§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1007201917490900
DOI 10.6846/TKU.2019.00231
論文名稱(中文) Klotho在斑馬魚內對運動神經發育的影響
論文名稱(英文) Effects of Klotho on motor nerve development in zebrafish
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 賴泓甫
研究生(英文) Hung-Fu Lai
學號 606180023
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2019-06-27
論文頁數 46頁
口試委員 指導教授 - 陳曜鴻(yauhung@mail.tku.edu.tw)
委員 - 陳銘凱(mkchern@mail.tku.edu.tw)
委員 - 蔡振寧(jeningts@csmu.edu.tw)
關鍵字(中) 斑馬魚
klotho
細胞遷移
神經發育
關鍵字(英) zebrafish
klotho
cell migration
nerve development
第三語言關鍵字
學科別分類
中文摘要
Klotho是一個由990個胺基酸組成的第一型穿膜蛋白 (Type-I membrane protein) 在人類基因組的編碼為KL,Klotho基因會轉譯出一種單通道的穿膜蛋白,此種蛋白會與許多 Fibroblast growth factor 結合並作為其co-receptor 輔助與其相應之受體結合,Klotho與衰老(aging)也有相當程度的關聯性,Klotho 突變的小鼠相較於野生型小鼠壽命是相對較短的,大約只有野生型小鼠壽命的5% 左右,並且有提早出現類似人類衰老相似的徵狀或疾病,例如貧血 (anemia)、動脈硬化 (arteriosclerosis)、骨質酥鬆 (osteoporosis)、皮膚老化……等等,但是目前在各個物種上針對Klotho 在早期發育的方面研究資訊並不充足,目前僅能得知Klotho 缺陷的老鼠在早期未發現任何phenotypes,不過我們推測也許是因為小鼠為哺乳類動物,胚胎早期發育在子宮內不易觀察、亦或是帶嚴重缺陷的無法發育而直接成死胎流產。因此可藉助斑馬魚早期胚胎易於觀察之特性,來觀察Klotho對於早期胚胎發育的影響。
  在先前文獻中Klotho在早期胚胎發育時期的表現位置,可以看到在yolk syncytial layer有訊號表現 (Lin CH, 2017),另外在神經管的位置亦有Klotho的訊號表現 (Steve M, 2012)。故猜測klotho會影響胚胎早期cell migration以及神經發育。根據實驗結果,利用幾個針對早期胚胎cell migration的marker來做ISH,可以觀差到在knockdown klotho後,胚胎cell migration會有異常。再來透過anti-acetylated tubulin抗染的結果可以看到斑馬魚胚胎的背部neural crest cell及神經突觸有明顯的減少。
英文摘要
Klotho is type-I membrane protein which has 990 amino acids. Klotho protein will binds to many fibroblast growth factor and acts as its co-receptor to bind its corresponding receptor. Klotho is also an aging-related protein, but little is known about the mechanisms by which Klotho controls early embryonic development.
  According to previous study, we can see that Klotho express at yolk syncytial layer (Lin CH, 2017), and the neural tube (Steve M, 2012). So we hypothesize that klotho will effect embryo cell migration and neurodevelopment. In this study, we use morpholino to knockdown Klotho. In our data, whole mount in situ hybridization showed that the expressions of bmp4, gsc, flh and eve1 genes were affected. And the anti-acetylated tubulin antibody IHC showed that dorsal neural crest cell and nerve has significant reduction.
第三語言摘要
論文目次
序論---------------------------------------------------01
Klotho 介紹--------------------------------------------01
Klotho 的生理功能---------------------------------------02
Klotho 的動物實驗---------------------------------------04
Klotho 在斑馬魚上的研究---------------------------------06
斑馬魚的 klotho基因表現位置----------------------------07
斑馬魚的神經發育 ---------------------------------------07
斑馬魚的胚胎發育優勢 -----------------------------------08
材料與方法----------------------------------------------11
斑馬魚-------------------------------------------------11
顯微注射-----------------------------------------------12
轉型作用-----------------------------------------------12
大腸桿菌培養-------------------------------------------13
質體抽取-----------------------------------------------13
聚合酶連鎖反應-----------------------------------------14
DNA純化-----------------------------------------------15
合成RNA探針-------------------------------------------16
原位雜交法---------------------------------------------17
RNA萃取-----------------------------------------------19
反轉錄聚合酶連鎖反應-----------------------------------20
即時聚合酶連鎖反應-------------------------------------20
抗體染色----------------------------------------------21
結果---------------------------------------------------24
顯微注射Klotho Morpholino對胚胎造成的影響---------------24
注射不同濃度之Klotho MO後的存活率 ----------------------25
以原位雜交法觀察klotho被抑制後對胚胎發育的影響------------27
注射klotho MO後對於神經發育基因表現量的影響--------------32
注射klotho MO後對神經生長的影響-------------------------34
斑馬魚胚胎各時期神經發育與marker時間比對-----------------36
討論--------------------------------------------------37
Knockdown klotho後造成胚胎發育畸形---------------------37
以原位雜交法觀察注射klotho MO對於胚胎發育的影響 --------37
假設 knockdown klotho會造成胚胎神經發育的異常----------38
以Q-PCR比較Knockdown klotho神經發育相關基因的表現量----38
以Anti-aat免疫螢光染色觀察Knockdown klotho後對於神經發育的影響---------------------------------------------39
參考資料---------------------------------------------40
附錄-------------------------------------------------45

圖表目錄
Fig. 1	Klotho morpholino 與 Klotho 序列比對	P.12
Fig .2	胚胎注射完 klotho MO 後的 phenotypes	P.24
Fig .3	注射各劑量 MO之存活率	P.25
Fig. 4	bmp4在9 hpf時的表現位置	P.29
Fig. 5	eve1在9 hpf時的表現位置	P.29
Fig. 6	gsc在9 hpf時的表現位置	P.30
Fig. 7	flh在9 hpf時的表現位置	P.31
Table. 1	Q-PCR 所使用基因之生理功能	P.32
Fig. 8	Q-PCR 基因表現量之比較	P.33
Fig .9	配胎注射 klotho MO後背部神經元減少	P.34
Fig. 10	神經元數量統計	P.34
Fig. 11	胚胎注射 klotho MO後神經生長較少且較短	P.35
Fig. 12	神經數量統計	P.35
Fig. 13	胚胎各stage 之神經發育	P.36
Fig. 14	實驗中所使用之marker所表現之時間	P.36
Table. 2	Q-PCR 之 primer序列	P.45
Table. 3	注射 klotho MO後的存活率統計	P.45
Table. 4	神經元及神經生長畸形率	P.46
Table. 5	Plasmid 清單	P.46
參考文獻
Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. (2007)
Insulin stimulates the cleavage and release of the extracellular domain ofKlotho by ADAM10 and ADAM17. 
Proceedings of the National Academy of Sciences of the United States of America 104:19796–19801.

Wang Y, Sun Z. (2009) Klotho gene delivery prevents the progression of spontaneous hypertension and renal damage.
Hypertension 54:810–817.

Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H,
Kuro-o M, Karlan B, Kaufman B, Koeffler HP et al. (2008) Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer.
Oncogene 27:7094–7105

Chang Q, Hoefs S, Van Der Kemp AW, et al. (2005) The1 beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel.
Science 310:490-493

Xiao NM, Zhang YM, Zheng Q, Gu J. (2004) Klotho is a serum factor related to human aging.
Chinese Medical Journal 5:742-747

Martin H. de Borst,Marc G. Vervloet,Piet M. ter Wee, Gerjan Navis
(2011) Cross Talk Between the Renin-Angiotensin-Aldosterone System and Vitamin D-FGF-23-klotho in Chronic Kidney Disease
Journal of the American Society of Nephrology 9:1603–1609

Torres PU, Prié D, Beck L, De Brauwere D, Leroy C, Friedlander G.
(2009) Klotho gene, phosphocalcic metabolism, and survival in dialysis.
Journal of Renal Nutrition 1:50-56


Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, et al. (2005) Suppression of aging in mice by the hormone Klotho.
Science 309:1829–1833.

Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner
H, Monsalve M. (2015) Redox regulation of FoxO transcription factors. 
Redox Biology 6:51–72

Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, et al. (2005) Suppression of aging in mice by the hormone Klotho.
Science 309:1829–1833.

H. Liu, M.M. Fergusson, R.M. Castilho, J. Liu, L. Cao, J. Chen, D.
Malide, I.I. Rovira, D. Schimel, C.J. Kuo, et al. (2007) Augmented Wnt signaling in a mammalian model of accelerated aging.
Science 317:803-806

Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W,
Tenen DG, Leutz A (2006) Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation.
Nature Immunology 7:1037-1047

Kuro-o M (2009) Klotho and aging
Biochimica et Biophysica Acta 10:1049-1058

Mangos S., Amaral A.P., Faul C., Jüppner H., Reiser J., Wolf M. (2012) Expression of fgf23 and αklotho in developing embryonic tissues and adult kidney of the zebrafish, Danio rerio.
Nephrology Dialysis Transplantation 27: 4314–4322

Aimin Liu, Lee A. Niswander (2005) Bone morphogenetic protein signalling and vertebrate nervous system development
Nature Reviews Neuroscience 6: 945–954 

De Marco P, Merello E, Mascelli S, Capra V. (2006) Current perspectives on the genetic causes of neural tube defects. 
Neurogenetics 7(4):201-21.

Kim, Seok-Hyung, Sepich, Diane, Solnica-Krezel, Lilianna (2006) Cyclooxygenase-1-derived PGE2 promotes cell motility via the       G-protein-coupled EP4 receptor during vertebrate gastrulation
Genes and Development 1:77-86

Summerton J. (2006) Morpholino antisense oligomers: the case for an RNase H-independent structural type.
Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1489(1): 141–158.

Lin CH, Hu HJ, Hwang PP (2017) Molecular Physiology of the Hypocalcemic Action of Fibroblast Growth Factor 23 in Zebrafish (Danio rerio).
Endocrinology 158(5): 1347–1358

Muto A, Ikeda S, Lopez-Burks ME, Kikuchi Y, Calof AL, Lander AD, Schilling TF. (2014) Nipbl and mediator cooperatively regulate gene expression to control limb development.
PLOS Genetics 10(9): e1004671

BinnurEroglu, Jin-Na Min, Yan Zhang, Edyta Szurek, Demetrius Moskophidis, Ali Eroglu, Nahid F.Mivechi (2014) An essential role for heat shock transcription factor binding protein 1 (HSBP1) during early embryonic development
Developmental Biology 386(2): 448–460.

Eric Van Otterloo, Wei Li, Aaron Garnett, Maria Cattell, Daniel Meulemans Medeiros, Robert A. Cornell (2012) Novel Tfap2-mediated control of soxE expression facilitated the evolutionary emergence of the neural crest
Development 139(4): 720–730.

Roberto VP, Gavaia P, Nunes MJ, Rodrigues E, Cancela ML, Tiago DM. (2018) Evidences for a New Role of miR-214 in Chondrogenesis
Scientific Reports 8(1):3704.



Annika D. Wylie, Jo-Ann G.W. Fleming, Amy E. Whitener, Arne C. Lekven (2014) Post-transcriptional regulation of wnt8a is essential to zebrafish axis development
Developmental Biology 386(1):53-63.

Rajesh Ramachandran, Xiao-Feng Zhao, and Daniel Goldman (2011) Ascl1a/Dkk/β-catenin signaling pathway is necessary and glycogen synthase kinase-3β inhibition is sufficient for zebrafish retina regeneration
Proceedings of the National Academy of Sciences of the United States of America 108(38):15858-63

Mai Abdel Mouti, Christopher Dee, Sarah E. Coupland, Adam F.L. Hurlstone (2016) Minimal contribution of ERK1/2-MAPK signalling towards the maintenance of oncogenic GNAQQ209P-driven uveal melanomas in zebrafish
Oncotarget 7(26):39654-39670

Hammerschmidt, M., Pelegri, F., Mullins, M.C., Kane, D.A., Brand, M.,
van Eeden, F.J., Furutani-Seiki, M., Granato, M., Haffter, P., Heisenberg,
C.P., Jiang, Y.J., Kelsh, R.N., Odenthal, J., Warga, R.M., and Nüsslein-Volhard, C. (1996) Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio
Development 123:143-151

Melby AE, Warga RM, Kimmel CB (1996) Specification of cell fates at
the dorsal margin of the zebrafish gastrula.
Development 7 :2225-2237

Melby AE, Kimelman, D., and Kimmel, CB (1997) Spatial regulation of
floating head expression in the developing notochord
Developmental dynamics 2:156-165

Pascale Gaudet  Michael S. Livstone  Suzanna E. Lewis  Paul D. Thomas (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium
Brief Bioinform 12(5):449-62

Dutton KA, Pauliny A, Lopes SS, Elworthy S, Carney TJ, Rauch J, Geisler R, Haffter P, Kelsh RN. (2001) Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates.
Development 128(21):4113-25.

Elworthy S, Pinto JP, Pettifer A, Cancela ML, Kelsh RN. (2005) Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent.
Mechanisms of Development 122(5):659-69

Kelsh RN, Eisen JS. (2000) The zebrafish colourless gene regulates development of non-ectomesenchymal neural crest derivatives.
Development. 2000 Feb;127(3):515-25.

Ramel MC, Buckles GR, Baker KD, Lekven AC. (2005) WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation.
Developmental Biology 287(2):237-48

Ma Y, Liu X, Liu Z, Wei S, Shang H, Xue Y, Cao Y, Meng A, Wang Q. (2015) The Chromatin Remodeling Protein Bptf Promotes Posterior Neuroectodermal Fate by Enhancing Smad2-Activated wnt8a Expression.
Journal of Neuroscience 35(22):8493-506

Jia S, Wu D, Xing C, Meng A. (2009) Smad2/3 activities are required for induction and patterning of the neuroectoderm in zebrafish.
Developmental Biology 333(2):273-84

Kurosu H, & Kuro-o M (2009). The Klotho gene family as a regulator of endocrine fibroblast growth factors. Molecular and Cellular Endocrinology 299(1): 72–78.

Olauson H, Lindberg K, Amin R, Sato T, Jia T, Goetz R, Mohammadi M, Andersson G, Lanske B, Larsson TE (2013) Parathyroid-Specific Deletion of Klotho Unravels a Novel Calcineurin-Dependent FGF23 Signaling Pathway That Regulates PTH Secretion. 
PLoS Genetics 9(12): e1003975

Miyake A, Chitose T, Kamei E, Murakami, A, Nakayama, Y, Konishi, M,  Itoh, N (2014). Fgf16 Is Required for Specification of GABAergic Neurons and Oligodendrocytes in the Zebrafish Forebrain. 
PLoS ONE 9(10): e110836.

Yamauchi, H, Goto, M., Katayama, M., Miyake, A., Itoh, N. (2011). Fgf20b is required for the ectomesenchymal fate establishment of cranial neural crest cells in zebrafish.
Biochemical and Biophysical Research Communications 409(4): 705–710.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信