淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1006201310175700
中文論文名稱 順流透析器中加以超過濾或回流操作以提高質量傳送
英文論文名稱 Improvement of Mass Transfer in Cocurrent-Flow Dialyzers by Ultrafiltration or Recycle
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 許成瑋
研究生英文姓名 Cheng-Wei Hsu
學號 600400054
學位類別 碩士
語文別 中文
口試日期 2013-05-20
論文頁數 80頁
口試委員 指導教授-葉和明
委員-蔡少偉
委員-鄭東文
中文關鍵字 透析  超過濾  平板流  平板薄膜模組  內回流 
英文關鍵字 Dialysis  Ultrafiltration  Parallel flow  Rectangular membran module  Internal recycle 
學科別分類
中文摘要 在本論文中,對超過濾和內回流操作在順流型薄膜膜組中進行了研究。對於應用超過濾操作在順流型平板薄膜透析器中,研究中為了數學演算的方便,假設了均一的超過濾通量,所得的結果可能僅能適用於輕微的濃度極化和透膜壓差的現象。應用超過濾操作在質量傳送之中,可以達到相當大的改善效果,特別是那些有較低質傳係數的系統中。當增加超過濾通量或增加體積流率,分離效率也會明顯的增加。此外,對質量傳送而言,增加透餘相中的體積流率比增加透析相的體積流率更有效益。
而順並流型裝置伴有內回流操作系統中,假設流體渠道截面中的速度和濃度皆均一。和無回流的裝置相比,有內回流操作的透析器有較好的質傳效果,蓋因其增加了流體速度,導致質傳阻力減少。提高效率伴隨著回流比增加,特別是較大體積流率和入口濃度的操作系統。
英文摘要 The applications of either ultrafiltration or recycle operation to dialysis in cocurrently rectangular membrane modules was investigated. For the dialysis with the application of ultrafiltration operation in a cocurrrently parallel-flow device, uniform ultrafiltration flux was assumed for operation with slight concentration polarization and declination of transmembrane pressure. Considerable improvement in mass transfer is achievable if the operation of ultrafiltration is applied, especially for the system with low mass transfer coefficient.The enhancement in separation efficiency is significantly in increased with increasing ultrafiltration flux, as well as with increasing the volumetric flow rates. Moreover, increasing the volumetric flow rate in retentate phases is more beneficial to mass transfer than increasing in dialysate phase.
For dialysis with the application of internal recycling operation in cocurrently parallel flow device, the assumptions made that both uniform velocities and concentrations in the cross sections of flow channels were uniform. In contrast to a device without reflux, considerable mass transfer is achievable if the dialyzers are operated with internal recycling, which provides an increase in fluid velocity, resulting in a reduction of mass-transfer resistance. The improvement increases with reflux ratio, especially for large flow rate and feed concentration.
論文目次 目錄
誌謝 I
中文摘要 II
英文摘要 III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 分離程序 2
1-3 薄膜透析 4
1-4研究目的 6
第二章 文獻回顧 7
第三章 理論分析 12
3-1質量傳送係數 14
3-2平板薄膜透析系統 16
3-2.1順流式平板薄膜透析系統 17
3-2.2逆流式平板薄膜透析系統 20
3-3順流型平板薄膜透析器伴超過濾系統 22
3-3.1濃度分佈 23
3-3.2總質傳量 28
3-3.3 改善率 29
3-4.順流型平板薄膜透析器伴內回流系統 29
3-4.1出口濃度 31
3-4.2質傳係數 37
3-4.3總質傳量 38
3-4.4無內回流模組 39
3-4.5改善率 40
第四章 範例計算 41
4-1順流型平板薄膜透析器中伴有超過濾的範例計算 41
4-2順流型平板薄膜透析器中伴有內回流的範例計算 42
第五章 結果與討論 44
5-1順流型平板薄膜透析器伴超過濾效應之影響 44
5-1.1透餘相出口濃度 44
5-1.2質量傳送速率 45
5-1.3超過濾的改善效率 45
5-1.4計算結果 47
5-2順流型平板薄膜透析器伴內回流效應之影響 61
5-2.1計算結果 62
第六章 結論 71
6-1順流型平板薄膜透析器伴超過濾 71
6-2順流型平板薄膜透析器伴內回流 71
符號說明 73
希臘字母 75
參考文獻 76

圖目錄
圖3-1. 薄膜透析示意圖 13
圖3-2. 順流流動下之平板質量交換器的薄膜透析示意圖 17
圖3-3. 逆流流動下之平板質量交換器的薄膜透析示意圖 17
圖3-4. 順流流動下之平板質量交換器的薄膜透析伴超過濾示意圖 22
圖3-5. 內回流操作下之順流型平板質量交換器的薄膜透析示意圖 30
圖3-6. 回流式平板薄膜透析器系統示意圖 30
圖3-7. 無內回流操作下之順流型平板質量交換器的薄膜透析示意圖
39
圖4-1. 固定透析相體積流率改變透餘相體積流率的質量傳送速率
(Ca,i=0.5kg/m3;Cb,i=0;Qb,i=2×10-6m3/s;VmLW=0、0.05×10-6m3/s、0.1×10-6m3/s ) 47
圖4-2. 固定透析相體積流率改變透餘相體積流率的質量傳送速率
(Ca,i=0.5kg/m3;Cb,i=0;Qb,i=4×10-6m3/s;VmLW=0、0.05×10-6m3/s、0.1×10-6m3/s ) 48
圖4-3. 固定透析相體積流率改變透餘相體積流率的質量傳送速率
(Ca,i=0.5kg/m3;Cb,i=0;Qb,i=6×10-6m3/s;VmLW=0、0.05×10-6m3/s、0.1×10-6m3/s) 49
圖4-4. 固定透析相體積流率改變透餘相體積流率的質量傳送速率
(Ca,i=0.5kg/m3;Cb,i=0;Qb,i=8×10-6m3/s;VmLW=0、0.05×10-6m3/s、0.1×10-6m3/s) 50
圖4-5. 固定透析相體積流率與不同透餘相體積流率下對質傳速率之改善率(Ca,i=0.5kg/m3;Cb,i=0;Qb,i=2×10-6m3/s;VmLW=0.05×10-6m3/s、0.1×10-6m3/s) 51
圖4-6. 固定透析相體積流率與不同透餘相體積流率下對質傳速率之改善率(Ca,i=0.5kg/m3;Cb,i=0;Qb,i=4×10-6m3/s;VmLW=0.05×10-6m3/s、0.1×10-6m3/s) 52
圖4-7. 固定透析相體積流率與不同透餘相體積流率下對質傳速率之改善率(Ca,i=0.5kg/m3;Cb,i=0;Qb,i=6×10-6m3/s;VmLW=0.05×10-6m3/s、0.1×10-6m3/s) 53
圖4-8. 固定透析相體積流率與不同透餘相體積流率下對質傳速率之改善率(Ca,i=0.5kg/m3;Cb,i=0;Qb,i=8×10-6m3/s;VmLW=0.05×10-6m3/s、0.1×10-6m3/s) 54
圖4-9. 固定透餘相入口濃度和透析相體積流率、改變透餘相體積流率隨著回流比變化的質量傳送速率(Ca,i=1kgmol/m3;Cb,i=0;Qb=1×10-7m3/s;Qa=1×10-7m3/s、Qa=5×10-7m3/s、Qa=10×10-7m3/s) 62
圖4-10. 固定透餘相入口濃度和透析相體積流率、改變透餘相體積流率隨著回流比變化的質量傳送速率(Ca,i=1kgmol/m3;Cb,i=0;Qb=5×10-7m3/s;Qa=1×10-7m3/s、Qa=5×10-7m3/s、Qa=10×10-7m3/s) 63
圖4-11. 固定透餘相入口濃度和透析相體積流率、改變透餘相體積流率隨著回流比變化的質量傳送速率(Ca,i=1kgmol/m3;Cb,i=0;Qb=1×10-6m3/s;Qa=1×10-7m3/s、Qa=5×10-7m3/s、Qa=10×10-7m3/s) 64
圖4-12. 固定透餘相入口濃度和透析相體積流率、改變透餘相體積流率隨著回流比變化的質量傳送速率(Ca,i=5kgmol/m3;Cb,i=0;Qb=1×10-7m3/s;Qa=1×10-7m3/s、Qa=5×10-7m3/s、Qa=10×10-7m3/s) 65
圖4-13. 固定透餘相入口濃度和透析相體積流率、改變透餘相體積流率隨著回流比變化的質量傳送速率(Ca,i=5kgmol/m3;Cb,i=0;Qb=5×10-7m3/s;Qa=1×10-7m3/s、Qa=5×10-7m3/s、Qa=10×10-7m3/s) 66
圖4-14. 固定透餘相入口濃度和透析相體積流率、改變透餘相體積流率隨著回流比變化的質量傳送速率(Ca,i=5kgmol/m3;Cb,i=0;Qb=1×10-6m3/s;Qa=1×10-7m3/s、Qa=5×10-7m3/s、Qa=10×10-7m3/s) 67
圖4-15. 固定透餘相入口濃度、兩種不同透餘相體積流率隨著回流比變化的改善率(Ca,i=1kgmol/m3;Cb,i=0;Qa=1×10-7m3/s、Qa=10×10-7m3/s ) 68

表目錄
表1 Ca,i = 0.5 (kg/m3), Cb,i = 0 (kg/m3), Qb,i = 2×10-6 (m3/s) 的計算結果 55
表2 Ca,i = 0.5 (kg/m3), Cb,i = 0 (kg/m3), Qb,i = 4×10-6 (m3/s) 的計算結果 56
表3 Ca,i = 0.5 (kg/m3), Cb,i = 0 (kg/m3), Qb,i = 8×10-6 (m3/s) 的計算結果 57
表4 Ca,i = 1 (kg/m3), Cb,i = 0 (kg/m3), Qb,i = 2×10-6 (m3/s) 的計算結果 58
表5 Ca,i = 1 (kg/m3), Cb,i = 0 (kg/m3), Qb,i = 4×10-6 (m3/s) 的計算結果 59
表6 Ca,i = 1 (kg/m3), Cb,i = 0 (kg/m3), Qb,i = 8×10-6 (m3/s) 的計算結果 60
表7. 順流型平板透析器中伴有內回流的計算結果 Ca,i=1kgmol/m3 and Cb,i=0 69
表8. 順流型平板透析器中伴有內回流的計算結果 Ca,i=5kgmol/m3 and Cb,i=0 70



參考文獻 1. S. B. Kessler, E. Klein, in: W. S. W. Ho, K. K. Sirka (Eds.), “ Membrane Handbook, Part IV: Dialysis, Chapter 12: Theory, “Chapman and Hill, New York, (1992).
2. Mulder M., “ Basic Principle of Membrane Technology,” Kluwer, London, (1991)
3. Y. Kobuchi, H. Motonura, Y. Noma, F. Hanada, “ Application of ion exchange membranes to the recovery of acids by diffusion dialysis,” J. Membr. Sci,. 27, 173(1986)
4. A. Narebska, A. Warszaski, “ Diffusion dialysis transport phenomena by irreversible thermodynamic,” J. Membr. Sci. 88, 167(1994)
5.Z. Palaty, A. Zakova, “ Transport of sulfuric acid through anion-exchange membrane NEOSEPTA-AFN,” J. Membr. Sci. 119, 183(1996)
6. Z. Palaty, A. Zakova, “ Modeling the transport of ions through the anion exchange membrane NEOSEPTA-AFN; systems HCl/membrane/ and HCl- /membrane/ ,” J. Membr. Sci. 165, 273(2000)
7. S. J. Oh, S. H. Moon, T. Davis, “ Effects of metal ions on diffusion dialysis of inorganic acids,” J. Membr. Sci. 169, 95(2000)
8. M.C. Porter, Membrane filtration, in: P.A. Schweitzer (Ed.), “ Handbook of Separation Techniques for Chemical Engineer,” Sec. 2.1 McGraw-Hill, New York, (1979)
9. A. S. Jonsson, G. Tragardh, “ Ultrafiltration application,” Desalinsation, 77, 135(1990)
10. S. S. Kulkarni, E. W. Funk, N. N. Li, Ultrafiltration,in: W. S. W. Ho, K. K. Skrka(Eds.) “ Membrane Handbook, Chapman and Hill,” New York, (1992)
11. M. Cheryan, “Ultrafiltration, Handbook,” Technomic Publishing Co., Inc., Lancaster, Pennsylvania, (1986)
12. D. O. Cooney, S. S. Kim and E. J. Davis, “ Analysis of Mass Transfer in Hemodialyzers of Laminar Blood Flow and Homogeneous Dialysate,” Chem. Eng. Sci., 29, 1731 (1974)
13. R. P. Popvich, T. G. Christopher and A. L. Babb, “ The Effect of Membrane Diffusion and Ultrafiltration Propertites on Hemodialyzer Design and Performancem,” Chem. Eng. Symp. Ser. 67, 105 (1971)
14. R. Jagannathan and U. R. Shettiger, “ Analysis of a Turbular Hemodialyser-Effect of Ultratfiltration and Dialysate Concentration,” Med. & Biol. &Comput. 15, 134 (1977)
15. M. Abbas and V. P. Tyagi, “ Analysis of a Hollow-fiber Artificial Kidney Performing Simultaneous Dialysis and Ultrafiltration,” Chem. Eng. Sci., 42, 133 (1987)
16. Drensner, “ Salt Concentraion at Phase Boundaries in Desalination by Revere Osmosis, “ Ind. Eng. Chem. Fundamentals, 4, 113 (1965)
17. W. F. Blatt, A. Dravid, A. S. Michaels and L. Nelson, “ Solute Polarization and Cake Formation in Membrane Ultrafiltration: Causes, Consequences, and Control Techniques,” in Membrane Science and Technique, J. E. Flinn ed., Plenum Press, New York, (1970)
18. H. M. Yeh, T. W. Cheng and Y. J. Chen, “ Mass transfer for dialysis with ultrafiltration flux declined in cross-flow membrane modules,” J. Chem. Eng. Japan, 33, 440 (2000)
19. M. R. Costanzo, M. Saltzberg, J. O’Sullivan and P. A. Sobotka, ” Early ultrafiltraion in patient with decompensated heart failure and diuretic resistance,” J. Am. Coll. Cardiol., 46, 2047 (2005)
20. M. R. Costanzo, M. E. Guglin, M. T. Saltzberg, M. L. Jessup, B. A. Bart, J. R. Teerlink, B. E. Jaski, J. C. Fang, E. D. Feller, G. J. Haas, A. S. Anderson, M. P. Schollmeyer and P. A. Sobotka, “ Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure,” J. Am. Coll. Cardiol., 49, 675 (2007)
21 H. M. Yeh, “ Effect of external recycle on mass transfer in countercurrent double-pass cross-flow rectangular dialyzers,” Sep. Sci. Technol., 46, 1068 (2011)
22. H. M. Yeh, “ Dialysis in double-pass cross-flow rectangular membrane modules with external recycle for improved performance,” M. W. T., 2(2), 75 (2011)
23. S. D. Kolev, W. E. van der Linden, “ Influence of the main parameters of a parallel-plate dialyzer under laminar flow conditions,” Analytica Chimica Acta. 257, 317 (1992)
24. S. D. Kolev, W. E. van der Linden WE, “ Analysis of transient laminar mass transfer in a parallel-plate dialyzer,” Analytica Chimica Acta. 257, 331 (1992)
25. H. M. Yeh, Y. H. Chang, “ Mass transfer for dialysis through parallel-flow double-pass rectangular membrane modules,” J. Membr. Sci. 260, 1 (2005)
26. S. Goto, P. D. Gas Pillo, “ Effect of static mixer on mass transfer in draft tube bubble column and in external loop column,” Chem. Eng. Sci. 47, 3533 (1992)
27. C. D. Ho, H. M. Yeh, W. S. Sheu, “ The analytical studies of heat and mass transfer through a parallel-plate channel with recycle,” Int. J. Heat Mass Transfer 41, 2589 (1998)
28. H. M. Yeh, S. W. Tsai, C. L. Chiang, “ Recycle effects on heat and mass transfer through a parallel-plate channel,” AIChE J. 33, 1743 (1987)
29. H. M. Yeh, “ Numerical analysis of mass transfer in double-pass parallel-plate dialyzers with external recycle,” Computers Chem. Eng. 33, 815 (2009)
30. H. M. Yeh, “ Numerical analysis of mass transfer in countercurrently parallel-flow rectangular dialyzer with internal recycle for improved performance,” Tamkang J. Sci., Eng. 14, 351 (2011)
31. H. M. Yeh, T. W. Cheng, Y. J. Chen, “ Analysis of dialysis coupled with ultrafiltration in cross-flow membrane modules,” J. Membr. Sci. 134, 151 (1997)
32. A. Kiani, R. R. Bhave and K. K. Sirkar, “ Solvent extration with immobilized interface in a microporous hydrophobic membrane,” J.Membrane Sci., 20, 125 (1984)
33. M. C. Porter, “ Handbook of Industrial Membrane Technology,” Noyes Publications, New Jersey, (1990)
34. R. A. Bowman, A. C. Mueller and W. M. Nagle,” Mean Temperature Difference in Design,” Trans, Am. Mech. Engrs., 62, 283(1940)
35. M. Jakob, “ Heat Transfer,” Wiley, New York, (1957)
36. T. Kunitomo, R. G. Kirkwood, S. Kumazawa, J. M. Lazarus, M. N. Gottlieb, E. G. Lowrie, “ Clinical evaluation of postdilution dialysis with a combined ultrafiltration(UF)-hemodialysis(HD) system,” Trans. Am. Soc. Artif. Intern. Organs, 24, 169 (1978)
37. K. Sakai, M. Mineshima, “ Performance evaluation of a module in artificial kidney system,” J. Chem. Eng. Jpn., 17, 198 (1984)
38. C. J. Geankoplis, “ Transport processes and unit operations,” Allyn and Baco, Inc., Massachusetts, (1983)
39. H. M. Yeh, “ Effect of reflux and reflux-barrier location on solvent extraction through cross-flow flat-plate membrane modules with internal reflux,” J. Membr. Sci. 269, 133 (2006)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-06-21公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-06-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信