 2005, 83, 1063-1075.
Delsman, E.R., Pierik, A., De Croon, M.H.J.M., Kramer, G.J., Schouten, J.C., “Microchannel plate geometry optimization for even flow distribute at high flow rates,” Chemical Engineering Research and Design, 2004, 82(A2), 267-273.
Delsman, E.R., Pietik, A., De Croon, M.H.J.M., Kramer, G.J., Schouten, J.C., “Optimization of heat transfer characteristics, flow distribution, and reaction processing for a microstructured reactor/heat-exchanger for optimal performance in platinum catalyzed ammonia oxidation,” Chemical Engineering Journal, 2003, 93, 201-216.
Ehrfeld, W., Hessel, V., Lowe, H., Microreactors: New Technology for Modern Chemistry, Wiley-VCH, Weinheim, 2000.
Ergu, O.B., Sara, O.N., Yapıcı, S., Arzutug, M.E., “Pressure drop and point mass transfer in a rectangular microchannel,” International Communications in Heat and Mass Transfer, 2009, 36, 618–623.
Fabbri, G., “Heat transfer optimization in corrugated wall channels,” International Journal of Heat and Mass Transfer, 2000, 43, 4299-4310.
Fink, H., Hampe, M.J., “Designing and constructing microplants,” in: Proceedings of the Third International Conference on Microreaction Technology (IMRET 3), Springer-Verlag, Berlin, Germany, 2000, 664-673.
Fluent, Inc., Fluent UDF Manual version 6.3, Lebanon, NH, 2006.
Fluent, Inc., Fluent User's Guide version 6.3, Lebanon, NH, 2006.
Gariilidis, A., Angeli, P., Cao, E., Yeong, K.K., Wan, Y.S.S., “Technology and applications of microengineered reactors,” Trans. IChemE, 2002, 80, A, 3-30.
Gokhale, S.V., Tayal, R.K., Jayaraman, V.K., Kulkarni, B.D., “Microchannel reactors: applications and use in process development,” International Journal of Chemical Reactor Engineering, 2005, 3, Review R2.
Hardt, S., “Microreactors – Modeling and Simulation,” in: Ullmann’s Encyclopedia of Industrial Chemistry,” Wiley, 2006.
Harley, J.C., Huang, Y., Bau, H.H., Zemel, J.N., “Gas flow in micro-channels,” Journal of Fluid Mechanics, 1995, 284, 257-274.
Hausen, H., “Darstellung des Warmeuberganges in Rohren durch verallgemeinerte Potenzbeziehungen,” VDZI, 1973, 4, 91-102.
Hessel, V., Lowe, H., “Microchemical engineering: components, plant concepts user acceptance: Part I,” Chemical Engineering and Technology, 2003a, 26, 1, 13-24.
Hessel, V., Lowe, H., “Microchemical engineering: components, plant concepts user acceptance: Part II,” Chemical Engineering and Technology, 2003b, 26, 4, 391-408.
Hessel, V., Lowe, H., “Microchemical engineering: components, plant concepts user acceptance: Part III,” Chemical Engineering and Technology, 2003c, 26, 5, 531-544.
Hessel, V., Lowe, H., Muller, A., Kolb, G., Chemical Micro Process Engineering, Wiley-VCH, Weinheim, 2005.
Hessel, V., Renken, A., Schouten, J.C., Yoshida, J., Micro Process Engineering: A Comprehensive Handbook, Vol. 1-3, Wiley-VCH, Weinheim, 2009.
Holladay, J.D., Jones, E.O., Dagle, R.A., Xia, G.G., Cao, C., Wang, Y., “High efficiency and low carbon monoxide micro-scale methanol processors,” Journal of Power Sources, 2004, 131, 69-72.
Holladay, J.D., Wang, Y., Jones, E., “Review of developments in portable hydrogen production using microreactor technology,” Chemical Reviews, 2004, 104, 4767-4790.
Jensen, K.F., “Microreaction engineering—is small better?” Chemical Engineering Science, 2001, 56, 293-303.
Kashid, M.N., Kiwi-Minsker, L., “Microstructured reactors for multiphase reactions: state of the art,” Industrial and Engineering Chemistry Research, 2009, 48, 6465-6485.
Kiwi-Minsker, L., Renken, A., “Microstructured reactors for catalytic reactions,” Catalysis Today, 2005, 110, 2-14.
Klemm, E., Doring, H., Geisselmann, A., Schirrmeister, S., “Microstructured Reactors in Heterogeneous Catalysis,” Chemical Engineering Technology, 2007, 30, 1615-1621.
Kockmann, N., Brand, O., Fedder, G.K., Hierold, C., Korvink, J.G., Tabata, O., Micro Process Engineering: Fundamentals, Devices, Fabrication and Applications, Wiley-VCH, 2006.
Kolb, G., Hessel, V., “Micro-structured reactors for gas phase reactions,” Chemical Engineering Journal, 2004, 98, 1-38.
Kumar, V., Paraschivoiu, M., Nigam, K.D.P., “Single-phase fluid flow and mixing in microchannels,” Chemical Engineering Science, 2011, 66, 1329-1373.
Leveque, A., “Les lois de la transmission de chaleur par convection,” Ann. Mines, 1928, 13, 201-299.
Li, P., Kim, K., “Multiobjective optimization of staggered elliptical pin-fin arrays,” Numerical Heat Transfer, Part A: Applications, 2008, 53, 418-431.
Lian, Y., Liou, M.-S., “Multiobjective optimization using coupled response surface model and evolutionary algorithm,” AIAA Journal, 2005, 43, 6, 1316-1325.
Mason, B.P., Price, K. E., Steinbacher, J.L., Bogdan, A.R., McQuade, D.T., “Greener approaches to organic synthesis using microreactor technology,” Chemical Reviews, 2007, 107, 2300-2318.
McCuen, P.A., Kays, W.M., Reynolds, W.C., “Heat transfer with laminar and turbulent flow between parallel planes with constant and variable wall temperature and heat flux,” Report No. AHT-3, Department of Mechanical Engineering, Stanford University, Stanford, California, 1962.
Mills, P.L., Quiram, D.J., Ryley, J.F., “Microreactor technology and process miniaturization for catalytic reactions - A perspective on recent developments and emerging technologies,” Chemical Engineering Science, 2007, 62, 6992-7010.
Montgomery, D.C., Design and Analysis of Experiments, John Wiley & Sons, 2005.
Morini, G.L., “Single-phase convective heat transfer in microchannels: a review of experimental results,” International Journal of Thermal Sciences, 2004, 43, 631-651.
Pan, M., Zeng, D., Tang, Y., Chen, D., “CFD-based study of velocity distribution among multiple parallel microchannels,” Journal of Computers, 2009, 4, 1133-1138.
Peng, H., Ling, X., “Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms,” Applied Thermal Engineering, 2008, 28, 642-650.
Peng, X.F., Peterson, G.P., “Convective heat transfer and flow friction for water flow in microchannel structures,” International Journal of Heat and Mass Transfer, 1996, 39, 2599-2608.
Peng, X.F., Peterson, G.P., Wang, B.X., “Frictional flow characteristics of water flowing through rectangular microchannels,” Journal of Experimental Heat Transfer, 1995, 7, 249-264.
Pepply, B.A., Amphlett, J.C., Kearns, L.M., Mann, R.F., “Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts Part 2. A comprehensive kinetic model,” Applied Catalysis A:General, 1999, 179, 31-49.
Piekos, E.S., Breuer, K.S., “Numerical modeling of micromechanical devices using the direct simulation Monte Carlo method,” Journal of Fluids Engineering, 1996, 118, 464-468.
Qi, A., Peppley,B. , Karan,K. ,“Integrated fuel processors for fuel cell application: A review,” Fuel Processing Technology, 2007, 88, 3-22.
Rebrov, E.V., De Croon, M.H.J.M., Schouten, J.C., “Design of a microstructured reactor with integrated heat-exchanger for optimum performance of a highly exothermic reaction,” Catalysis Today, 2001, 69, 183-192.
Rosa, P., Karayiannis, T.G., Collins, M.W., “Single-phase heat transfer in microchannels: The importance of scaling effects,” Applied Thermal Engineering 2009, 29, 3447–3468.
Shah, K., Besser, R.S., “Key issues in the microchemical systems-based methanol fuel processor: energy density, thermal integration, and heat loss mechanisms, “Journal of Power Sources, 2007, 166, 177-193.
Shah, R.K., London, A.L., Advances in Heat Transfer. Supplement 1: Laminar Forced Convection in Ducts, Academic Press, New York, 1978.
Steinke, M.E., Kandlikar, S.G., “Single-phase liquid friction factors in microchannels,” International Journal of Thermal Sciences, 2006, 45, 1073–1083.
Tonomura, O., Kano, M., Hasebe, S., “Systematic design of plate-fin microreactors for highly exothermic reactions,” Fifth International Symposium on Microchemistry and Microsystems (ISMM2005), 2005, Dec.1-2, Kyoto, Japan.
Tonomura, O., Tanaka, S., Noda, M., Kano, M., Hasebe, S., Hashimoto, I., “CFD-based optimal design of manifold in plate-fin microdevices,” Chemical Engineering Journal, 2004, 101, 397-402.
Turner, S.E., Sun, H., Faghri, M., Gregory, O.J., “Compressible gas flow through smooth and rough microchannels,” in: Proceedings of IMECE, 2001, New York, USA, 2001, HTD-24145.
Unal, R., Lepsch, R.A., McMillin, M. L., “Response surface model building and multidisciplinary optimization using D-Optimal design,” AIAA Paper, 1998, 98-4759.
Wei, X., Joshi, Y., “Optimization study of stacked micro-channel heat sinks for micro-electronic cooling,” IEEE Transactions on Components and Packaging Technologies, 2003, 26, 55-61.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-17公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-17起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信