§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1007200817225900
DOI 10.6846/TKU.2008.00225
論文名稱(中文) 通入氣泡對掃流微過濾中粒子附著與過濾通量之影響
論文名稱(英文) Effects of air-sparging on particle deposition and filtration flux in cross-flow microfiltration
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 吳効峰
研究生(英文) Shiau-Feng Wu
學號 695400175
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2008-06-26
論文頁數 108頁
口試委員 指導教授 - 黃國楨
委員 - 李篤中
委員 - 莊清榮
委員 - 童國倫
委員 - 吳容銘
關鍵字(中) 掃流微過濾
通氣
多相流
粒徑分佈
關鍵字(英) Cross-flow microfiltration
air-sparging
multiple phase flow
wide size distribution range
第三語言關鍵字
學科別分類
中文摘要
本研究在掃流微過濾中通入氣體,並改變液體速度、氣體流量以及過濾壓差,討論這些操作條件對過濾通量、粒子附著機率、濾餅性質以及濾面上剪切力的影響。實驗中以平均孔徑為0.1 μm的醋酸纖維膜過濾具粒徑分佈的聚甲基丙烯酸甲酯。隨著氣體流量的提昇會出現不同流態,在氣泡流動的範圍下,作用於膜面上的剪切力能有效抑制濾餅生成,並且可以提高濾速,但隨著流態由氣泡流動轉變為團狀流動,剪切力迅速增加的結果,會造成粒徑5 μm以上的粒子之附著大幅減少,在小粒子填補空隙後導致孔隙度下降,與流體對濾餅壓縮的雙重作用下,使過濾比阻出現明顯的增加,濾速反而比未通氣的數值低。配合力分析的結果可以發現,氣體對粒子造成的作用力在過濾中扮演極重要的角色。本研究所提出基於力分析的粒子附著機構,可以用來預測濾餅中之粒徑分佈,粒子之附著機率與濾餅性質。
英文摘要
The effects of filtration flux、adhesion probability、cake properties and shear stress by changing liquid velocities、gas velocities and filtration pressures for air-sparging cross-flow microfiltration are studied. A filter membrane made of mixed cellulose ester with a mean pore size of 0.1 μm is used for filtering wide size distribution range particles, PMMA-7G. The flow behavior will change when gas velocity increases. Shear stress can restrain cake mass availability and improve filtration rates under bubble flow, but specific filtration resistance will increase clearly and filtration rates worse than no sparging filtration under slug flow。Because of shear stress increase rapidly。A great of particle decrease above 5μm. Smaller particle move in the void and the porosity become reduce. On the other hand, the cake layer compressed when fluid went past, so the specific filtration resistance increases glaringly. Communion with force analysis, we can find air-sparging force plays important role in filtration process, and we can use simulation analysis to forecast the tendency for particle distribution and adhesion property.
第三語言摘要
論文目次
目錄
                                                 頁次 
中文摘要		Ⅰ
英文摘要	Ⅱ
目錄	Ⅲ
圖表目錄	Ⅵ


第一章	緒論	1
第二章	文獻回顧	6
     2-1掃流微過濾的特性	6
     2-2過濾的阻塞機制	7
     2-3剛性粒子的堆積特性	9
     2-4粒子粒徑對拉曳力的影響	9
     2-5過濾程序中通入氣體之影響	10
     2-6壓降對氣泡的影響	12
第三章	理論	13
     3-1掃流過濾模組的力分析	13
     3-2粒子堆積於膜面上之受力分析	15
     3-3粒子之附著機構	28
     3-4掃流微過濾之模式探討	33
第四章	實驗裝置與步驟	35
     4-1實驗物料與濾材	35
     4-2 掃流過濾裝置與懸浮液配製	37
     4-3分析儀器與軟體	38
     4-4 實驗步驟	39
第五章	實驗結果與討論	41
    5-1 單相流動下的掃流微過濾	42
    5-2 多相流動下的掃流過濾	46
    5-3 氣泡分析	68
    5-4 掃描式電子顯微鏡 (SEM)分析	72
    5-5 剪切力分析	77
    5-6 理論分析與計算	80
第六章	結論	91
符號說明	95
參考文獻	100
附錄	103
附錄A實驗物料之種類及物性	103
附錄B實驗數據計算式	105
附錄C.剪切力計算	107
附錄D.平均粒徑計算	108



圖表目錄
                                                         頁次
圖目錄
第一章
Fig.1-1 The filtration spectrum	2   
Fig.1-2 The spectrum for each kind of filtrations	3   
Fig.1-3 Schematics of dead-end filtration and cross-flow filtration.	4  
第二章
Fig.2-1 Fouling schematics.(Belfort et al. 1993)	8   
Fig.2-2 Two-phase flowinsie pipes.(Cabassud et al. 2001)	12  
第三章
Fig.3-1 Schematics of momentum balance for a rectangular element in 
      cross-flow	13 
Fig.3-2 Force exerted on a depositing particle in the cross-flow system 	16 
Fig.3-3 Interaction energy of Van der Walls force and electrical double 
      layer repulsive force under different distance.	21  
Fig.3-4 Separated horizontal flow model. Simultaneous gas/liquid flow in 
(a)	is considered as the combination of gas and liquid flow,as(b)and (c)
	24.  
Fig.3-5 Force exerted on a depositing particle 	29 
Fig.3-6 One particle can deposit on another one for possible angle.	32  
Fig.3-7 Force exerted on a depositing particle. (Enlarge)	32  
Fig.3-8 The resistance of microfiltration	34  
第四章
Fig.4-1 Particle distribution for PMMA(7G)	35.
Fig.4-2 A schematic diagram of cross-flow filtration system	38
第五章   
Fig.5-1 Time courses of filtration rates during cross-flow microfiltration under   
       various filtration pressures .	43  
Fig.5-2  Filtration pressures courses of cake formation weights during cross-flow       
        microfiltration under various cross-flow velocities.	43
Fig.5-3  Time courses of filtration rates during cross-flow microfiltration under  
        various cross-flow velocities (after 6000 sec.).	45   
Fig.5-4  Filtration rate courses of cake formation weights during cross-flow 
        microfiltration under various filtration pressures.	45  
Fig.5-5  Analysis steps for Filtration process.		.	46  
Fig.5-6  Time courses of filtration rates during cross-flow microfiltration under 
        various gas velocities.	48   
Fig.5-7  Comparison of the pseudo steady state filtration rates during cross-flow 
        microfiltration under different gas velocities.	49  
Fig.5-8  Effect of the pseudo steady state filtration rates on the efficiency under 
        different gas velocities.	49   
Fig.5-9  The cake weight per unit area under different gas velocities.	52 
Fig.5-10 The cake weight per unit area courses of different filtration pressures under 
       different gas velocities.	52  
Fig.5-11 Frequency courses of different particle size under different filtration 
        pressures.	55   
Fig.5-12 Frequency courses of different particle size under different cross-flow 
       velocities.	55   
Fig.5-13 Frequency courses of different particle size under different gas 
       velocities.	56 
Fig.5-14 Particle size courses of cake weight per unit area under various filtration   
       pressures.	58  
Fig.5-15 Particle size courses of cake weight per unit area under various gas  
       velocities.	58  
Fig.5-16 Particle size courses of adhesion probability under various gas 
       velocities.	60 
Fig.5-17 Particle size courses of adhesion probability under various gas 
       velocities .	60
Fig.5-18 Gas velocities course of adhesion probability under various filtration 
       pressures.	61  
Fig.5-19 Comparison of resistance analyzes under different gas 
       velocities.	63 
Fig.5-20 Comparison of resistance analyzes under different gas 
       velocities.	63 
Fig.5-21 Effect of the average porosity of cake various different cross-flow velocities.	66 
Fig.5-22 Effect of the average porosity of cake various different 
       gas velocities.	66 
Fig.5-23 Effect of the average specific filtration resistance various different 
       cross-flow velocities. 	67
Fig.5-24 Effect of the average specific filtration resistance various different gas 
       velocities.	67  
Fig.5-25 Bubble size courses of frequency distribution under various gas velocities.	70 
Fig.5-26 Bubble size courses of frequency distribution under various filtration  
       pressure.	71  
Fig.5-27 Bubble size courses of frequency distribution under various 
       cross-flow rates.	71
Fig.5-28 The top view of membrane surface after filtration experiment.
       (Us=0.3,Ug=0 m/s ,TMP=20kPa)	73  
Fig.5-29 The top view of membrane surface after filtration experiment.
       (Us=0.3,Ug=0 m/s ,TMP=80kPa)	73  
Fig.5-30 The side view of membrane surface after filtration experiment.  
       (Us=0.3,Ug=0 m/s ,TMP=20kPa)	74  
Fig.5-31 The side view of membrane surface after filtration experiment. 
       (Us=0.3,Ug=0 m/s ,TMP=80kPa)	74  
Fig.5-32 The top view of membrane surface after filtration
       experiment.(Us=0.3,Ug=0.08 m/s ,TMP=20kPa)	75
Fig.5-33 The top view of membrane surface after filtration  
       experiment.(Us=0.3,Ug=0.49 m/s ,TMP=20kPa)	75 
Fig.5-34 The side view of membrane surface after filtration experiment.  
       (Us=0.3,Ug=0.08 m/s ,TMP=20kPa)	76  
Fig.5-35 The side view of membrane surface after filtration experiment. 
       (Us=0.3,Ug=0.49 m/s ,TMP=20kPa)	76  
Fig.5-36 Force exerted on particles with various diameters.	79  
Fig.5-37 Gas velocities course of shear stress under various cross-flow velocities.      	79 
Fig.5-38 Probability of particle deposition under different cross-flow velocities  
       (Theory)..	83  
Fig.5-39 Probability of particle deposition under different gas velocities (Theory).   	83  
Fig.5-40 Force exerted on particles with various diameters.	84  
Fig.5-41 Force ratio under various diameters.	84  
Fig.5-42 Probability of particle deposition under various cross-flow velocities
 	85  
Fig.5-43 Probability of particle deposition under various gas velocities	85
Fig.5-44 Average porosity of cake various different cross-flow velocities	86 
Fig.5-45 Average porosity of cake various different gas velocities	86  
Fig.5-46 Cake weights for theory and experiment values under various cross-flow  
       velocities.	87 
Fig.5-47 Cake weights for theory and experiment values under various gas velocities.
.	87  
Fig.5-48 Average particle size under various cross-flow velocities.	88  
Fig.5-49 Average particle size under various gas velocities	88  
Fig.5-50 Average specific resistance under various cross-flow velocities	89
Fig.5-51 Average specific resistance under various gas velocities.	89
Fig.5-52 Pseudo filtration rate under various cross-flow velocities	90
Fig.5-53 Pseudo filtration rate under various gas velocities.	90

附錄
Fig.A-1.1 The SEM of PMMA(7G)	103  
Fig.A-2.1 The top view of the mixed cellulose ester membrane by SEM.	104	  
Fig.B-3.1 The bubble image.	106  
Fig.D-1  Average particle size for different filtration pressure under various 
        cross-flow velocities.	108  

表目錄
Table.3-1  Values from Lockhart and Martineelli (Wilkes, 2006)
	26  
Table.3-2  Exponent for Two-Phase Correlation (Wilkes, 2006)	
	27   
Table.4-1  The operating conditions	40  
Table.5-1  The injection factor under different gas velocities.	70  
Table.5-2  True gas velocities values.	78  
Table.A-2.1 The characteristic of the mixed cellulose ester membrane.	104  
Table.C-1  Calculated shear stress	107  
Table.D-1  Average particle diameters.	108
參考文獻
參考文獻
Aim, R.B., Goff P.L., “Effet de Paroi dans les Empilements Désordonnés de Sphères et Application à la Porosité de Mélanges Binaires,” Powder Technol. 1, pp. 281–290.(1967).
Altmann, J., Ripperger, S. “Particle deposition and layer formation at the crossflow microfiltration ,” J.Membrane Sci.124 (1), pp. 119-128.(1997).
Belfort, G., Davis, R.H., Zydney, A.L. “The behavior of suspensions and macromolecular solutions in crossflow microfiltration,” J. Membrane Sci., 96 (1-2), pp. 1-58 (1994).
Cabassud, C., “Air sparging in ultrafiltration hollow fibers: Relationship between flux enhancement, cake characteristics and hydrodynamic parameters,” J. Membrane Sci. 181 (1), pp. 57-69(2001).
Chen, J.C., Li, Q., Elimelech, M. “In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration,” Advances in Colloid and Interface Science 107 (2-3), pp. 83-108 (2004).
Chen, Y., Kulenovic, R., Mertz, R. “Numerical study on the formation of Taylor bubbles in capillary tubes ,” International Journal of Thermal Science doi:10.1016/j.ijthermalsci.2008.01.004 .
Cui, Z.F., Wright, K.I.T. “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: Performance and mechanism,” J.Membrane Sci.117 (1-2), pp. 109-116.(1996).
Ducom, G., Puech, F.P., Cabassud, C. “Air sparging with flat sheet nanofiltration: A link between wall shear stresses and flux enhancement ,” Desalination 145 (1-3), pp. 97-102(2002).
Eagles, W.P., Wakeman, R.J. “Interactions between dissolved material and the fouling layer during microfiltration of a model beer solution,” J. Membrane Sci., 206 (1-2), pp. 253-264 (2002).
Hermans, P.H., Bredee, H.L. “Principles of the mathematical treatment of constant-pressure filtration,” J. Soc. Chem. Ind. 55 T, pp. 1-4 (1936).
HERMIA, J. “CONSTANT PRESSURE BLOCKING FILTRATION LAWS - APPLICATION TOPOWER-LAW NON-NEWTONIAN FLUIDS,” TRANS INST CHEM ENG V 60 (N 3), pp. 183-187(1982).
Hwang, K.-J., Lin, K.-P, “Cross-flow microfiltration of dual-sized submicron particles,” Separation Science and Technology, 37 (10), pp. 2231-2249.(2002)
Hwang, K.-J., Ya-Lin Hsu, Tung, K.-L. “Effect of particle size on the performance of cross-flow micrifiltration,” Advanced Powder Technol.,Vol.17, No.2, pp.189-206.(2006) 
Hwang, K.-J., Liao, C.-Y., Tung, K.-L. “Analysis of particle fouling during microfiltration by use of blocking models,” J. Membrane Sci. 287 (2), pp. 287-293(2007).
Hwang, K.-J., Wu, Y.-J, “Flux enhancement and cake formation in air-sparged cross-flow microfiltration,” Chemical Engineering Journal 139 (2), pp. 296-303. (2008)
Kamp, A.M., Chesters, A.K., “Bubble coalescence in turbulent flows: A mechanistic model for turbulence-induced coalescene applied to microgravity bubbly pipe flow,” International Journal of Multiphase Flow 27 (8), pp. 1363-1396(2001).
Keskinler, B., Yildiz, E.,” Crossflow microfiltration of low concentration-nonliving yeast suspensions,” J. Membrane Sci., 233 (1-2), pp. 59-69 (2004).
Knutsen, J.S., Davis, R.H. “Deposition of foulant particles during tangential flow filtration,” J. Membrane Sci., 271 (1-2), pp. 101-113 (2006).
Lane, G.L., Schwarz, M.P., Evans, G.M. “Numerical modelling of gas-liquid flow in stirred tanks,” Chemical Engineering Science 60 (8-9 SPEC. ISS.), pp. 2203-2214(2005).
Le-Clech, P., Chen, V., Fane, A.G. “Fouling in membrane bioreactors used in wastewater treatment,” J.Membrane Sci.284 (1-2), pp. 17-53(2006).
Lu, W.M., Ju, S.C. “Selective particle deposition in cross-flow filtration,” Sep.Sci. Technol 24,517-540(1989).
Lu, W.M., Hwang, K.J. “Mechanism of cake formation in constant pressure filtrations,” Separations Technology 3 (3), pp. 122-132(1993).
Majumder, S.K., Kundu, G., Mukherjee, D. “Pressure drop and bubble-liquid interfacial shear stress in a modified gas non-Newtonian liquid downflow bubble column ,” Chemical Engineering Science 62 (9), pp. 2482-2490(2007).
O’Neill,M.E. “A sphere in contact with a plane wall in slow linear shear flow,” Chem.Engng Sci.23,1293-1297(1968).
Ouchiyama, N., Tanaka, T. “Estimation of the average number of contacts between randomly mixed solid particles,” Industrial and Engineering Chemistry Fundamentals 19 (4), pp. 338-340(1980).
Ruth,B.F., “Correlating filtration theory with industrial practice,” Ind. Engng Chem.38,564-571(1946). 
Stovall, T., De Larrard, F., Buil, M. “Linear packing density model of grain mixtures,” Powder Technol. 48 (1), pp. 1-12(1986).
Sofia, A., Ng, W.J., Ong, S.L. “Engineering design approaches for minimum fouling in submerged MBR,” Desalination 160 (1), pp. 67-74(2004).
Suzuki, M., Oshima, T. “ESTIMATION OF THE CO-ORDINATION NUMBER IN A TWO-COMPONENT MIXTURE OF COHESIVE SPHERES,” Powder Technology 36 (2), pp. 181-188(1983).
Tisné, P., Doubliez, L., Aloui, F. “Determination of the slip layer thickness for a wet foam flow,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 246 (1-3), pp. 21-29(2004).
Vasseur, P.,Cox, R.G, “The laterial migration of spherical particle in two dimensional shear flow,” J.Fluid Mech.78,385-413(1976).
Vlasogiannis, P., Karagiannis, G., “Air-water two-phase flow and heat transfer in a plate heat exchanger,” International Journal of Multiphase Flow 28 (5), pp. 757-772(2002).
Zhang, Y.P., Fane, A.G., Law, A.W.K. “Critical flux and particle deposition of bidisperse suspensions during crossflow microfiltration,” J.Membrane Sci.282 (1-2), pp. 189-197(2006).
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信