淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1006201116032300
中文論文名稱 不同成交量下股票報酬之非線性探討
英文論文名稱 Stock Return in Nonlinear Model with Variation of Volume
校院名稱 淡江大學
系所名稱(中) 財務金融學系碩士班
系所名稱(英) Department of Banking and Finance
學年度 99
學期 2
出版年 100
研究生中文姓名 賴慧真
研究生英文姓名 Huei-Jen Lai
學號 698530010
學位類別 碩士
語文別 中文
口試日期 2011-05-09
論文頁數 45頁
口試委員 指導教授-聶建中
共同指導教授-盧陽正
委員-聶建中
委員-盧陽正
委員-李沃牆
委員-陳達新
委員-謝明瑞
中文關鍵字 股票報酬  成交量  縱橫平滑移轉迴歸模型  非線性 
英文關鍵字 Stock Return  Volume  Panel Smoothing Transition Regression Model  Nonlinear 
學科別分類 學科別社會科學商學
中文摘要 本研究選取能夠研判投資人心目中的熱門股與冷門股與代表流動性的「成交量」做為移轉變數,並透過Gonza'lez, Teräsvirta, and Van Dijk (2005)所提出的縱橫平滑移轉模型,探討在不同成交量下,各影響因子對股票報酬的非線性影響力。
實證結果發現:不同成交量下,臺灣金融業之股票報酬確實存在非線性的現象,且可依據所得出的兩個門檻值:0.1108億與16.04億將資料分為低、中、高成交量等三區,各區域間的移轉速度則分別為2.5774與0.0002。在中成交量區間下,波動率指數、帳面市值比與營收成長率等三因子,對股票報酬皆存在正向顯著影響,顯示出在多數情況下,投資者可觀察上月份波動率指數,並挑選高帳面市值比與高營收成長率等股票來進行佈局。在低成交量區間下,因為波動率指數對股票報酬擁有正向顯著影響,故投資人可藉由觀察波動率指數進行投資,另一方面,則可能因為低成交量股票受關注程度較低,因此造成前12個月報酬對當期股票報酬具有顯著的正向影響,故在此區間下投資人可藉由動能策略的操作來賺取報酬,而在高成交量區間下,很可能因為股票受到市場投資人過度關注,以致於營收成長率與前12月報酬都對股票報酬產生顯著的負向影響,因此當社會大眾過度狂熱於某些熱門股票時,投資人反而應將營收成長率與前12月股票報酬視為反向指標進行投資。
英文摘要 According to liquidity premium theory, high volume presents low liquidity risk so investors will expect less return. Nevertheless a part of investors think high volume stocks would bring high return, hence they pursue glamour stocks. Under heterogeneous believe of investors, this study takes volume as transition variable and puts it into panel smoothing transition regression model which is built up by Gonza'lez, Teräsvirta, and Van Dijk (2005) to figure out stock return in nonlinear model with variation of volume.
The result shows that the stock return of financial market in Taiwan exists nonlinear phenomenon. Baseing on the result, we can obtain two thresholds (0.01108 billion and 1.604 billon) which can divide the data into low, middle and high volume sectors and the transition speed of each sectors are 2.5774 and 0.0002. In middle volume sector, volatility index (VIX), book to market ratio (B/M) and growth rate of revenue (G(S)) exists positive and significant effect to stock return. This result reveals that investors can observe VIX and buy high B/M and G(S) stocks to gain return. In low volume sector, VIX still exists positive and significant effect so investors can also observe VIX as an investment indictor. Besides, less attention on cabinet stocks might make stock price undervalue, hence past 12-month return (PR12) reveals positive effect to currency stock return. Thus investors can use momentum strategy in this sector. In high volume sector, too much attention might make stock price overvalue and lead G(S) and PR12 to negative and significant effect to stock return. Therefore, when people are crazy about buying glamour stocks, investors should regard G(S) and PR12 as inverse indictors.
論文目次 目錄
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究架構與流程 5
第二章 文獻探討 7
第一節 探討股票報酬的研究方法 7
第二節 成交量與股票報酬之間的關連性 8
第三節 影響股票報酬的因子 10
第三章 資料與研究方法 15
第一節 資料 15
第二節 縱橫單根檢定 16
第三節 縱橫平滑移轉迴歸模型 19
第四章 實證結果與分析 26
第一節 敘述統計分析 26
第二節 縱橫單根檢定 27
第三節 成交量對股票報酬之平滑移轉效果 28
第五章 結論與建議 37
第一節 結論 37
第二節 研究限制 38
第三節 後續研究建議 39
參考文獻 40

表目錄
表3.1.1 模型中各變數的定義 16
表4.1.1 各變數之敘述統計分析 27
表4.2.1 各變數原始序列之單根檢定 28
表4.3.1 成交量對股票報酬之同質性檢定 29
表4.3.2 成交量對股票報酬之轉換區間個數檢定 30
表4.3.3 各模型檢定結果與AIC、BIC 31
表4.3.4 門檻值與轉換速度(m=1, r=2) 31
表4.3.5 各公司所屬之成交量區間 32
表4.3.6 各區間之成交量出現次數與比率 33
表4.3.7 成交量對股票報酬之估計結果(m=1, r=2) 36
表4.3.8 成交量對股票報酬模型中解釋變數之影響(m=1, r=2) 36

圖目錄
圖1.1.1 臺灣銀行一年定存固定利率(%) 2
圖1.1.2 臺灣消費者物價指數年增率(%) (2006=100) 3
圖1.1.3 臺灣銀行一年定存固定利率與實質利率(%) 3
圖1.3.1 研究流程圖 6
圖2.3.1 波動率指數(VIX)與臺灣金融類股指數(F Index)走勢圖 11
圖3.3.1 邏輯型模型(m=1) 21
圖3.3.2 二次指數型模型(m=2) 22

參考文獻 中文文獻
李顯儀、吳幸姬與王元章,(2006),「機構投資人的買賣行為與公共訊息認知差異之研究」,《台灣管理學刊》,第6卷,第1期,頁105-128。
李顯儀、吳幸姬與李亮君,(2008),「投資人對股票報酬與風險的關心程度之探討」,《台灣管理學刊》,第8卷,第2期,頁71-94。
郝冰與胡曉華,(2007),「成交量變化影響股票漲跌變化的實證研究」,《金融經濟》,2007卷,10B期,頁118-119。
賀勝兵,(2008),「基於PSTR模型的地區間資本流動能力研究」,統計研究,第25卷,第8期,頁45-49。
黃一祥、呂耿光、黃旭輝與張志向,(2010),「公司特有風險與橫斷面股票預期報酬-台灣股市之實證」,《經濟論文》,第38卷,第3期,頁503-542。
劉映興與陳家彬,(2002),「台灣股票市場交易值、成交量與發行量加權股價指數關係之實證研究-光譜分析之應用」,《農業經濟半年刊》,第72期,頁65-87。
顧廣平,(2002),「台灣上市(櫃)公司股票期望報酬橫斷面差異解釋因子之探討」,《亞太社會科技學報》,第2卷,第1期,頁139-164。
英文文獻
Akaike, Hirotugu, (1974), “A new look at the statistical model identification”, Transactions on Automatic Control, 19(6), pp. 716-723.
Banz, Rolf W. and William J. Breen, (1986), “Sample-dependent results using accounting and market data: Some evidence”, Journal of Finance, 41(4), pp. 779-793.
Bissoondoyal-Bheenick, Emawtee and Robert D. Brooks, (2010), “Does volume help in predicting stock returns? An analysis of the Australian market”, Research in International Business and Finance, 24(2), pp. 146-157.
Black, Fischer, Michael C. Jensen, and Myron Scholes, (1972), “The capital asset pricing model: Some empirical test”, in: M. C. Jensen. ed., Studies in the theory of capital market, Praeger, New York, NY.
Bonin, John P., Iftekhar Hasan, and Paul Wachtel, (2005), “Bank performance, efficiency and ownership in transition countries”, Journal of Banking and Finance, 29(1), pp. 31-53.
Breitung, Jörg, (2000), “The local power of some unit root tests for panel data”, Advances in Econometrics, 15, pp. 161-178.
Carhart, Mark M., (1997), “ On persistence in mutual fund performance”, Journal of Finance, 52(1), pp. 57-82.
Chang, Yuk Ying, Robert Faff, and Chuan-Yang Hwang, (2010), “Liquidity and stock returns in Japan: New evidence”, Pacific-Basin Finance Journal, 18(1), pp. 90-115.
Choi, In, (2001), “Unit root tests for panel data”, Journal of International Money and Finance, 20(2), pp. 249-272.
Chuang, Chia-Chang, Chung-Ming Kuan, and Hsin-Yi Lin, (2009), “Causality in quantiles and dynamic stock return–volume relations”, Journal of Banking & Finance, 33(7), pp. 1351-1360.
Colletaz, Gilbert and Christophe Hurlin, (2005), “Threshold effects in the public capital productivity: An international panel smooth transition approach”, Working Paper, LEO, University of Orléans.
Davis, James L., (1994), “The cross-section of realized stock returns: The pre-COMPUSTAT evidence”, Journal of Finance, 49(5), pp. 1579-1593.
Fama, Eugene F. and James MacBeth, (1973), “Risk, return, and, equilibrium: Empirical tests”, Journal of Political Economy, 81(3), pp. 607-636.
Fama, Eugene F. and Kenneth R. French, (1992), “The cross-section of expected returns”, Journal of Finance, 47(2), pp. 427-465.
Fama, Eugene F. and Kenneth R. French, (1993), “Common risk factors in the returns on bonds and stocks”, Journal of Financial Economics, 33(1), pp. 3-56.
Fant, L. Franklin and David R. Peterson, (1995), “The effect of size, book-to-market equity, prior returns, and beta on stock returns: January versus the remainder of the year”, Journal of Financial Research, 18(2), pp. 129-142.
García-Herrero, Alicia, Sergio Gavilá, and Daniel Santabárbara, (2009), “What explains the low profitability of Chinese banks?”, Journal of Banking and Finance, 33(11), pp. 2080-2092.
George, Thomas J. and Chuan-Yang Hwang, (2010), “A resolution of the distress risk and leverage puzzles in the cross section of stock returns”, Journal of Financial Economics, 96(1), pp. 56-79.
Goddard, John, Phil Molyneux, and John O. S. Wilson, (2004), “The profitability of European banks: cross-sectional and dynamic panel analysis”, The Manchester School, 72(3), pp. 363-381.
Goetzmann, William N., and Massimo Massa, (2003), “Index Funds and Stock Market Growth”, The Journal of Business, 76(1), pp. 1-28.
Gonza'lez, Andres, Timo Teräsvirta, and Dick Van Dijk, (2005), “Panel smooth transition regression models”, Working Paper Series in Economics and Finance, 604.
Granger, C. W. J. and P. Newbold, (1974), “Spurious regressions in Econometrics”, Journal of Econometrics, 2(2), pp. 111-120.
Granger, C. W. J. and T. Ter¨asvirta, (1993), Modelling Nonlinear Economic Relationships, Oxford: Oxford University Press.
Hadri, Kaddour, (2000), “Testing for stationarity in heterogeneous panel data”, The Econometrics Journal , 3(2), pp. 148-161.
Hall, Alastair, (1994), “Testing for a unit root in time series with pretest data-based model selection”, Journal of Business and Economics Statistics, 12(4), pp. 461-470.
Hansen, Bruce E., (1999), “Threshold effects in non-dynamic panels: Estimation, testing and inference”, Journal of Econometrics, 93(2), pp. 345-368.
Haugen, Robert A. and Nardin Baker, (1996), “Commonality in the determinants of expected stock returns”, Journal of Financial Economics, 41(3), pp. 401-439.
Hutson, Elaine, Colm Kearney, and Margaret Lynch, (2008), “Volume and skewness in international equity markets”, Journal of Banking & Finance, 32(7), pp. 1255-1268.
Im, Kyung So, M. Hashem Pesaran, and Yongcheol Shin, (2003), “Testing for unit roots in heterogeneous panels”, Journal of Econometrics, 115(1), pp. 53-74.
Jansen, Eilev S. and Timo Ter¨asvirta, (1996), “Testing parameter constancy and super exogeneity in econometric equations”, Oxford Bulletin of Economics and Statistics, 58(4), pp. 735-763.
Jegadeesh, Narasimhan and Sheridan Titman, (1993), “Returns to buying winners and selling losers: Implications for stock market efficiency”, The Journal of Finance, 48(1), pp. 65-91.
Jude, Eggoh C., (2010), “Financial development and growth: A panel smooth regression approach”, Journal of economic development, 35(1), pp. 15-33.
Koenker, Roger and Gilbert Bassett, (1978), “Regression quantiles”, Econometrica, 46(1), pp. 33-50.
Lee, Charles M. C. and Bhaskaran Swaminathan, (2000), “Price momentum and trading volume”, The Journal of Finance, 55(5), pp. 2017-2069.
Levin, Andrew, Chien-Fu Lin, and Chia-Shang James Chu, (2002), “Unit root tests in panel data: Asymptotic and finite-sample properties”, Journal of Econometrics, 108(1), pp.1-24.
Lin, Xiaohi and Yi Zhang, (2009), “Bank ownership reform and bank performance in China”, Journal of Banking & Finance, 33(1), pp. 20-29.
Luukkonen, Ritva, Pentti Saikkonen, and Timo Ter¨asvirta, (1988), “Testing linearity against smooth transition autoregressive models”, Biometrika, 75(3), pp. 491-499.
Maddala, G.S. and Shaowen Wu, (1999), “ A comparative study of unit root tests with panel data and a new simple test”, Oxford Bulletin of Economics and Statistics, 61, pp. 631-652.
McMillan, David G., (2007), “Non-linear forecasting of stock returns: Does volume help?”, International Journal of Forecasting, 23(1), pp. 115-126.
Nagel, Stefan, (2005), “Short sales, institutional investors and the cross-section of stock returns”, Journal of Financial Economics, 78(2), pp. 277-309.
Ng, Serena and Pierre Perron, (1995), “Unit root tests in ARMA models with data-dependent methods for the selection of the truncation lag”, Journal of the American Statistical Association, 90(429), pp. 268-281.
Ning, Cathy and Tony S. Wirjanto, (2009), “Extreme return–volume dependence in East-Asian stock markets: A copula approach”, Finance Research Letters, 6(4), pp. 202-209.
Rouwenhorst, K. Geert, (1998), “International Momentum Strategies”, Journal of Finance, 53(1), pp. 267-284.
Schwarz, Gideon E., (1978), “Estimating the dimension of a model”, Annals of Statistics, 6(2), pp. 461-464.
Sharpe, William F., (1963), “A simplified model for portfolio analysis”, Management Science, 9(2), pp. 277-293.
Ter¨asvirta, Timo , (1994), “Specification, estimation, and evaluation of smooth transition autoregressive models”, Journal of the American Statistical Association, 89(425), pp. 208-218.
Ter¨asvirta, Timo, (1998), “Modelling economic relationships with smooth transition regressions”, in Handbook of applied economic statistics, ed. by A. Ullah, and D. E. A. Giles, pp. 507-552.
Van Der Hart, Jaap, Erica Slagter, and Dick Van Dijk, (2003), “Stock selection strategies in emerging markets”, Journal of Empirical Finance, 10(1-2), pp. 105-132.
Wang, Changyun and Shengtyng Chin, (2004), “Profitability of return and volume-based investment strategies in China’s stock market”, Pacific-Basin Finance Journal, 12(5), pp. 541-564.
Wang, Yuenan and Amalia Di Iorio, (2007), “The cross section of expected stock returns in the Chinese A-share market”, Global Finance Journal, 17(3), pp. 335-349.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-06-17公開。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信