淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1007202014281400
中文論文名稱 台灣大型會計師事務所應用創新科技之個案研究
英文論文名稱 The Application of Innovative Technologies in Taiwan's Large Accounting Firm: A Case Study
校院名稱 淡江大學
系所名稱(中) 會計學系碩士班
系所名稱(英) Department of Accounting
學年度 108
學期 2
出版年 109
研究生中文姓名 許瓅安
研究生英文姓名 Li-An Hsu
電子信箱 lianlian10300@gmail.com
學號 607600599
學位類別 碩士
語文別 中文
口試日期 2020-06-22
論文頁數 48頁
口試委員 指導教授-陳叡智
指導教授-孔繁華
委員-林芳綺
委員-張瑀珊
委員-孔繁華
中文關鍵字 創新科技  大數據  人工智慧  審計  會計師事務所 
英文關鍵字 Innovative Technology  Big Data  Artificial Intelligence  Audit  Accounting Firm 
學科別分類
中文摘要 科技來自於人性,智慧科技須為人所用才得以完美。全球產業不斷進化且汰弱留強,創新科技因此孕育而生。近年來爆發許多企業詐欺事件,發展新型態的服務並朝向數位化轉型成為會計師事務所的新挑戰。本研究使用技術、組織、環境框架,探討創新科技在大型會計師事務所之發展、運用及面臨之挑戰。本研究屬於探索性個案研究法,對國內之大型會計師事務所做實地訪談。本研究顯示;(1) 創新科技在大型事務所正蓬勃發展,機器人流程自動化已穩定且廣泛使用;軟體系統大多由會計師事務所國外總部開發,再導入國內事務所做推廣和使用;大數據審計平台以視覺化分析優化與客戶間的互動;區塊鏈目前運用在銀行函證;人工智慧之導入尚未廣泛運用且仍處實驗階段。大型事務所導入創新技術之內外部風險,皆須所高度重視。(2) 資訊及審計專業之跨領域人才為大型事務所目前之所需。(3) 現行法令的規範及指引尚屬初步發展。本研究結論:技術方面:數位轉型和強化分析功能,提升會計師事務所服務品質。會計師事務所需注意資訊安全及個人隱私之風險。組織方面: 會計師事務所急切需要跨領域人才,且持續提供有關創新科技之在職訓練。環境方面:主管機關若能積極支持與推動,將是極為重要。本研究建議在科技浪潮下,如何在創新、隱私與風險間取得平衡,將是未來會計師事務所努力之目標。科技進步的同時必然蘊釀著破壞與重塑,而更多溝通、學習與保持開放的心,也是實現審計智慧化的必經之路。
英文摘要 Technology comes from human nature, and smart technology must be used by people to be perfect. The global industry is constantly evolving, eliminating the weak and retaining the strong, and then innovative technology is born. In recent years, many corporate fraud incidents have erupted, and the development of new-type services and digital transformation has become a new challenge for accounting firms. This study explores the development, application, and challenges of innovative technology in Taiwan's large accounting firms based on technology, organization, and environmental framework. This research is an exploratory case study method, which conducts field interviews with large accounting firms.The survery showed (1) Innovative technologies are booming in large accounting firms, and robotic process automation has been stable and widely used; Most of the software systems were developed by the overseas headquarters of the accounting firm, and then imported into domestic firms for promotion and utilization; The audit platform was established, which optimizes interaction with customers through visual analysis; Blockchain was currently used in external confirmations; artificial intelligence has not been widely used and is still in the experimental stage, Innovative technologies were introduced into large accounting firms, and their internal and external risks must be highly regarded, and (2) Cross-disciplinary talents in information technology and auditing professions were needed by large accounting firms,and(3) The current law on innovative technologies is a preliminary development.the survey concluded : technical aspects:digital transformation and strengthening of analytical functions to improve the quality of accounting firms. Accounting firms should pay attention to the risks of information security and personal privacy. Organizational aspects: Accounting firms need cross-disciplinary talents eagerly and continue to provide on-the-job training on innovative technologies. Environmental aspects: If the competent authorities can actively support and promote, it will be extremely important. This research suggests that under the wave of technology, how to strike the best balance between innovation, privacy and risk, it will be the future goal of accounting firms. This study suggests that under the wave of technology, how to strike a best balance between innovation, privacy and risk will be the future goal of accounting firms. Innovative and technology inevitably contains destruction and remodeling, so more communication, learning, and maintaining an open heart are the only way to achieve audit intelligence.
論文目次 表目錄 VI
圖目錄 VII
第壹章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 3
第貳章 文獻探討 4
第一節 創新科技 4
第二節 技術、組織和環境框架 11
第參章 研究方法 15
第一節 研究對象 15
第二節 個案研究法 16
第三節 個案及受訪者基本資料 17
第四節 個案資料蒐集流程 19
第肆章 個案分析 21
第一節 個案分析架構 21
第二節 技術背景對導入創新科技的影響 22
第三節 組織背景對導入創新科技的影響 30
第四節 環境背景對導入創新科技的影響 33
第伍章 研究結果與建議 35
第一節 個案結論 35
第二節 研究限制及建議 40
參考文獻 42 
表目錄
表3- 1 受訪者基本資料 17
表3- 2 訪談大綱及議題 19
表4- 1 自動化審計流程和傳統審計流程 22
表5- 1 創新科技 36
圖目錄
圖4- 1個案分析架構 21



參考文獻 中文文獻
MBA智庫百科(2013)。科技創新。取自https://wiki.mbalib.com/zh-tw/%E7%A7%91%E6%8A%80%E5%88%9B%E6%96%B0。
朱大奇、史慧(2006)。人工神經網絡原理及應用。北京科學出版社。
朱漢崙(2019)。財金搭區塊鏈平台拚多元應用。工商時報。取自https://ctee.com.tw/news/finance/141167.html。
李道亮(2012)。物聯網與智慧農業,農業工程,1(3),3。
林金定、嚴嘉楓、陳美花(2005)。質性研究方法:訪談模式與實施步驟分析。身心障礙研究季刊,3(2),122-136。
林嬋娟、廖珮真、盧信銘(2019)。審計部 107-109 年度擁抱數位化風險與機會:運用資料探勘開創審計價值與影響。26-29。
金融監督管理委員會(2018)。金融科技發展與創新實驗條例。取自 https://law.moj.gov.tw/LawClass/LawAll.aspxpcode=G0380254。
金融監督管理委員會(2019)。107會計師事務所服務業調查報告 。取自https://www.fsc.gov.tw/ch/home.jsp?id=136&parentpath=0,4。
金融監督管理委員會(2019)。會計師事務所服務業調查報告。取自 https://www.fsc.gov.tw/ch/home.jspid=136&parentpath=0,4。
孫彬訓、朱漢崙(2020)。區塊鏈函證票券業也入列。工商時報。取自https://www.chinatimes.com/newspapers/20200330000236-260202?chdtv。
財金資訊股份有限公司。金融區塊鏈函證服務。取自https://www.fisc.com.tw/tc/business/Detail.aspx?caid=7c31a87d-2b5f-42bf-aafd-3c2405f64e8b。
財金資訊股份有限公司。財金簡介。取https://www.fisc.com.tw/tc/profile/Detail.aspx?pkey=56d5d557-18a8-4af1-9f2d-1eca9627169f。
高翊瑋、侯藹玲、葉玲瓏、姜葉飛(2016)。醫療大數據概述。Journal of Data Analysis,11(5),1-11。
區耀軍(2016)。大數據環境對審計人員的新挑戰-以KPMG臺灣所為案例。臺灣大學臺大_復旦EMBA境外專班學位論文。1-89。
張智瑋(2019)。運用漣波凍結訓練於深度神經網路之掌靜脈辨識系統.。中興大學電機工程學系所學位論文。1-133。
陳育暄(2019)。智慧醫療趨勢下電子聽診器產品商業模式之研究。政治大學,政治大學經營管理碩士學程。1-93。
陳雅文(1995)。個案研究法。圖書館學與資訊科學大辭典。取自:http://terms.naer.edu.tw/detail/1681584/。
勞動部(2018)。受僱員工每人每月平均工時。取自https://www.mol.gov.tw/statistics/2452/2457/。
勞動部(2019)。工資、工時。取自https://www.mol.gov.tw/topic/3067/。
黃彥文、陳護木(2018)。企業層級區塊鏈應用即服務 InterCity加密貨幣交易平台.電工通訊季刊,52-62。
黃瀚萱、陳信希(2016)。醫療大數據及其應用。台灣醫學,20(6),589-594。
資誠(2017)。《資誠2017全球金融科技調查報告》:全球逾八成金融業憂營收流失與FinTech公司合夥成趨勢。取自https://www.pwc.tw/zh/news/press-release/press-20170411.html。
審計年報 (2018)。民國 107 年政府審計年報 (2018)。取自:https://www.audit.gov.tw/p/405-1000-5458,c105.php?Lang=zh-tw。
鄭婷嫻(2019)。區塊鏈技術應用於我國公司治理法制之研究。東吳法律學報,30(3),1-43。
賴文智、王文君(2019)。不失控的世界從歐盟 AI 立法的準備談起。會計研究月刊。398,78-83。
錢學森、於景元、戴汝為(1990)。一個科學新領域:開放複雜巨系統及其方法論。自然雜誌,13(1),3-10。
藍立晴 (2019年 11月 01日)。2020 年十大顛覆性科技Gartner 預測:邊緣運算將主導幾乎所有產業和應用。科技橘報。取自https://buzzorange.com/techorange/2019/11/01/gartner-2020/。

英文文獻
Amini, M., & Bakri, A. (2015). Cloud Computing Adoption by SMEs in the Malaysia: A Multi-Perspective Framework based on DOI Theory and TOE Framework. Journal of Information Technology & Information Systems Research (JITISR), 9(2), 121-135.
Baker, J. (2012). The technology–organization–environment framework. In Information systems theory, 231-245.
Baker, J. (2012). The technology–organization–environment framework.In Information systems theory ,Springer, New York, NY, vol(no), 231-245.
Beck, J., Stern, M., & Haugsjaa, E. (1996). Applications of AI in Education. XRDS: Crossroads, The ACM Magazine for Students, 3(1), 11-15.
Blackwell, L. (2018). Audit and AI: Can Artificial Intelligence Restore Public Trust?, Senior Honors Theses. 902, vol(no), 17-27.
Bradford, M., Earp, J. B., & Grabski, S. (2014). Centralized end-to-end identity and access management and ERP systems: A multi-case analysis using the Technology Organization Environment framework. International Journal of Accounting Information Systems, 15(2), 149-165.
Chau, P.Y.K. & Tam, K.Y. (1997) Factors affecting the adoption of open systems: An exploratory study, "MIS Quarterly", 21(1), 1-24.
Chu, P. J., Yang, W. C., & Wu, C. T. (2019). Future Development of Big Data in Medical Imaging. Show Chwan Medical Journal, 18(1), 77-82.
Damanpour, F. (1991). Organizational innovation: A meta-analysis of effects of determinants and moderators. Academy of Management Journal, 34(3), 555-590.
Deloitte. Robotic Process Automation. Retrieved from https://www2.deloitte.com/uk/en/pages/innovation/solutions/robotic-process-aut omation.html.
Depietro, R., Wiarda, E., & Fleischer, M. (1990). The context for change: Organization, technology and environment. The processes of technological innovation, 199(0), 151-175.
Faggella, D. (2019). AI in the Accounting Big Four-Comparing Deloitte PwC KPMG and EY. Emerj.7-9.
Farhoomand, A.F., Tuunainen, V. K., & L.W. Yee.( 2000). Barriers to global electronic commerce: a cross-country study of Hong Kong and Finland. Journal of Organizational Computing and Electronic Commerce, 10(1), 23-48.
Firican, G. (2017). The 10 Vs of Big Data. Retrieved online from https://upside.tdwi.org/articles/2017/02/08/10-vs-of-big-data.aspx.
Hijazi, S. (2017). Big Data and Knowledge Management: A Possible Course to Combine Them Together. Association Supporting Computer Users in Education.51-57.
Huang, S. M., Hung, Y. C., & Yen, D. C.(2005) .A study on decision factors in adopting an online stock trading system by brokers in Taiwan, Decision Support Systems, 40(5), 315-328.
Issa, H., Sun, T., & Vasarhelyi, M. A. (2016). Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting, 13(2), 1-20.
Kokina, J., & Davenport, T. H. (2017). The emergence of artificial intelligence: How automation is changing auditing. Journal of Emerging Technologies in Accounting, 14(1), 115-122.
Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V., & Fotiadis, D. I. (2015). Machine learning applications in cancer prognosis and prediction. Computational and structural biotechnology journal, 13, 8-17.
MacFarlan, F. W., & macKenney, J. (1983). Corporate Information Systems Management. Homewood, Illinois: Richard D. Irwin Inc.
Manaris, B. (1998). Natural language processing: A human-computer interaction perspective. In Advances in Computers. 47, 1-66.
Marshall, T. E., & Lambert, S. L. (2018). Cloud-based intelligent accounting applications: accounting task automation using IBM watson cognitive computing. Journal of emerging technologies in accounting, 15(1), 199-215.
McCarthy, J., Minsky, M. L., & Rochester, N. (1956). The Dartmouth summer research project on artificial intelligence. Artificial Intelligence: Past, Present, and Future, 27(4), 12-14.
Mitchell, T. M. (1997). Machine Learning. Mcgraw-Hill Press International Editions, 97-98.
Morton, J., & Johnson, M. H. (1991). Conspec and Conlearn:: a two-process theory of infant face recognition. Psychological review, 98(2), 164-181.
Nakamoto, S. (2019). Bitcoin: A peer-to-peer Electronic Cash System.
Oliveira,T., & Martins, M. F. (2011). Literature review of information technology adoption models at firm level. Electronic Journal of Information Systems Evaluation, 14(1), 110.
Orlikowski, W.J., & Iacono, C.S. (2001). Research commentary: Desperately seeking the “IT” in IT research—a call to theorizing the IT artifact. Information Systems Research, 12(2), 121–134.
Premkumar, G., & Roberts, M. (1999). Adoption of new information technologies in rural small businesses. Omega, 27(4), 467-484.
Premkumar, G., and Nilakanta, S. (1994). Implementation of Electronic Data Interchange: An Innovation Diffusion Perspective, Journal of Management Information Systems, 11(2), 157-186.
PwC. DeNovo. Retrieved from https://www.pwc.com/sg/en/financial-services/assets/fintech/denovo.pdf 。
Ramamurthy, K. R., Sen, A., & Sinha, A. P. (2008). An empirical investigation of the key determinants of data warehouse adoption. Decision support systems, 44(4), 817-841.
Rosli, K., Yeow, P. H., & Siew, E. G. (2012). Factors influencing audit technology acceptance by audit firms: A new I-TOE adoption framework. Journal of Accounting and Auditing, vol(no), 1-9.
Rosli, K., Yeow, P., & Eu-Gene, S. (2013). Adoption of audit technology in audit firms. In 24th Australasian Conference on Information Systems (ACIS), 1-12.
Schumpeter, J.A. (1934). The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle; Transaction Publishers: Piscataway, NJ, USA, 1, 244.
Shurina, M. (2019). Preparing the Future Accounting Professional For a Rapidly Changing World. East Carolina University. 7-8.
Sun, T. (2019). Applying deep learning to audit procedures: An illustrative framework. Accounting Horizons, 33(3), 89-109
Sun, T., & Vasarhelyi, M. A. (2018). Embracing textual data analytics in auditing with deep learning. The International Journal of Digital Accounting Research, 18(24), 49-67.
Swanson, R. A., & Torraco, R. J. (1994). Technical training’s challenges and goals. Technical & Skills Training, 5(7), 18-22.
Teo, T.S.H., Ranganathan, C., Dhaliwal, J. (2006), “Key dimensions of inhibitors for the deployment of web-based business-to-business electronic commerce”, IEEE Transactions on Engineering Management, 53(3), 395-411.
Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). Processes of technological innovation. Lexington books.
Vasarhelyi, M. A., Kogan, A., & Tuttle, B. M. (2015). Big Data in accounting: An overview. Accounting Horizons, 29(2), 381-396.
Warren Jr, J. D., Moffitt, K. C., & Byrnes, P. (2015). How Big Data will change accounting. Accounting Horizons, 29(2), 397-407.
Zemankova, A. (2019). Artificial Intelligence in Audit and Accounting: Development, Current Trends, Opportunities and Threats-Literature Review. In 2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization,148-154.
Zhu, K., Kraemer, K., & Xu, S. (2003). Electronic business adoption by European firms: a cross-country assessment of the facilitators and inhibitors. European journal of information systems, 12(4), 251-268.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-07-14公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-07-14起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信