淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1007200812430000
中文論文名稱 軟膠體之壓縮及微過濾機構之研究
英文論文名稱 Studies on mechanisms of compression and microfiltration of soft particles
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 王雅婷
研究生英文姓名 Ya-Ting Wang
電子信箱 695400134@s95.tku.edu.tw
學號 695400134
學位類別 碩士
語文別 中文
口試日期 2008-06-26
論文頁數 130頁
口試委員 指導教授-黃國楨
委員-莊清榮
委員-童國倫
委員-李篤中
委員-鄭東文
中文關鍵字 微過濾  軟膠體  濾餅性質 
英文關鍵字 microfiltration  Soft Colloids  cake property 
學科別分類
中文摘要 本研究旨在探討軟膠體粒子之微過濾機構及壓縮性質,本研究採用三種不同葡聚醣分子量(70 kDa、500 kDa及2000 kDa)分別與過錳酸鉀交聯成葡聚醣-二氧化錳( Dextran-MnO2 )之多孔性軟膠體,此種膠體粒子會在受到壓縮後變形,並擠出內部水分。實驗結果發現,此三種不同之軟膠體雖有相近的粒徑分佈、介達電位及密度,但由於其機械強度及壓縮性質導致其過濾行為有顯著之差異:當分子量越大,粒子的壓縮變形越快達穩定,且由於分子量大的粒子越快壓縮成緻密層(skin layer),故分子量大的粒子過濾時濾速會最慢。不同軟膠體的壓縮係數都在1左右,表示其濾餅均屬於容易被壓縮性質,故說明了本研究中增加過濾壓差,會形成較為緻密的結構,使得過濾比阻會增加。此外,本研究利用濾面上粒子之力平衡解析,探討在過濾時間與操作條件下對濾餅之成長速率的影響,發現壓力越大其成長的濾餅越厚;但掃流速度越大則成長的濾餅厚度卻不一定,主要原因為在濾餅壓縮的遲滯時間內,且在相同的操作壓差下,當濾餅層開始壓縮時,濾餅層生成的越厚,相對來說壓縮的結構較不緻密,導致之後的過濾時間,相對來說粒子較易附著,濾餅層較厚且濾速較大。而葡聚醣分子量越大,粒子的附著機率越小,導致初始濾餅易壓縮越緻密,故粒子成長厚度越薄,阻力越大。此外,並以濾餅之動態分析,分析濾餅局部過濾比阻,發現隨著過濾時間增加,濾餅不斷的成長和壓縮,導致平均過濾比阻增加,但由於不同時間下濾餅層的過濾比阻均不一樣,故平均過濾比阻不一定隨著掃流速度增加而增加。
英文摘要 Studies on mechanisms of compression and microfiltration of soft particles. Different kinds of Dextran–MnO2 gel particles are prepared in different conditions, depending on variables such as the molecular weight of dextran (70k Da, 500 k Da and 2000 k Da ). Dextran-MnO2 porous particles are prepared and used in experiment. This kind of colloidal particles are deformed their shape and squeezed out their inside water during compression. Experimental results show that although the mean sizes and stern potential and density of these gel particles are very close to each other, their filtration characteristics are far different due to their mechanical strength and compressibility. the deformation and compression of particles stabilize and a skin layer with compact structure forms quickly with an increase in the molecular weight of dextran. It could be said that the filtration rate decreases with an increase in the molecular weight of dextran. Different soft compression coefficient near one, result in the cake belong to easy to compress. Result proved that the pressure increase in this research, will form compact structure and specific filtration resistance increase. Causing this phenomenon that particles collect in the suspension. The probabilities of particle deposition under various conditions are estimated using the force balance model. It can be found that the cake mass and the cake increase with the increase of filtration pressure but cake increase uncertain with the decrease of cross-flow velocity. Thick of cake thickness compress less compact structure than thin of cake thickness, result in particles deposition on the membrane and filtration rate are quick after filtration time. It could be said that probability of particles deposit decreases in initial time, result in cake compress more compact structure and the filtration rate decreases with an increase in the molecular weight of dextran. The dynamic analytic method is employed to analyze of local specific filtration resistance under various conditions. Due to cake increase and compress so that local specific filtration resistance increase with the increase of filtration time. Due to cake compress with the increase of filtration time is different so that local specific filtration resistance is not increase with cross-flow velocity.
論文目次 目 錄
頁次
中文摘要 Ⅰ
英文摘要 Ⅱ
目 錄 IV
圖 目 錄 VIII
表 目 錄 XVII
第一章 緒論 1
1-1前言 1
1-2 研究動機與目標 5
第二章 文獻回顧 6
2-1 可變形粒子的特性 6
2-2 粒子間之作用力 10
2-3 濾餅的性質 14
2-4聚集團內含水率之量測 18
第三章 理論 21
3-1 掃流過濾機內粒子之受力解析 21
3-2 粒子在濾面上之附著機構 28
3-2-1 粒子間之摩擦係數 30
3-2-2 粒子附著之臨界摩擦角度 30
3-2-3 粒子之附著機構 31
3-3 含軟粒子泥漿之動態解析 32
3-3-1 流體流過可變形粒子床之力平衡與固體壓縮壓力 32
3-3-2 軟粒子泥漿恆壓過濾動態模擬之理論分析 36
3-3-3 濾餅的過濾比阻、孔隙度和固體壓縮壓力的關係 44
3-4 掃流過濾中濾餅之動態分析 45
第四章 實驗裝置與步驟 46
4-1 實驗物料 46
4-2 實驗裝置 46
4-2-1 恆壓過濾實驗裝置 46
4-2-2掃流微過濾之實驗裝置 48
4-2-3 分析儀器 49
4-3 實驗步驟 50
4-3-1 恆壓過濾之實驗步驟 50
4-3-2 掃流過濾之實驗步驟 51
第五章 結果與討論 53
5-1 不同分子量下所配置的軟膠體(Dextran-MnO2)之特性 53
5-2 不同分子量下所配置的軟膠體(Dextran-MnO2)之恆壓過濾 56
5-2-1 軟膠體(Dextran-MnO2)之恆壓過濾特性 56
5-2-2 軟膠體(Dextran-MnO2)在恆壓過濾下其濾餅內外孔隙度之關係 60
5-2-3 軟膠體(Dextran-MnO2)在恆壓過濾下其濾餅壓縮特性 64
5-3 Dextran-MnO2軟膠體之掃流過濾 72
5-3-1 軟膠體(Dextran-MnO2)之掃流過濾特性 72
5-3-2 軟膠體(Dextran-MnO2)之過濾阻力及濾餅分析 77
5-4 理論分析濾餅特性 85
5-4-1 粒子受力分析 85
5-4-2 粒子間摩擦係數 88
5-4-3 餅上粒子之附著機率及濾餅成長 89
5-4-4 濾餅之過濾比阻分析 95
第六章 結論 103
符號說明 107
參考文獻 110
附錄 115
附錄A 實驗物料之種類及物性 115
附錄B 過濾基本公式 122
附錄C 實驗與模擬圖 123
附錄D 掃流過濾實驗之再現性 130

圖 目 錄
頁次
Fig. 1-1 The separation process spectrum of different particle size 3
Fig. 1-2 Schematics of dead-end filtration and cross-flow filtration. 4
Fig. 2-1 An idealized plot of fraction density versus pressure for particle compaction showing the four overlapping stages (German,1989). 8
Fig. 2-2 A conceptual visualization of the moisture distribution in sludge (Tsang & Vesilind,1990). 19
Fig. 2-3 The Drying Apparatus(Tsang & Vesilind,1990). 20
Fig. 2-4 Drying curve for identifying four different types of water in sludge(Tsang & Vesilind,1990). 20
Fig. 3-1 A two-parallel-plate cross-flow filtration system. 22
Fig. 3-2 Interaction energy of Van der Waals force and electrical double layer repulsive force under different distance. 26
Fig. 3-3 Force exerted on the particle which staying on the cake surface.(Hwang and Yu, 1997) 29
Fig. 3-4 Compressive force due to frictional drag.(童,1998). 35
Fig. 3-5 The schematic diagram of the internal porosity (εin) and external porosity (εex) of the filter cake. 38
Fig. 3-6 A schematic diagram of control mass in filter cake. 39
Fig. 3-7 The relationship ε between and S0'/S0. (Fischmeister , 1978) 41
Fig. 3-8 Analogy of filter cake structure with Voigt in series model.(童,1998). 42
Fig. 3-9 The schematic diagram of cake in different time. 45
Fig. 4-1 A schematic diagram of “dead-end” microfiltration system. 47
Fig. 4-2 A schematic diagram of filter chamber. 48
Fig. 4-3 A schematic diagram of cross-flow filtration system. 49
Fig. 5-1 Size distributions of three prepared Dextran–MnO2 gel particles. 54
Fig. 5-2(a) Zeta potential distribution on 70 kDa Dextran-MnO2. 54
Fig. 5-2(b) Zeta potential distribution on 500KMW Dextran-MnO2…...55
Fig. 5-2(c) Zeta potential distribution on 2000KMW Dextran-MnO2….55
Fig. 5-3 Filtration curves of dt/dv vs. v under various filtration pressures. 58
Fig. 5-4 Filtration curves of different samples under a filtration pressure of 300 kPa. 58
Fig. 5-5 The side view of the cake formed by Dextran-MnO2 (2000KMW) measured by SEM . (×200.00KX , C=0.1 wt% ,△P= 100kPa , t=30 min). 59
Fig. 5-6 The relationship between εin and t under various filtration pressures. 61
Fig. 5-7 The relationship between εex and t under various filtration pressures. 61
Fig. 5-8 The relationship between εin and t under different samples. 62
Fig. 5-9 The relationship between εex and t under different samples. 62
Fig. 5-10 The relationships between αav and P under various times on pervious to water. 65
Fig. 5-11 Time function of compressibility factor of n in pervious to water. 65
Fig. 5-12 The relationship between wc and t under various filtration pressures. 66
Fig. 5-13 The relationships between αav and P under various times at Dextran-MnO2(70 kDa). 68
Fig. 5-14 The relationships between αav and P under various times at Dextran-MnO2(500 kDa). 68
Fig. 5-15 The relationships between αav and P under various times at Dextran-MnO2(2000 kDa). 69
Fig. 5-16 The relationships between 1-ε and P under various times at Dextran-MnO2(500 kDa). 69
Fig. 5-17 Time function of compressibility factor of n at different samples. 71
Fig. 5-18 Time function of compressibility factor ofβ1 at different samples. 71
Fig. 5-19 Time courses of filtration rates during cross-flow microfiltration under various cross-flow velocities. 73
Fig. 5-19.1 An enlarge plot in Fig. 5-19………………………………...73
Fig. 5-20 Time courses of filtration rates during cross-flow microfiltration under various filtration pressure. 74
Fig. 5-20.2 An enlarge plot in Fig. 5-20………………………………...74
Fig. 5-21 The filtration rate during cross-flow microfiltration under cross-flow velocities by different samples. 75
Fig. 5-22 The filtration rate during cross-flow microfiltration under filtration pressures by different samples. 75
Fig. 5-23 The resistance change during cross-flow microfiltration under cross-flow velocities by different samples. 78
Fig. 5-24 The resistance change during cross-flow microfiltration under various filtration pressure by different samples. 78
Fig. 5-25 The porosity change during cross-flow microfiltration under cross-flow velocities by different samples. 80
Fig. 5-26 The porosity change during cross-flow microfiltration under various filtration pressure by different samples. 80
Fig. 5-27 The side view of the cake formed by Dextran-MnO2(70 kDa) measured by SEM (×30kX,C=0.1 wt%, us=0.1 m/s, P=20 kPa) 81
Fig. 5-28 The side view of the cake formed by Dextran-MnO2(500 kDa) measured by SEM (×30kX,C=0.1 wt%, us=0.1 m/s, P=20 kPa) 81
Fig. 5-29 The side view of the cake formed by Dextran-MnO2(2000 kDa) measured by SEM (×30kX,C=0.1 wt%,us=0.1 m/s,P=20 kPa) 82
Fig. 5-30 The relationships between αav and (1-ε)/ ε3 at various pressures under different samples. 83
Fig. 5-31 The side view of the cake formed by different samples measured by SEM (×100kX, C=0.1 wt%, us=0.1 m/s, P=20 kPa) 84
Fig. 5-31.1 An enlarge plot in Fig. 5-31………………………………...84
Fig. 5-32 Effect of filtration rates on the values of Fi and F2 86
Fig. 5-33 Friction factor between Dextran-MnO2(500 kDa) particle. 88
Fig. 5-34 Deposition probability of particles during cross-flow microfiltraion under various cross-flow velocities. 90
Fig. 5-35 Deposition probability of particles during cross-flow microfiltraion under various pressures. 91
Fig. 5-36 Deposition probability of particles during cross-flow microfiltraion under different samples. 91
Fig. 5-37 Cake formation during cross-flow microfiltraion under various cross-flow velocities. 93
Fig. 5-37.1 An enlarge plot in Fig. 5-37………………………………...93
Fig. 5-38 Cake formation during cross-flow microfiltraion under various pressures. 94
Fig. 5-39 Cake formation during cross-flow microfiltraion under different samples. 94
Fig. 5-40 Comparison of a between simulated results and experimental data during cross-flow microfiltration under various cross-flow velocities. 96
Fig. 5-41 Comparison of simulated results and experimental data during the relationships between αav and us under various pressure. 97
Fig. 5-42 Comparison of simulated results and experimental data during the relationships between wc and us under various pressure. 97
Fig. 5-43 The relationships between αav and P under various velocities. 98
Fig. 5-44 The relationships between wc and P under various velocities. 98
Fig. 5-45 The relationships between q and P under various velocities. 99
Fig. 5-46 The relationships between q and P under various pressure. 99
Fig. 5-47 The relationships between q and P under various pressure. 100

附錄
Fig. A-1 The SEM picture of Dextran powder (×500X) (薛,2001). 116
Fig. A-2 The SEM picture of the surface structure of Dextran powder (×80000X) (薛,2001). 116
Fig. A-3 Particle size distribution of manganese dioxide particles. 117
Fig. A-4 The TEM picture of the floc of Dextran-MnO2 (×50000X). 119
Fig. A-5 The TEM picture of the floc of Dextran-MnO2 (×100000X) (薛,2001). 119
Fig. A-6 The drying curve for the floc of Dextran-MnO2. 120
Fig. A-7 The SEM picture of mixed cellulose ester membrane(× 40000X). 121
Fig. C-1 The relationships between q and us under various pressure. 123
Fig. C-2 The relationships between Rt and us under various pressure. 123
Fig. C-3 The relationships between q and us under various pressure. 124
Fig. C-4 The relationships between Rt and us under various pressure. 124
Fig. C-5 The relationships between q and us under various pressure. 125
Fig. C-6 The relationships between Rt and us under various pressure. 125
Fig. C-7 Comparison of simulated results and experimental data during the relationships between αav and us under various pressure. 126
Fig. C-8 Comparison of simulated results and experimental data during the relationships between wc and us under various pressure. 126
Fig. C-9 The relationships between αav and P under various velocities. 127
Fig. C-10 The relationships between wc and P under various velocities. 127
Fig. C-11 Comparison of simulated results and experimental data during the relationships between αav and us under various pressure. 128
Fig. C-12 Comparison of simulated results and experimental data during the relationships between wc and us under various pressure. 128
Fig. C-13 The relationships between αav and P under various velocities. 129
Fig. C-14 The relationships between wc and P under various velocities. 129
Fig. D-1 The filtration rate during cross-flow microfiltration under cross-flow velocities for three times. 130

表 目 錄
頁次
Table 3-1The differences between point contact and area contact.(童,1998). 36
Table 4-1 The operating conditions in this study. 51
Table 4-2 The operating conditions used in this study. 52
Table 5-1 Properites of different samples. 56
Table 5-2 retardation time of different samples. 63
Table 5-3 The magnitude of each force typical operation conditions. 87
Table 5-4 Friction factor of different samples. 88

參考文獻 Al-Naafa, M.A., Selim, M.S. “Sedimentation of monodisperse and bidisperse hard-sphere colloidal suspensions” , A.I.Ch.E. J., 38(10), 1618-1630 (1992).
Altmann, J. and S. Ripperger, “Particle Deposition and Layer Formation at the Crossflow Microfiltration”, J. Membrane Sci., 124 (1), 119-128 (1997).
Andrei, D.C., Briscoe, B.J., Luckham, P.F., Williams, D.R., “The deformation of microscopic gel particles”, Journal de Chimie Physique et de Physico-Chimie Biologique 93, 960–976 (1996).
Bossis, G. and J. F. Brady, “Dynamic Simulation of Sheared Suspensions. I. General Method”, J. Chem. Phys., 80 (10), 5141-5154 (1984).
Cheetham P. S. J., “Physical Studies on Cell Immobilization Using Calcium Alginate Gels”, Biotechnol. Bioeng., 21, 2155 (1979).
Doi, M. and D. Chen, “Simulation of Aggregating Colloids in Shear Flow”, Chem. Phys., 90 (10), 5271-5279 (1989).German, R. M., “Particle Packing Characteristics”, Chap.9 Metal Powder Industries Federation, Princeton, New Jersey (1989).
Hamachi, M. and M. Mietton-Peuchot , “Experimental Investigations of Cake Characteristics in Crossflow Microfiltration”, Chem. Eng. Sci., 54, 4023-4030 (1999).
Hamachi, M. and M. Mietton-Peuchot , “Analysis of Deposit Behaviour in Crossflow Microfiltration by means of Thickness Measurement”, Chem. Eng. J., 86, 251-257 (2002).
Hartley, P.A., G.D. Parfitt and L.B. Pollack, “The Role of the Van Der Waals Force in the Agglomeration of Powders Containing Submicron Particles”, Powder Technol., 42(1), 35-46 (1985).
Tsang, K. R. and P. A. Vesilind, “Moisture Distribution in Sludge”, Wat. Sci., Technol., 22(12), 135-142 (1990).
Hunter, R.J., “Foundations of Colloid Science”, Vol.I, Clarendon Press., Oxford, 1987.
Hwang, K.J. and Lu, W.M., “Mechanism of Cake Formation in Constant Pressure Filtrations”, Sep. Technol., 3, 122-132 (1993).
Hwang, K.J., W.M. Lu and M.C. Yu, “Migration and Deposition of Submicron Particle in Crossflow Microfiltration”, Sep. Sci. Technol., 32 (17), 2723-2347 (1997).
Hwang, K.J., Yu Y.H., Lu ,W.M., “Cross-flow Microfiltration of Submicron Microbial Suspension”, J. Membrane Sci., 194, 229-243 (2001a).
Hwang, K.J. and C.L. Hsueh, “A Study on the Mechanism of Cake Filtration of Soft Colloids”, Proc. 2001 Symposium on Transport Phenomena & Its Application, 19-22, Taipei, Taiwan, (2001b).
Hwang, K.J. and C.L. Hsueh, “Dynamic analysis of cake properties in microfiltration of soft colloids”, J. Membrane Sci., 214, 259-273 (2003).
Hwang, K.J., Lyu, S.Y., Chen F.F., “The preparation and filtration characteristics of Dextran–MnO2 gel particles”, Powder Technology 161,41– 47 (2006).
Johnson, KL., “Contact Mechanics. Cambridge University Press ”, New York.,(1985).
Keiding, K., Christensen, M.L., Andersen, N.P.R., Hinge M., “Characterisation of the transition between the filtration and consolidation stage from liquid pressure measurements”, Filtration, 6(1), 71-78 (2006).
Keiding, K., Christensen, M.L., “Filtration model for suspensions that form filter cakes with creep behavior”, A.I.Ch.E. J., 53(3), 598-609 (2007).
Leu, W. F., M. H. Lee and F. M. Tiller, “Cake Compressibility-A rigorous Definition”, Proc. Of the 6th World Filtration Congress, Nagoya, Japan, 148 (1993).
Liu, k. k., Williams, D.R.,and Bioscoe, F.J., “The large deformation of a single microelastomeric sphere”, Journal of Physics D-Applied physics., 31, 294-303 (1998).
Lu, W. M., and K.J. Hwang, “Mechanism of Cake Formation in Constant Pressure Filtrations”, Sep. Technol., 3, 122-132 (1993).
Lu, W. M., Tung, K. L., Pan, C. H., Shih, C. P. and Hwang, K. J., “Crossflow Microfiltration of Deformable Particles”, Proc. Symposium on Transport Phenomena and Applications, 41-44 (1998).
Overbeek, J.Th.G., “Interparticle Forces in Colloid Science”, Powder Tech., 37, p.195 (1984).
Sonntag, H. and K. Strenge Coagulation Kinetics and Structure Formation, Plenum Press, New York, (1987).
Suzuki, M. and T. Oshima, “Estimation of the co-ordination number in a two-component mixture of cohesive spheres”, Powder Technol., 36(2), 181-188 (1983).
Tatara, Y., “Large Deformations of a Rubber Sphere under Diametral Compression-Part 1: Theoretical Analysis of Press Approach, Constant Radius and Lateral Extension”, JSME, Series A, 36 (2), 190 (1993).
Tiller, F. M., and C. J. Huang, “Theory of Filtration Equipment”, Ind. Eng. Chem., 53, 529 (1961).
Tiller, F. M., S. Haynes, JR., and W. M. Lu, “The Role of Porosity in Filtration VII Effect of Side-Wall Friction in Compression-Permeability Cells”, A.I.Ch.E. J., 18(1), 13-20 (1972).
Tiller, F.M., and T. C. Green, “The Role of Porosity in Filtration VX: Skin Effect with Highly Compressible Materials”, A.I.Ch.E. J., 19, 1266 (1973).
Tiller, F.M., J.R. Cramp and F. Ville, “A Revised Approach to the Theory of Cake Filtration”, in: P. Sanasundaran (Ed.). Fine Particles Processing, Vol.2, Amer. Inst. Min. Met. Petr. Eng., New York, 1549-1558 (1980).
Tosun, I., “Mathematical Formulation of Cake Filtration for Deformable Solid Particles”, Chem. Eng. Sci., 40(4), 673-674 (1985).
Tsang, K. R. and Vesilind, P. A., “Moisture Distribution in Sludge”, Wat. Sci., Technol., 22 , p 135-142(1990).
Tung, K. L., Lin, Y. L., shih, T.C., and Lu, W.M. ., “Fluid flow through compressible gel particles bed: steady-state conditions. Journal of the Chinese Institute of Chemical Engineers, 35(1), 101-110 (2004).
Vasseur, P., Cox, R.G., “Lateral migration of a spherical particle in two-dimensional shear flows.” Journal of Fluid Mechanics,78 (2), 385-413 (1976).
Wang, D.M., Shiau, J.S., Tang, C.H., Lin, T.Y, “A model for resistance growth during protein microfiltration”, Separation science and technology, 38(4), 917-932 (2003).
Wang, D.M., Lin Y.L., Lu W.M., Lin Y.S., Tung K.L. , “Compression and deformation of soft spherical particles”, Chemical Engineering Science 6, 195 – 203 (2008).
Wiesner, M.R., M.M. Clark and J. Mallevialle, “Membrane Filtration of Coagulated Suspensions”, J. Environmental Eng., 115 (1), 20-40 (1989).
呂維明和呂文芳,〝過濾技術〞第十二章,第294~356頁,高立圖書,台北 (1994)。
周德明,〝可變形粒子之濾餅過濾中表皮層之生成機構〞碩士論文,淡江大學化學工程與材料工程學系(1998)
黃國楨,〝濾餅成長機構之微觀解析〞博士論文,台灣大學化工系 (1992)。
童國倫,〝可變形粒子之過濾與濾布堵塞機構之研究〞博士論文,台灣大學化工系 (1998)。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-07-15公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-15起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信