§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1007200518122200
DOI 10.6846/TKU.2005.00143
論文名稱(中文) pH值及熱處理溫度對檸檬酸鹽衍生鐵酸鋇之影響
論文名稱(英文) Effects of pH and calcination temperatures on the formation of citrate-derived hexagonal barium ferrite
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 劉佩琪
研究生(英文) Pei-Chi Liu
學號 692360059
學位類別 碩士
語言別 英文
第二語言別
口試日期 2005-06-16
論文頁數 72頁
口試委員 指導教授 - 余宣賦
委員 - 尹庚鳴
委員 - 張裕褀
關鍵字(中) 硬磁材料
檸檬酸先驅物法
鐵酸鋇
熱行為
關鍵字(英) Magnetic Powder
Citrate Precursor
Barium Ferrite
Thermal Behavior
第三語言關鍵字
學科別分類
中文摘要
本研究以檸檬酸先驅物法來製得磁性鐵酸鋇粉體。硝酸鋇與硝酸鐵依化學計量比溶解於去離子水中後,加入過量檸檬酸以鏊合溶液裡的金屬離子。溶液之酸鹼值藉由添加氨水來調整。起始溶液共有6種不同之酸鹼值,分別為0.8 (未加氨水)、3、5、7、8及10。之後提升溶液溫度至90℃並加入回流裝置,促使鏊合反應完全。經200℃乾燥24小時及不同熱處理溫度後,以XRD、FT-IR、TEM、SEM、TG-DSC、和SQUID做性質分析。本文將探討溶液酸鹼值及熱處理溫度對鐵酸鋇之影響。從XRD之分析,可得有添加氨水於起溶液中,則增加檸檬酸之解離,促使鋇離子與鐵離子鏊合反應更均勻;而未添加氨水(pH=0.8),反應不完全,在高溫熱處理後還有中間相態存在。在溶液酸鹼值大於8以上,鏊合反應完全且均勻,使得在650℃時便可得到單一相態鐵酸鋇。在pH值為3時,反應過程中得到中間相態γ-Fe2O3,γ-Fe2O3易與BaCO3形成鐵酸鋇粉體,且在700℃時磁性質表現也較其他pH值高。
英文摘要
Magnetic BaFe12O19 powder with crystallite sizes in nanometers was produced via citric acid precursor method. Citric acid was added into an aqueous solution, containing nitrates of iron and barium in stoichimetric ratios to form the required barium ferrite, to chelate the metallic ions. The pH value of starting aqueous solutions was adjusted using NH4OH. The solutions with six different pH values were prepared; they were the solutions of pH = 0.8 (without NH4OH additions), 3, 5, 7, 8, and 10, respectively. After drying, the solid citrate precursors were obtained. The solid citrate precursors were then calcined in air at different temperature. Effects of pH of the starting solution and calcination temperatures of the solid precursors on characteristics of resultant particles were investigated using XRD, FT-IR, TEM, SEM, TG-DSC and SQUID. The XRD analysis indicates that adding NH4OH into the starting solution will increase the ionization of citric acid and provide more carboxyl groups to chelate Ba2+ and Fe3+. Without NH4OH additions, no sufficient carboxyl groups, ionized from citric acid, were available to completely and simultaneously chelate iron and barium ions. The starting solutions at pH≧8 contained enough number of carboxyl groups to have both Fe3+ and Ba2+ be completely and homogeneously chelated, resulting in the direct formation of single crystalline phase of BaFe12O19 at calcinations temperatures as low as 650℃. At pH=3, resulting in the formation of crystalline γ-Fe2O3 intermediate. γ-Fe2O3 easily reacts with BaCO3 to form BaFe12O19.  The results of magnetic measurements show that the calcined sample at 700℃ gives the highest Ms, Mr and Hc than those using other pH values.
第三語言摘要
論文目次
CONTENTS
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 CHARACTERS OF BARIUM FERRITE AND LITERATURE REVIEW	3
2-1 MOLECULAR STRUCTURE OF BAFE12O19	3
2-2 MAGNETIC CHARACTERISTICS OF BAFE12O19	4
2-2-1 Saturation magnetization	4
2-2-2 Coercivity	6
2-3 THEORETICAL DENSITY	7
2-4 LITERATURE REVIEW	8
2-4-1 Solid-State methods	8
2-4-2 Sol-gel methods	8
2-4-3 Chemical Co-precipitation Methods	10
2-4-4 Hydrothermal methods	11
2-4-5 Microwave methods	11
2-4-6 Aerosol routes	12
2-4-7 Citrate methods	13
CHAPTER 3 EXPERIMENTAL PROCEDURES	17
3-1 EXPERIMENTAL	17
3-2 CHARACTERISTIC ANALYSES	20
3-2-1 X-ray diffraction (XRD)	20
3-2-2 Thermogravimetric analysis (TGA)	21
3-2-3 Differential scanning calorimeter (DSC)	21
3-2-4 Scanning electron microscopy (SEM)	22
3-2-5 Transmission electron microscopy (TEM)	22
3-2-6 Infrared Spectroscopy (IR)	23
CHAPTER 4 RESULTS AND DISCUSSION	26
4-1 PHASE DEVELOPMENT	26
4-2 THERMAL BEHAVIOR OF DERIVED PARTICLES	30
4-3 MAGNETIC PROPERTIES	39
CHAPTER 5 CONCLUSIONS	62
REFERENCES	64
APPENDIX  A	68
APPENDIX  B	70
CONTENTS OF FIGURES

Figure 2-1 The crystal structure of barium ferrite.	3
Figure 2-2 The saturation magnetization Ms of BaFe12O19 as a function of temperature, after Smit and Wijn.52	……………………………………………………5
Figure 3-1 The experimental procedures used to prepare BaFe12O19.	19
Figure 3-2 Diffraction of X-rays by a crystal.	21
Figure 4-1 XRD patterns for different pH values obtained by drying in 200℃ for 24hr.	42
Figure 4-2 XRD patterns for different pH values obtained by heating the precursor in                
         600℃ for 5hr.	43
Figure 4-3 XRD patterns for different pH values obtained by heating the precursor in     
         650℃ for 5hr.	44
Figure 4-4 XRD patterns for different pH values obtained by heating the precursor in 
         700℃ for 5hr.	45
Figure 4-5 XRD patterns for different pH values obtained by heating the precursor in
         800℃ for 5hr.	46
Figure 4-6 Thermal analysis of the citrate precursor of pH=0.8: (a) TG-DSC curve, (b) 
         DTG-DDSC.	47
Figure 4-7 The FT-IR pattern of different calcinations temperature at pH=0.8.	48
Figure 4-8 Thermal analysis of the citrate precursor of pH=3: (a) TG-DSCcurve, (b)
DTG-DDSC.	49
Figure 4-9 The FT-IR pattern of different calcinations temperature at pH=3.	50
Figure 4-10 Thermal analysis of the citrate precursor of pH=5: (a) TG-DSC curve, (b)
          DTG-DDSC.	51
Figure 4-11 The FT-IR pattern of different calcinations temperature at pH=5.	52
Figure 4-12 Thermal analysis of the citrate precursor of pH=7: (a) TG-DSC curve, (b)
          DTG-DDSC.	53
Figure 4-13 The FT-IR pattern of different calcinations temperature at pH=7.	54
Figure 4-14 Thermal analysis of the citrate precursor of pH=8: (a) TG-DSC curve, (b) 
          DTG-DDSC.	55
Figure 4-15 Thermal analysis of the citrate precursor of pH=10: (a) TG-DSC curve, (b)
          DTG-DDSC.	56
Figure 4-16 The FT-IR pattern of different calcinations temperature at pH=8.	57
Figure 4-17 The FT-IR pattern of different calcinations temperature at pH=10.	58
Figure 4-18 Hysteresis loops of the sample heated at 700℃ for 5hr, using the solution 
          of (a) pH=0.8, (b) pH=3, (c) pH=5, (d) pH=7, (e) pH=8, (f) pH=10.	59
Figure 4-19 TEM photomicrographs of sample pH=3 heating at (a) 600℃, (b) 650℃,    
          (c) 700℃, (d) 800℃, (e) 900℃ for 5hr.	60
Figure 4-20 SEM photomicrographs of sample pH=3 heating at (a) 700℃, (b) 800℃ and (c) 900℃ for 5hr.	…………………………………………………..61
Figure A-1 Hysteresis loops of the sample heated at 800℃ for 5hr, using the solution             
          of (a) pH=0.8, (b) pH=3, (c) pH=5, (d) pH=7, (e) pH=8, (f) pH=10.	68
Figure A-2 Hysteresis loops of the sample heated at 900℃ for 5hr, using the solution 
          of (a) pH=0.8, (b) pH=3, (c) pH=5, (d) pH=7, (e) pH=8, (f) pH=10.	69
Figure B-1 TEM and SEM of the sample heated at 700℃ for 5hr.	70
Figure B-2 TEM and SEM of the sample heated at 800℃ for 5hr.	71
Figure B-3 TEM and SEM of the sample heated at 900℃ for 5hr.	72
CONTENTS OF TABLES
Table 2-1 The site, amount, sublattice and moment direction of Fe3+ in BaFe12O19      5
Table 3-1 The techniques used to characterize the specimens     25
Table 4-1 Crystalline phases and the corresponding crystallite sizes existed in the specimens obtained at different pH and  calcination temperatures      29
Table 4-2-1 The FT-IR analysis obtained at different calcination temperatures by pH=0.8     36
Table 4-2-2 The FT-IR analysis obtained at different pH and calcination temperatures      37
Table 4-3 Thermal analysis of the investigated precursors    38
Table 4-4 Thermal analysis of the investigated precursors    38
Table 4-5 Magnetic characteristics of the specimens of different pH at different calcination temperatures     41
參考文獻
REFERENCES
1.	M. P. Sharrock, IEEE Trans. on Magn 1989;25;4374.
2.	Liu X, Wang J, Gan LM, Ng SC. J Magn Magn Mater 1999;195:452.
3.	Berbenni V, Marini A, Welham N J, Galinetto P, Mozzati MC. J Eur Ceram Soc 2003;23:179.
4.	Steier HP, Requena J, Moya JS. J Mater Res 1999;14:3647.
5.	Pal M, Bid S, Pradhan SK, Nath BK, Das D, Chakravorty D. J Magn Magn Mater 2004;269:42.
6.	Benito G, Morales MP, Requena J, Raposo V, Vazquez M, Moya JS. J Magn Magn Mater 2001;234:65.
7.	Surig C, Hempel KA, Sauer Ch. J Magn Magn Mater 1996;157:268.
8.	Zhong W, Ding W, Zhang N, Hong J, Yan Q, Du Y. J Magn Magn Mater 1997;168:196.
9.	Pullar RC, Taylor MD, Bhattacharya AK. J Mater Sci. 1997;32:349.
10.	Mali A, Ataie A. Ceram. int. 2004;30:1979.
11.	Liu WT, Wu JM. Mater Chem Phys 2001;69:148.
12.	Liu WT, Lee JF, Wu JM. Mater Chem Phys 2001;69:89.
13.	Mendoza-Suarez G, Rivas-Vazquez LP, Fuentes AF, Escalante-Garcia JI, Ayala-Valenzuela OE, Valdez E. Mater Lett 2002;57:868.
14.	Mendoza-Suarez G, Cisneros-Mouales MC, Cisneros-Guerrero MM, Johal KK, Mancha-Molinar H, Ayala-Valenzuela OE, Escalante-Garcia JI. Mater Chem Phys 2002;77:796.
15.	An SY, Lee SW, Shim IB, Kim CS. Phys Stat Sol (a) 2002;189:893.
16.	Zhang H, Liu Z, Ma C, Yao X, Zhang L, Wu M. Mater Sci Eng B 2002;96:289.
17.	Zhang H, Liu Z, Ma C, Yao X, Zhang L, WuM. Mater Chem Phys 2003;80:129. 
18.	L. Rezlescu, E. Rezlescu, P. D. Popa and N. Rezlescu, J Magn Magn Mater 1999; 193:288.
19.	Shirk BT, Buessem WR. J Am Ceram Soc 1970;53:192.
20.	Jacobo SE, Domingo-Pascual C, Rodriguez-Clemente R, Blesa MA, J Mater Sci 1997;32:1025.
21.	Carp O, Barjega R, Segal E, Brezeanu M. Thermochim Acta 1998;318:57.
22.	Ding J, Liu XY, Wang J, Shi Y. Mater Lett 2000;44:19.
23.	Ogasawara T, Oliveira MAS. J Magn Magn Mater 2000;217:147.
24.	Matutes-Aquino J, Diaz-Castanon S, Mirabal-Garcia M, Palomares-Sanchez SA, Scipta Matte 2000; 42:295.
25.	Janasi SR, Rodrigues D, Emura M, Landgraf FJG. Phys Stat Sol (a) 2001;185:476.
26.	Janasi SR, Emura M, Landgraf FJG., Rodrigues D. J Magn Magn Mater 2002;238:168.
27.	Basel HB. IEEE Trans on Magn 1981;17:2654.
28.	Jacobo SE, Civale L, Blesa MA. J Magn Magn Mater 2003;260:37.
29.	Carcia-Casillas, Beesley AM, Bueno D, Matutes-Aquino JA, Martinez CA. J. Alloys Compd 2004;369:185.
30.	Barb D, Diamandescu L, Rusi A, Morariu M, Teodorescu V. J Mater Sci 1986;21: 1118.
31.	Dawson W J. Ceram Bull 1988;67:1673.
32.	Lin CH, Shih ZW, Chin TS, Wang ML, Yu YC. IEEE Trans on Magn 1990;26:15.
33.	Hirano SI. Ceram Bull 1987; 66:1342.
34.	Mishra D, Anand S, Panda RK, Das RP. Mater Chem Phys 2004;86:132.
35.	Fujita M, Hiratsuka N, Ueda T, Sugiyama K, Yamada K. IEEE Trans Magn 1993; 29:2129.
36.	Pullar RC, Appleton SG, Bhattacharya AK. J Magn Magn Mater 1998;186:326.
37.	Wane I, Bessaudou A, Cosset F, Celerier A Girault C. J Magn Magn Mater 2000;211:309.
38.	Fu YP, Lin CH, Pan KY. J. Alloys Compd 2004;364:211.
39.	Yu HF, Lin HY. J Magn Magn Mater 2004;238:190.
40.	Sankaranarayanan VK, Pant RP, Rastogi AC. J Magn Magn Mater 2000;220:72.
41.	Gonzalez-Carreno T, Morales MP, Serna CJ. Mater Latt 2000; 43:97.
42.	Cabanas MV, Gonzalez-Calbet JM, Vallet-Regi M. J Mater Res 1994;9:712.
43.	Sankaranarayanan VK, Pankhurst QA, Dickson DPE, Johnson CE. J Magn Magn Mater 1993;120:73.
44.	Lee WJ, Fang TT. J Mater Sci 1995;30:4349.
45.	Sankaranarayanan VK, Khan DC. J Magn Magn Mater 1996;153:337.
46.	Zhong W, Ding W, Jiang Y, Zhang N, Zhang J, Du Y, Yan Q. J Am Ceram Soc 1997;80:3258.
47.	Yu HF, Huang KC. J Mater Res 2002; 17:199.
48.	Huang J, Zhuang H, Li W. Mater Res Bull 2003;38:149.
49.	Huang J, Zhuang H, Li W. J Magn Magn Mater 2003;256:390.
50.	Lipka J, Gruskova A, Michalikova M, Miglierini M, Slama J, Toth I. J Magn Magn Mater 1995;140:2209.
51.	File No. 39-1433, Powder Diffraction File, compiled by the JCPDS-International Centre for Diffraction Data in cooperation with the American Society for Testing and Materials.
52.	Cullity BD, introduction to Magnetic Materials. Addison-Wesley Pub. Co.;1972.p.198-200.
53.	Stoner EC, Wohlfarth EP. Phil Trans Roy SocA 1948;240:599.
54.	Zhong W, Ding W, Jiang Y, Wang L, Zhang N, Zhang S, Du Y, Yan Q. J Appl Phys 1999;85:5552.
55.	Socrates G.. Infrared and Raman Characteristic Group Frequencies. John Wiley and Sons, Ltd.;2001.p24,26-27.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信