淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1007201213271000
中文論文名稱 紊流邊界層特性之數值模擬
英文論文名稱 Numerical Simulation of wind loads on Atmospheric Boundary Layer
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 饒育昇
研究生英文姓名 Yu-Sheng Jao
學號 698380093
學位類別 碩士
語文別 中文
口試日期 2012-06-22
論文頁數 80頁
口試委員 指導教授-鄭啟明
委員-蕭葆羲
委員-張正興
中文關鍵字 數值模擬  LES  AR時間序列  大氣邊界層 
英文關鍵字 Numerical simulation  LES  boundary layer  Autoregressive 
學科別分類 學科別應用科學土木工程及建築
中文摘要 隨著科技發展、醫學進步,人口逐漸現象,但在有限的土地上求生活空間,所以建築
物有向上發展的趨勢,加上政府近年來推動都市更新的計畫,都市中存在著越來越多的高
層建築。
因此我們若要探討紊流邊界層流場上的特性,勢必要進行風洞實驗的模擬。如果要進
行一個真實地形的邊界層模擬,在製作該地形的縮尺模型上需要耗費大量的人力與時間。
本研究希望能藉由計算流體力學(CFD)模擬出紊流邊界層特性。
本研究主要是使用大渦模擬法(LES)去模擬風場中的大氣邊界層,對紊流邊界層的模擬
結果會與風洞實驗室的實驗結果對照;探討方向部分為。
首先,第一部份在模擬大氣邊界層風速剖面的風場,在本研究入流口給予淡江大學風
洞實驗室邊界層數據,即給予平均風速(mean velocity)、紊流能量(turb_kinetic_e)、
紊流消散率(turb_dissipati),並將這些數據輸入Fluent 進行模擬大氣邊界層的紊流特
性,此方法為Fluent 內置頻譜生成法。
第二部份同樣的在本研究入流口給予淡江大學風洞實驗室邊界層數據,利用AR 時間序
列模擬出不同高度的風速歷時,再使用User Define Functions (UDF)輸入模擬出大氣邊
界層的紊流特性,此方法為AR 時間序列模擬頻譜合成法。
兩種方法在分析模擬上都在地面給予表面剪應力當作在風洞實驗室在地面的粗糙元
素,在距離上游入流32D 的位置會是我們放置建築物的位置,而模擬出來的風場能吻合實
驗室的紊流邊界層特性。
英文摘要 This study is the characteristics of the turbulent boundary layer flow field were
simulated by large-eddy simulation method. The simulation results of atmospheric
turbulent boundary where compare with those of wind-tunnel test.There are second parts
would be study.
First, a velocity profiles in the simulated atmospheric boundary layer
wind field in the inflow port of this study give Tamkang University wind
tunnel boundary layer data, giving the average wind speed (mean Velocity)
turbulence energy (turb_kinetic_e,), the turbulent dissipation rate
(turb_dissipati), and data input Fluent to simulate the atmospheric boundary
layer turbulence characteristics. This method for the synthesis Fluent
internal spectrum.
Second,a part of the inflow port of this study give the same Tamkang
University wind tunnel boundary layer data, the use of AR time series to
simulate the different heights of wind speed lasted, and then use the User
Define Functions (UDF) input to simulate the atmospheric boundary layer
tangledThe flow characteristics of this spectrum synthesis method for AR time
series simulation.
Two methods in the analysis of simulation are given in the ground surface
shear stress as in the rough elements of the wind tunnel laboratory on the
ground. We assume place the location of the buildings at a distance upstream
inflow 32D,simulation of wind field can effectively consistent with
laboratory turbulent boundary layer characteristics
論文目次 目錄
目錄 ............................................................................................................. I
表目錄 ....................................................................................................... III
圖目錄 ...................................................................................................... IV
第1章 緒論............................................................................................... 1
1-1 前言 ............................................................................................. 1
1-2 研究動機 ..................................................................................... 1
1-3 研究方法 ..................................................................................... 2
第2章 文獻回顧 ...................................................................................... 4
2-1 背景說明 ..................................................................................... 4
2-2 相關研究 ..................................................................................... 4
第3章 基礎理論 ...................................................................................... 7
3-1 流體特性概述 ............................................................................. 7
3-2 大氣邊界層流場特性概述 ......................................................... 7
3-2-1 帄均風速剖面 .................................................................. 8
3-2-2 紊流強度 ........................................................................ 10
3-2-3 紊流長度尺度 ................................................................ 11
3-2-4 紊流頻譜 ........................................................................ 13
3-3 空間相關函數 ........................................................................... 14
3-4 陣風因子(gust factor) ............................................................... 16
第4章 計算流體力學軟體介紹與時間序列之模擬 ............................ 18
4-1 計算流體力學 ........................................................................... 18
4-1-1 計算流體力學的工作步驟 ............................................ 18
4-1-2 網格繪製 ........................................................................ 19
4-2 應用軟體介紹 ........................................................................... 20
4-2-1 數值方法 ........................................................................ 21
4-2-2 紊流模式 ........................................................................ 24
4-2-4 邊界條件設定 ................................................................ 31
4-2-5 Wall Function .................................................................. 32
4-3 時間序列模擬 ........................................................................... 36
4-3-1 自迴歸模式(AR) ........................................................... 37
4-3-2 自迴歸近似法(AR Approximation) .............................. 39
4-3-3 AR求取之流程 .............................................................. 43
目錄
II
第5章 問題描述及計算過程 ................................................................ 47
5-1 數值模擬步驟說明 ................................................................... 47
5-2 數值模擬紊流邊界層分析 ....................................................... 48
5-2-1 Fluent 軟體內置合成方法模擬大氣邊界層 ................ 48
5-2-3 AR 時間序列合成法模擬大氣邊界層 ......................... 51
第6章 分析結果與討論 ........................................................................ 54
6-1 Fluent 軟體內置合成方法模擬大氣邊界層 ............................ 54
6-1-1 結果分析 ........................................................................ 54
6-1-2 小結 ................................................................................ 67
6-2 AR 時間序列合成法模擬大氣邊界層 ..................................... 68
6-2-1 結果分析 ........................................................................ 68
第7章 結論與建議 ................................................................................ 75
7-1 結論 ........................................................................................... 75
7-2 建議 ........................................................................................... 77
參考文獻 ................................................................................................... 78
表目錄
表3-1 指數律參數建議值 ........................................................................ 9
表3-2 對數律參數建議值 ...................................................................... 10
表3-3 常用β值與z0的關係 ................................................................ 11
表5-1 model-1壁面shear stress數值 .................................................... 51
表5-2 model-2壁面shear stress數值 .................................................... 51
圖目錄
圖1-1 整體流程圖 .................................................................................... 3
圖3-1m隨Zo遞增之關係圖 ................................................................. 13
圖4- 1 Fluent提供各種網格元素 ........................................................... 20
圖4-2Fluent對接近壁面的處理 ............................................................. 33
圖4-3 自迴歸(AR)模式分析流程 .......................................................... 42
圖4-4 AR模式模擬頻譜Su11(n)與目標頻譜比較 ............................... 45
圖4-5 AR模式模擬頻譜Su22(n)與目標頻譜比較 ............................... 46
圖4-6 AR模式模擬頻譜Su33(n)與目標頻譜比較 ............................... 46
圖4-7 AR模式模擬頻譜Su31(n)與目標頻譜比較 ............................... 46
圖5-1 數值模擬大氣邊界層分析之計算域大小 .................................. 49
圖5-2 model-1模擬大氣邊界層之網格圖示(XZ向)............................ 49
圖5-3 model-2模擬大氣邊界層之網格圖示(XZ向)............................ 49
圖5-4 模擬大氣邊界層之邊界條件設定圖示 ...................................... 50
圖5-6模擬大氣邊界層之網格圖示(XZ向) .......................................... 52
圖5-7模擬大氣邊界層之網格圖示(YZ向) .......................................... 52
圖6-1計算域取值位置示意圖 ............................................................... 58
圖6-2風速剖面(model-1 case1) ............................................................. 59
圖目錄
V
圖6-3紊流強度(model-1 case1) ............................................................. 59
圖6-4風速剖面(model-1 case2) ............................................................. 59
圖6-5紊流強度(model-1 case2) ............................................................. 59
圖6-6風速剖面(model-2 case1) ............................................................. 60
圖6-7紊流強度(model-2 case1) ............................................................. 60
圖6-8風速剖面(model-2 case2) ............................................................. 60
圖6-9紊流強度(model-2 case2) ............................................................. 60
圖6-10風速剖面(model-2 case3) ........................................................... 61
圖6-11紊流強度(model-2 case3) ........................................................... 61
圖6-12風速剖面(model-2 case4) ........................................................... 61
圖6-13紊流強度(model-2 case4) ........................................................... 61
圖6-14風速剖面(model-2 case5) ........................................................... 62
圖6-15紊流強度(model-2 case5) ........................................................... 62
圖6-16風速剖面(model-2 case6) ........................................................... 62
圖6-17紊流強度(model-2 case6) ........................................................... 62
圖6-18風速剖面(model-2 case7) ........................................................... 63
圖6-19紊流強度(model-2 case7) ........................................................... 63
圖6-20風速剖面(model-2 case8) ........................................................... 63
圖6-21紊流強度(model-2 case8) ........................................................... 63
圖6-22風速頻譜(model-2 case1 Z=0.3) ................................................ 64
圖6-23風速頻譜(model-2 case5 Z=0.3) ................................................ 64
圖6-24風速頻譜(model-2 case8 Z=0.3) ................................................ 65
圖6-25風速頻譜(model-2 case8,Z=0.3) ................................................ 65
圖6-26風速頻譜(model-2 case8,Z=0.3) ................................................ 65
圖6-27風速頻譜(model-2 case8,Z=0.3) ................................................ 66
圖6-28風速頻譜(model-2 case8,Z=0.3) ................................................ 66
圖6-29風速頻譜(model-2 case8,Z=0.3) ................................................ 66
圖6-30風速頻譜(model-2 case8,Z=0.3) ................................................ 66
圖6-31風速剖面(AR-model) ................................................................. 70
圖6-32紊流強度(AR-model) ................................................................. 70
圖6-33風速頻譜(AR-model,Z=0.00096) ............................................... 70
圖6-34風速頻譜(AR-model,Z=0.03279) ............................................... 70
圖6-35風速頻譜(AR-model,Z=0.08159) ............................................... 71
圖6-36風速頻譜(AR-model,Z=0.17607) ............................................... 71
圖6-37風速頻譜(AR-model,Z=0.27836) ............................................... 71
圖6-38風速頻譜(AR-fluent,Z=0.00096) ............................................... 72
圖6-39風速頻譜(AR-fluent,Z=0.03279) ............................................... 72
圖6-40風速頻譜(AR-fluent,Z=0.08159) ............................................... 72
圖目錄
VII
圖6-41風速頻譜(AR-fluent,Z=0.17607) ............................................... 72
圖6-42風速頻譜(AR-fluent,Z=0.27836) ............................................... 72
圖6-43風速頻譜(AR-fluent,x=0d,Z=0.3) .............................................. 73
圖6-44風速頻譜(AR-fluent,x=16d,Z=0.3) ............................................ 73
圖6-45風速頻譜(AR-fluent,x=24d,Z=0.3) ............................................ 73
圖6-46風速頻譜(AR-fluent,x=32d,Z=0.3) ............................................ 73
圖6-47風速頻譜(AR-fluent,x=48d,Z=0.3) ............................................ 73
圖6-48交頻譜(AR-fluent,z=0.27836,z=0.17607) .................................. 74
圖6-49交頻譜(AR-fluent,z=0.27836,z=0.08159) .................................. 74
圖6-50交頻譜(AR-fluent,z=0.27836,z=0.03279) .................................. 74
圖6-51交頻譜(AR-fluent,z=0.27836z=0.00096) ................................... 74
參考文獻 Yi Yang a, MingGu ,, SuqinChen , XinyangJin , (2009) “New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering” Journal of Wind Engineering and Industrial Aerodynamics, pp. 88–95
[2]. Richards, P.J., Quinn, A.D., “A 6m cube in an atmosphere boundary layer flow, part 2. Computational solutions.” Wind and Structures 5, pp. 177–192.
[3]. Salim .M. Salim, and S.C. Cheah , (2009) “Wall y+ Strategy for Dealing with Wall-bounded Turbulent Flows” Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II IMECS 2009, March 18 - 20, Hong Kong
[4]. K. Nozawa, T. Tamura, (2002) Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer J. Wind Eng. Ind. Aerodyn. ,pp. 1151–1162
[5]. S.H. Huang , Q.S.Li , J.R.Wu , (2010) A general inflow turbulence generator for large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics
[6]. Thomas S. Lund and Xiaohua Wu and Kyle D ,(1998) Squires Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations. Journal of Computational Physics 140, pp233–258.
[7]. Davenport, A.G., (1956), “The Relationship of Wind Structure to Wind Loading”, Proc, Symp. on Wind Effects on Buildings and Structures, Vol. 1, National Physical Laboratory, Teddington, U.K. Her Majesty’s Stationary Office, London, pp.53-102
[8]. Fluent 6.1 User Guide, http://www.fluent.com (2004)
參考文獻
79
[9]. Emil Simiu, Rebort H. Scanlan, (1986), “Wind Effects on Structures” 2nd edit., John Wiley & Sons
[10]. Davenport, A.G., (1961), “The Spectrum of Horizontal Gustiness Near the Ground in High Winds”, J. Royal Meteorol. Soc., 87, pp.194-211
[11]. Davenport, A.G., (1956), “The Relationship of Wind Structure to Wind Loading”, Proc, Symp. on Wind Effects on Buildings and Structures, Vol. 1, National Physical Laboratory, Teddington, U.K. Her Majesty’s Stationary Office, London, pp.53-102
[12]. Emil Simiu, Rebort H. Scanlan, (1986), “Wind Effects on Structures” 2nd edit., John Wiley & Sons
[13]. Davenport, A.G., (1961), “The Spectrum of Horizontal Gustiness Near the Ground in High Winds”, J. Royal Meteorol. Soc., 87, pp.194-211
[14]. Kawai, H., (1998), “Effect of corner modifications on aeroelastic instabilities of tall buildings”, J. of Wind Eng. & Ind. Aero., Vol. 74-76, pp.719-729.
[15]. Patankar, S. V. , (1980) “Numerical Heat Transfer and Fiuid Flow”, Hemisphere Publish Co.
[16]. Chu, C.R. and Soong, C. K , (1997) “Numerical Simulation of wind-induced entrainment in a stably stratified water basin”, J. of Hydraulic Research, Vol.35 No.1
[17]. Smagorinsky, J. (1963), General Circulation Experiments with the Primitive Equations , Month Weather Review , Vol.93, No.99, pp.99-164.
[18]. B. E. Launder and D. B., (1972). Spalding. Lectures in Mathematical Models of Turbulence. Academic Press, London, England.
[19]. D.M. Hargreaves, N.G. Wright, (2009) On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer. Building and Environment 44 pp.621–632
參考文獻
80
[20]. William, W. and Wei, S., (1990) “Time Series Analysis Univariate and Multivariate Methods, “ pp. 1-64, pp.332-381.
[21]. Spanos, P. D. and Mignolet, M. P., (1986) “Z-Transform Modeling of P-M Wave Spectrum,”J. of Engineering Mechanics, Vol.112,No.8, pp745-759.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-07-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-07-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信