§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1007200621101300
DOI 10.6846/TKU.2006.00220
論文名稱(中文) 無機薄膜過濾蛋白質溶液中結垢現象與濾速回復之探討
論文名稱(英文) A Study on Fouling and Flux Recovery in Filtration of Protein Solution by Inorganic Membrane
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 94
學期 2
出版年 95
研究生(中文) 李培銘
研究生(英文) Pei-Ming Li
學號 693360074
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2006-06-20
論文頁數 98頁
口試委員 指導教授 - 鄭東文(twcheng@mail.tku.edu.tw)
委員 - 蔡少偉(tsai@mail.cgu.edu.tw)
委員 - 葉和明(hmyeh@mail.tku.edu.tw)
關鍵字(中) 奈米過濾
結垢現象
蛋白質
濾速回復
關鍵字(英) Nanofiltration
fouling
Protein
Flux recovery
第三語言關鍵字
學科別分類
中文摘要
本研究選用管式無機薄膜,以連續式掃流過濾系統對蛋白質溶液進行過濾實驗,探討不同操作條件及溶液性質對濾速與薄膜結垢的影響,以尋求提升濾速之操作方式。首先就蛋白質溶液於管式單通道無機薄膜過濾系統之濾速行為,討論操作參數(透膜壓差、濃度、pH值、溶液組成等)對濾速之影響,並定量薄膜結垢之阻力,找出適當之清洗方法。此外,本研究也以阻力串聯模式計算實驗阻力值來觀察結垢之變化,並以滲透壓模式計算理論濾速與實驗濾速之差異。
    結果顯示,NaOH溶液可有效清洗移除附著於膜上之BSA結垢,但隨著溶液濃度之增加也需提高NaOH清洗液之濃度。當操作流態為亂流時,增加BSA進料濃度對濾速之影響不大。在BSA與β-cyclodextrin的混合溶液系統中,薄膜對β-cyclodextrin之阻隔率隨溶液pH值不同而有所改變。以5k Da薄膜舉例,當pH=6.87時,β-cyclodextrin之阻隔率高達80%,而當pH=10時,則低於30%之阻隔率,這是因為BSA粒子形成之極化濾餅層緊密度不同所致。因此,選擇適當pH值可將BSA溶液中之小分子進行分離。
    阻力計算結果顯示,不同濃度之BSA溶液於膜面上所產生的阻力皆相近且遠小於薄膜阻力,但β-cyclodextrin溶液所產生的阻力則大於薄膜阻力。在雙溶質溶液中,由於BSA於膜面產生的結垢層阻擋了β-cyclodextrin透膜,使孔洞阻塞阻力值下降。以逆滲透模式計算理論濾速發現,理論濾速與實驗濾速趨勢相同但略大於實驗濾速,這可能是因為滲透壓模式只考慮膜面濃度提高對滲透壓所產生之效應而忽略了結垢層對濾速下降之影響使理論濾速較高。
英文摘要
In this study, the inorganic tubular membranes(1000, 5000 MWCO) were employed in a cross-flow filtration system to investigate the effect of operation conditions, solutions and membrane properties on protein solutions filtration. The way for cleaning the membrane fouling were also discussed. The solution fluxes and solute rejection were measured under various operating parameters such as membrane MWCO, transmembrane pressure, pH value and solution composition. In addition, in this work also calculate experimental resistance value with resistance-in-series model and predicting flux of BSA solution with osmotic pressure model which will compare with experiment flux. 
    Experimental results indicate that the NaOH solution could removal the BSA fouling on the membrane and the required concentration of NaOH solution increase as the feed BSA concentration increases. Under the turbulent flow pattern, the increase in BSA concentration just slightly reduces the flux. For BSA and β-cyclodextrin binary solution, the rejection of β-cyclodextrin varies with the pH value. In the case of 5k Da membrane, the rejection of β-cyclodextrin is higher than 80% at pH=6.87 and less than 30% in pH=10. This is due to the fact that the porosity of the polarization layer of BSA on the membrane surface varies with pH value. Therefore, the present membrane can be applied for the separation of small molecule from BSA solution by choosing a suitable pH value.
  In resistance-in-series model, fouling resistance value in all solution concentration of BSA are almost the same and far smaller than membrane resistance value. But in β-cyclodextrin solution, the values become higher than membrane. When in binary solution, fouling layer form by BSA on membrane surface could reject β-cyclodextrin transmembrane, so that the pore blocked resistance value can be decreased. In osmotic pressure model, the trend of theoretical flux agree with experiment flux but higher than it. This is could be the osmotic pressure model just only to consider the concentration rise in membrane surface but the influence of fouling layer was neglected.
第三語言摘要
論文目次
目錄

圖目錄					           IV
表目錄					           IX
第一章 序論				            1
  1.1 前言				            1
  1.2 薄膜分離					   1
  1.3 濃度極化與結垢現象				   4
  1.4 本研究之目標				   	   6
第二章 文獻回顧 					   9
  2.1 超過濾之相關研究				   9
  2.2 奈米過濾之相關研究 				  10
  2.3 蛋白質簡介 					  15
    2.3.1 蛋白質之酸鹼性 			  	  16
    2.3.2 蛋白質之等電點 				  16
    2.3.3 蛋白質之相關研究 				  17
  2.4 濾速分析模式 				  18
    2.4.1 阻力串聯模式 				  19
    2.4.2 膠層極化模式 				  20
    2.4.3 滲透壓模式 				  21
    2.4.4 改良邊界層阻力模式 			  23
  2.5 影響濾速之因素 				  24
  2.6 提高濾速之方法 				  25
第三章 實驗裝置與方法				  30
  3.1 實驗裝置					  30
  3.2 實驗藥品					  30
  3.3 實驗步驟					  31
  3.4 操作條件 					  31
    3.4.1 系統操作條件 				  31
    3.4.2 流量計校正與雷諾數計算 			  32
  3.5 分析方法 					  32
    3.5.1 分析儀器 				  32
    3.5.2 BSA的分析方法與條件 			  32
    3.5.3 β-cyclodextrin的分析方法與條件 		  32
    3.5.4 阻隔率之計算 				  33
  3.6 薄膜清洗 					  33
第四章 結果與討論 					  39
  4.1 薄膜純水濾速 				  39
  4.2 薄膜清洗 					  39
  4.3 單溶質溶液之濾速 				  41
  4.4 雙溶質溶液之濾速 				  43
  4.5 pH值對過濾行為的影響 				  45
  4.6 阻力分析		 			  47
  4.7 滲透壓模式 					  49
    4.7.1 物性參數	 				  50
    4.7.2 濾速估算 				  51
第五章 結論 					  79
  5.1 薄膜清洗 					  79
  5.2 單溶質溶液之濾速 				  80
  5.3 雙溶質溶液之濾速 				  80
  5.4 pH值對過濾行為的影響 				  81
  5.5 阻力分析	 				  82
  5.6 滲透壓模式 					  83
  5.7 總結 					  84
符號說明 						  85
參考文獻						  87
附錄A 						  96
附錄B 						  97


圖目錄

圖1.1  薄膜分離程序之分類 				   7
圖1.2  (a)濾餅過濾及(b)掃流過濾示意圖 		   8
圖2.1  蛋白質(胺基酸)的雙極結構圖			  16
圖2.2  蛋白質(胺基酸)的帶電性與環境性質之關係圖 	  17
圖2.3  膠層極化之濃度層分佈圖 			  27
圖2.4  濃度極化造成之滲透壓阻力圖 			  28
圖2.5  壓力對濾速之關係圖 				  28
圖2.6  提高濾速之方法 				  29
圖3.1  管式陶瓷薄膜過濾實驗裝置圖 			  35
圖3.2  TiO2薄膜介達電位隨著pH值之變化圖 		  37
圖3.3  流體流量計校正圖 				  37
圖3.4  流體流量與掃流速度(UL)之關係圖 		  38
圖3.5  管式單通道薄膜流體流量與雷諾數之關係圖		  38
圖4.1  MWCO 1k Da薄膜純水濾速圖 			  53
圖4.2  MWCO 5k Da薄膜純水濾速圖 			  53
圖4.3  1k膜線上清洗薄膜後之純水濾速比較圖
(BSA 3000 ppm, UL=1.39 m/s) 			  54
圖4.4  1k膜BSA溶液實驗前後之濾速比較圖
(BSA 5000 ppm, UL=1.39 m/s) 			  54
圖4.5  1k膜β-cyclodextrin溶液實驗前後之濾速比較圖
(β-cyclodextrin 3000 ppm, UL=1.39 m/s) 		  55
圖4.6  1k膜雙溶質溶液實驗前後之濾速比較圖
(β-cyclodextrin 3000 ppm + BSA 5000 ppm, UL=1.39 m/s) 	  55
圖4.7  5k膜β-cyclodextrin溶液實驗前後之濾速比較圖
(β-cyclodextrin 3000 ppm, UL=1.39 m/s) 		  56
圖4.8  5k膜雙溶質溶液實驗前後之濾速比較圖
(β-cyclodextrin 3000 ppm + BSA 5000 ppm, UL=1.39 m/s) 	  56
圖4.9  1k膜不同掃流速度下之濾速變化圖
(BSA 3000 ppm) 					  57
圖4.10  1k膜不同BSA濃度下之濾速變化圖
(BSA 2000~5000 ppm, UL=1.39 m/s) 			  57
圖4.11  5k膜不同BSA濃度下之濾速變化圖
(BSA 2000~5000 ppm, UL=1.39 m/s) 			  58
圖4.12  薄膜MWCO不同下BSA溶液之濾速變化圖
(BSA 5000 ppm, UL=1.39 m/s) 			  58
圖4.13  1k膜BSA之阻隔率變化圖
(BSA 2000 ppm, UL=1.39 m/s) 			  59
圖4.14  5k膜BSA之阻隔率變化圖
(BSA 5000 ppm, UL=1.39 m/s) 			  59
圖4.15  薄膜MWCO不同下β-cyclodextrin溶液之濾速變化圖
(β-cyclodextrin 3000 ppm, UL=1.39 m/s) 		  60
圖4.16  薄膜MWCO不同下β-cyclodextrin之阻隔率變化圖
(β-cyclodextrin 3000 ppm, UL=1.39 m/s) 		  60
圖4.17  1k膜不同離子強度下BSA溶液之濾速變化圖
(BSA 3000 ppm + NaCl 0.1~1 M, UL=1.39 m/s) 		  61
圖4.18  1k膜雙溶質溶液下改變BSA濃度之濾速變化圖
(β-cyclodextrin 3000 ppm + BSA 0~5000 ppm, UL=1.39 m/s)  61
圖4.19  1k膜雙溶質溶液下改變BSA濃度之阻隔率變化圖
(β-cyclodextrin 3000 ppm + BSA 0~5000 ppm, UL=1.39 m/s)  62
圖4.20  5k膜雙溶質溶液下改變BSA濃度之濾速變化圖
(β-cyclodextrin 3000 ppm + BSA 0~5000 ppm, UL=1.39 m/s)  62
圖4.21  5k膜雙溶質溶液下改變BSA濃度之阻隔率變化圖
(β-cyclodextrin 3000 ppm + BSA 0~5000 ppm, UL=1.39 m/s)  63
圖4.22  薄膜MWCO不同下雙溶質溶液之濾速變化圖
(β-cyclodextrin 3000 ppm + BSA 5000 ppm, UL=1.39 m/s)    63
圖4.23  1k膜一次與分批進料下之濾速變化圖
(UL=1.39 m/s) 					  64
圖4.24  1k膜一次與分批進料下之阻隔率變化圖
(UL=1.39 m/s) 					  64
圖4.25  1k膜不同pH值下BSA溶液之濾速變化圖
(BSA 3000 ppm, UL=1.39 m/s) 			  65
圖4.26  5k膜不同pH值下雙溶質溶液之濾速變化圖
(β-cyclodextrin 3000 ppm + BSA 5000 ppm, UL=1.39 m/s) 	  65
圖4.27  5k膜不同pH值下雙溶質溶液之阻隔率變化圖
(β-cyclodextrin 3000 ppm + BSA 5000 ppm, UL=1.39 m/s)    66
圖4.28  1k膜不同BSA濃度下之阻力變化圖
(BSA 2000~5000 ppm, UL=1.39 m/s) 			  66
圖4.29  5k膜不同BSA濃度下之阻力變化圖
(BSA 2000~5000 ppm, UL=1.39 m/s) 			  67
圖4.30  薄膜MWCO不同下BSA溶液之阻力變化圖
(BSA 5000 ppm, UL=1.39 m/s) 			  67
圖4.31  薄膜MWCO不同下β-cyclodextrin溶液之阻力變化圖
(β-cyclodextrin 3000 ppm, UL=1.39 m/s) 		  68
圖4.32  1k膜雙溶質溶液下改變BSA濃度之阻力變化圖
(β-cyclodextrin 3000 ppm + BSA 0~5000 ppm, UL=1.39 m/s)  68
圖4.33  5k膜雙溶質溶液下改變BSA濃度之阻力變化圖
(β-cyclodextrin 3000 ppm + BSA 0~5000 ppm, UL=1.39 m/s)  69
圖4.34  薄膜MWCO不同下雙溶質溶液之阻力變化圖
(β-cyclodextrin 3000 ppm + BSA 5000 ppm, UL=1.39 m/s) 	  69
圖4.35  5k膜不同pH值下雙溶質溶液之阻力變化圖
(β-cyclodextrin 3000 ppm + BSA 5000 ppm, UL=1.39 m/s) 	  70
圖4.36  滲透壓模式下不同BSA濃度之理論濾速圖
(MWCO 1k, BSA 2000~5000 ppm, UL=0.784 m/s) 		  70
圖4.37  滲透壓模式下不同BSA濃度之理論濾速圖
(MWCO 1k, BSA 2000~5000 ppm, UL=1.39 m/s) 		  71
圖4.38  滲透壓模式下不同BSA濃度之理論濾速圖
(MWCO 1k, BSA 2000~5000 ppm, UL=1.902 m/s) 		  71
圖4.39  滲透壓模式下不同掃流速度之理論濾速圖
(MWCO 1k, BSA 2000 ppm, UL=0.784~1.902 m/s) 		  72
圖4.40  滲透壓模式下不同掃流速度之理論濾速圖
(MWCO 1k, BSA 3000 ppm, UL=0.784~1.902 m/s) 		  72
圖4.41  滲透壓模式下不同掃流速度之理論濾速圖
(MWCO 1k, BSA 4000 ppm, UL=0.784~1.902 m/s) 		  73
圖4.42  滲透壓模式下不同掃流速度之理論濾速圖
(MWCO 1k, BSA 5000 ppm, UL=0.784~1.902 m/s) 		  73
圖4.43  滲透壓模式下不同BSA濃度之理論濾速圖
(MWCO 5k, BSA 2000~5000 ppm, UL=0.784 m/s) 		  74
圖4.44  滲透壓模式下不同BSA濃度之理論濾速圖
(MWCO 5k, BSA 2000~5000 ppm, UL=1.39 m/s) 		  74
圖4.45  滲透壓模式下不同BSA濃度之理論濾速圖
(MWCO 5k, BSA 2000~5000 ppm, UL=1.902 m/s) 		  75
圖4.46  滲透壓模式下不同掃流速度之理論濾速圖
(MWCO 5k, BSA 2000 ppm, UL=0.784~1.902 m/s) 		  75
圖4.47  滲透壓模式下不同掃流速度之理論濾速圖
(MWCO 5k, BSA 3000 ppm, UL=0.784~1.902 m/s) 		  76
圖4.48  滲透壓模式下不同掃流速度之理論濾速圖
(MWCO 5k, BSA 4000 ppm, UL=0.784~1.902 m/s) 		  76
圖4.49  滲透壓模式下不同掃流速度之理論濾速圖
(MWCO 5k, BSA 5000 ppm, UL=0.784~1.902 m/s) 		  77
圖4.50  滲透壓模式下不同BSA濃度之理論與實驗濾速比較圖
(MWCO 1k, BSA 2000~5000 ppm, UL=1.39 m/s) 		  77
圖4.51  滲透壓模式下不同BSA濃度之理論與實驗濾速比較圖
(MWCO 5k, BSA 2000~5000 ppm, UL=1.39 m/s) 		  78
圖A-1  BSA檢量線 					  96
圖B-1  β-cyclodextrin檢量線 			  98


表目錄

表1.1  不同操作程序之驅動力分類 			   7
表3.1  薄膜性質說明 				  36
表3.2  BSA特性說明 				  36
表3.3  流量計刻度與實際流量、掃流速度、雷諾數之關係 	  36
表4.1  薄膜純水透過率及薄膜阻力 			  39
參考文獻
Bansal, B., R. Al-Ali, R. Mwrcade-Prieto, X.D. Chen, “Rinsing and clean -ing of α-lactalbumin fouled MF membranes”, Sep. Purif. Technol. 48 (2006) 202-207.

Bargeman, G., J.M. Vollenbroek, J. Straatsma, C.G.P.H. Schroen, R.M. Boom, “Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention”, J. Membr. Sci. 247 (2005) 11-20.

Bauser, H., H. Chmiel, N. Stroh, E. Walitza, “Control of concentration polarization and fouling of membranes in medica, food and biotechnical application”, J. Membr. Sci. 27 (1986) 195-202.

Belfort, G., ”Membrane modules: comparison of different configurations using fluid mechanics”, J. Membr. Sci. 35 (1988) 245-270.

Belfort, G., ”Fluid mechanics in membrane filtration: recent deve -lopments”, J. Membr. Sci. 40 (1989) 123-147.

Blatt, W.F., A. Dravid, A.S. Michales, L. Nelsen, “Solute polarization and cake formation in membrane ultrafiltration: causes, consequences, and control techniques”, in: J.E. Filnn, ed., Membrane Science and
Technology, Plenum Press, New York, 1970, 47-91.

Bowen, W.R., H. Mukhtar, “Charaterisation and prediction of separation performance of nanofiltration membranes”, J. Membr. Sci. 112 (1996) 263-274.

Bowen, W.R., A.W. Mohammad, N. Hilal, “Characterisation of nano -filtration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy”, J. Membrane Sci. 126 (1997) 91-105.

Bowen, W.R., A.W. Mohammad, “Diafiltration by nanofiltration: prediction and optimization”, AIChE J. 44 (1998) 1799-1812.

Bowen, W.R., J.S. Welfoot, “Modelling the performance of membrane nanofiltration–critical assessment and model development”, Chem. Eng. Sci. 57 (2002) 1121-1137.

Bowen, W.R., J.S. Welfoot, “Modelling of membrane nanofiltration–pore size distribution effects”, Chem. Eng. Sci. 57 (2002) 1393-1407.

Cabassud, C., S. Laborie, J.M. Laine, “How slug flow can improve ultra -filtration flux in organic hollow fibers”, J. Membr. Sci. 128 (1997) 93-101.

Cabassud, C., E. Karim, D. Gaelle, L. Alain, “Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation”, Chem. Eng. Sci. 56 (2001) 6321-6327

Cheng, T.W., H.M. Yeh, C.T. Gau, “Flux analysis by modified osmotic -pressure model for laminar ultrafiltration of macromolecular solutions”, Sep. Purif. Technol. 13 (1998) 1-8.

Cheng, T.W., C.T. Lin, “A study on cross-flow ultrafiltration with various membrane orientations”, Sep. Purif. Technol. 39 (2004) 13-22.

Cheryan, M., “Ultrafiltration and Microfiltration Hand Book”, Tech -nomic Publishing Co. Inc. Pennsylvania (1998).

Cheryan, M., R. Shukla, “Performance of ultrafiltration membrane in ethanol-water solution: effect of membrane conditioning” J. Membr. Sci. 198 (2002) 75-85.

Cheryan, M., E.M. Tsui, “Characteristics of nanofiltration membrane in aqueous ethanol” J. Membrane Sci. 237 (2004) 61-69.

Chong, R., P. Jelen, W. Wang, “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Sep. Sci. Technol. 20 (1985) 393-402.

Cui, Z.F., K.I.T. Wright, “Gas-liquid two-phase crossflow ultrafiltration of BSA and dextran solution”, J. Membr. Sci. 90 (1994) 183-189.

Cui, Z.F., K.I.T. Wright, “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism”, J. Membr. Sci. 117 (1996) 109-116.

Derzansky, L.J., W.N. Gill, “Mechanisms of brane-side mass transfer in a horizontal reverse osmosis tubular membrane”, AIChE J. 20 (1974) 751-761.

Dorange, G., Y. Garba, S. Taha, N. Gondrexon, “Ion transport modelling through nanofiltration membrane”, J. Membr. Sci. 160 (1999) 187-200.

Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, “Colori -metric method for determination of sugars and related substances”, Anal. Chem. 28 (1956) 350-356.

Fane, A. G., C.J.D. Fell, A. Suki, “The effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes”, J. Membr. Sci. 16 (1983) 195-210.

Fell, C.J.D., K.J. Kim, V. Chem, D.E. Wiley, A.G. Fane, “Factors determining flux and rejection of ultrafiltration membranes”, Chem. Eng. Process. 27 (1990) 165-173.

Garem, A., C. Martin-Orue, S. Bouhallab, “Nanofiltration of amino acid and peptide solution: mechanisms of separation”, J. Membr. Sci. 142 (1998) 225-233.

Geankoplis, C. J., “Transport processes and unit operations”, Prentice -Hall International, London (1995).
Ghosh, R., Q. Li, Z.F. Cui, “Fractionation of BSA and lysozyme using ultrafiltration: effect of gas sparging”, AIChE J. 44 (1998) 61-67.

Ghosh, R., Z.F. Cui, “Fractionation of BSA and lysozyme using ultra -filtration: effect of pH and membrane pretreatment”, J. Membr. Sci. 139 (1998) 17-28.

Ghosh, R., Z.F. Cui, “Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes”, J. Membr. Sci. 162 (1999) 91-102.

Grib, H., M. Persin, C. Gavach, D.L. Piron, J. Sandeaux, N. Mameri, “Amino acid retention with alumina γnanofiltration membrane”, J. Membr. Sci. 172 (2000) 9-17.

Gupta, B.B., P. Blanpain, M.Y. Jaffrin, “Permeate flux enhancement by pressure and flow pulsation in microfiltration with mineral membrane”, J. Membr. Sci. 70 (1992) 257-266.

Gupta, B.B., J.A. Howell, D. Wu, R.W. Field, “A helical baffle for cross -flow microfiltration”, J. Membr. Sci. 99 (1995) 31-42.

Hasson, D., R. Levenstein, R. Semiat, “Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes”, J. Membr. Sci. 116 (1996) 93-104.

Hidetoshi, M., Y.C. Chen, Y. Ryotaro, K. Yuichi, M. Mie , T. Akihiko, “Membrane potentials across nanofiltration membranes: effect of nanoscaled cavity structure”, J. Molecular Structure. 739 (2005) 99-104.

Ho, C.C., A. L. Zydeny, “A combined pore blockage and cake filtration model for protein fouling during microfiltration”, J. Colloid Interface Sci. 232 (2000) 389-399.

Huisman, I.H., P. Pradanos, A. Hernandez, “The effect of protein-protein and protein-membrane interactions on membrane fouling in ultra -filtration”, J. Membr. Sci. 179 (2000) 79-90.

Iritani, E.J., Y.T. Mukai, T.R. Murase, “Separation of binary protein mixtures by ultrafiltration”, Filtration & Separation. 34 (1997) 967-973.

Karthik, V., S. DasGupta, S. De, “Modelling and simulation of osmotic pressure controlled electro-ultrafiltration in a cross-flow system”, J. Membr. Sci. 199 (2002) 29-40.

Kedem, O., A. Katchalsky, “A physical interpretation of the phenolmeno -logical coefficients of membrane permeability”, J. Gen. Physiol. 45 (1961) 143-179.

Kelly, S.T., A.L. Zydney, “Effects of intermolecular thiol-disulfide inter -change reactions on BSA fouling during microfiltration”, Biotechnol. Bioeng. 44 (1994) 972-982.

Kelly, S.T., A.L. Zydney, “Mechanisms for BSA fouling during micro -filtration”, J. Membr. Sci. 107 (1995) 115-127.

Kim, B.S., H.N. Chang, “Effects of periodic backflushing on ultra -filtration Performance”, Bioseparation 2 (1991) 9-23.

Kimura, S., S. Sourirajan, “Analysis of data in reverse osmosis with porous celluloses acetate membranes used”, AIChE J. 13 (1967) 497-503.

Kroner, K.H., V. Nissinen, “Dynamic filtration of microbial suspensions using an axially rotating filter”, J. Membr. Sci. 36 (1988) 85-100.

Lee, C.K., W.G. Chang, Y.H. Ju, “Air slugs entrapped cross-flow filtration of bacterial suspensions”, Biotech. Bioeng. 41 (1993) 525-530.

Li, S.L., C Li, Y.S. Liu, X.L. Wang, Z.A. Cao, “Separation of L- glutamine from fermentation broth by nanofiltration”, J. Membr. Sci. 222 (2003) 191-201.

Mercier-Bonin, M., C. Fonade, C. Lafforgue-Delorme, “How slug Flow can enhance the ultrafiltration flux in mineral tubular membrane”, J. Membr. Sci. 128 (1997) 103-113.

Mericier-Bonin, M., C. Lagane, C. Fonade, “Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane”, J. Membr. Sci. 180 (2000) 93-102.

Mika, M., P. Arto, K. Eero, N. Marianne, “Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes”, Desal. 145 (2002) 81-86.

Millward, H.R., B.J. Bellhouse, G. Walker, “Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance”, J. Membr. Sci. 106 (1995) 269-279.

Mir, L., “Positive-charged ultrafiltration membrane for the seperation of cathodic/electro deposition Paint composition”, U. S. Patent. 4 (1983) 412.

Morel, G., A. Gracina, J. Lachise, “Enhanced nitrate ultrafiltration by cationic surfactant”, J. Membr. Sci. 56 (1991) 1-12.

Moritz, T., S. Benfer, P. Arki, G. Tomandl, “Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic Membranes”, Sep. Purif. Technol. 25 (2001) 501-508.

Mulder, M., “Basic principle of membrane technology”, Kluwer Academic Publishers. Boston (1991).

Nabetani, H., M. Nakajima, A. Watanabe, S. Nakao, S. Kimura, “Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin”, AIChE J. 36 (1990) 907-915.

Nakao, S., X.L. Wang, T. Tsuru, M. Togoh, S. Kimura, ”Transport of organic electrolytes with electrostatic and sterichidrance effects through nanofiltration membranes”, J. Chem. Eng. Jpn. 28 (1995) 372-380.

Nel, R. G., S. F. Oppenheim, V.G.J. Rodgers, “Effect of solution properties om solute permeate flux in bovine serum albumin-IgG ultrafiltration”, Biotechnol. Prog. 10 (1994) 539-542.

Palacio, L., C.C. Ho, P. Pradaos, A. Hernandez, A. L. Zydeny., “Fouling with protein mixtures in microfilration: BSA-lysozyme and BSA-pepsine”, J. Membr. Sci. 222 (2003) 41-51.

Persson, A., Ann-Sofi Jonsson, G. Zacchi, “Transmission of BSA during cross-flow microfiltration: influence of pH and salt concentration”, J. Membr. Sci. 223 (2003) 11-21.
Philles, G.D., G.B. Benedek, N.A. Mazer, “Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy”, J. Chem. Phys. 65 (1976) 1883-1892.

Porter, M.C., “Handbook of industrial membrane technology”, Noyes Publications. USA (1990).

Rabiller-Baudry, M., B. Chaufer, D. Lucas, B. Bariou, P. Aimar, “Model of convection-diffusion-electrophoretic migration application to UF of  lysozyme versus pH and ionic strength”, in: proceedings of the international congress on international congress on membranes and membrane processes, Toronto, Canada, June (1999).

Schafer, A.I., A.G. Fane, T.D. Waite, “Nanofiltration-Principles and Applications”, Elservier Inc. USA (2005).
Taylor, G.I., “Stability of a viscous liquid contained between two rotating cylinders”, Phil. Trans. Roy. Soc. A233 (1923) 298-343.

Tsuru, T., T. Shutou, S.I. Nakao, S. kimura, “Peptide and amino acid separation with nanofiltration membrane”, Sep. Sci. Technol. 29 (1994) 971-984.

Van der Horst, H.C., J.M.K. Timmer, M.P.J. Speelmans, “Separation of amino acids by nanofiltration and ultrafiltration membranes”, Sep. Purif. Technol. 14 (1998) 133-144.

Van Der Weal, M. J., I.G. Racz, “Mass transfer in corrugated-plate membrane Modules. I. Hyperfiltration Experiments”, J. Membr. Sci. 40 (1989) 243-260.

Vera, L., S. Delgado, S. Elmaleh, “Dimensionless numbers for the steady -state flux of cross-flow microfiltration and ultrafiltration with gas sparging”, Chem. Eng. Sci. 55 (2000a) 3419-3428.

Vera, L., R. Villarroel, S. Delgado, S. Elmaleh, “Enhancing micro -filtration through an inorganic tubular membrane by gas sparging”, J. Membr. Sci. 165 (2000b) 47-27.

Wang, X.L., W.N. Wang, A.L. Ying, “Nanofiltration of L-phenylalanine and L-aspartic acid aqueous solutions”, J. Membr. Sci. 196 (2002) 59-67.

Wijers, M.C., Y. Pouliot, S.F. Gauthier, M. Pouliot, L. Nadeau, “Use of nanofiltration  membranes for the desalting of peptide fractions from whey protein enzymatic hydrolysates”, Lait. 78 (1998) 621-632.

Winzeler, H.B., G. Belfort, “Enhanced performance for pressure-driven membrane processes: the argument for fluid instabilities”, J. Membr. Sci. 80 (1993) 35-47.

Yazhen, X., E.L. Remi, “Investigation of the solute separation by charged nanofiltration membrane: effect of pH, ion strength and solute type”, J. Membr. Sci. 158 (1999) 93-104.

Yang, X.J., A.G. Livingston,L. Freitas dos Santos, “Experimental observations of nanofiltration with organic solvents”, J. Membr. Sci. 190  (2001) 45-55.

Yeh, H.M., “Modified gel-polarization model for ultrafiltration in hollow-fiber membrane modules”, Sep. Sci. Technol. 31 (1996) 201-211.

Youm, K.H., A.G. Fane, D.E. Wiley, “Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration”, J. Membr. Sci. 116 (1996) 229-241.

Zydeny, A.L., M.F. Ebersold, “The effect of membrane properties on the separation of protein charge variants using ultrafiltration”, J. Membr. Sci. 243 (2004) 379-338.

呂維明編著, “固液過濾技術”, 高麗圖書有限公司 (2004).

林家福, “陶瓷薄膜兩相流動超過濾系統中蛋白質溶液濃縮與濾速之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2004).

許益嘉, “無機奈米管式薄膜於巨分子溶液中分離胺基酸之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2005).
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信