淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1006200915091500
中文論文名稱 無線通訊系統中多重細胞同頻帶下之混合自動重傳請求機制分析與研究
英文論文名稱 Study and Analysis of Hybrid Automatic Retransmission Request(HARQ) Mechanism in Multi-cell Co-Channel Environment in Wireless Communication System
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 王庭堅
研究生英文姓名 Ting-Chien Wang
電子信箱 xaviertim@gmail.com
學號 696441012
學位類別 碩士
語文別 中文
口試日期 2009-06-06
論文頁數 108頁
口試委員 指導教授-詹益光
委員-李揚漢
委員-許獻聰
委員-曹恆偉
委員-李永定
中文關鍵字 混合自動請求重傳  干擾  同頻帶干擾  追縱結合  高移動性 
英文關鍵字 HARQ  Interference  Co-Channel  Chase Combining  High Mobility 
學科別分類 學科別應用科學電機及電子
中文摘要 近年來由於IEEE 802.11a/b/g 無線區域網絡 (WLAN) 的成功發展,無線寬頻上網的普及化又向前一大步,但隨著時代的進步,新規格的積極發展,讓無線網路朝向可移動之行動通訊服務,並且朝著具有高速移動之行動台來做為研究和發展;例如常聽到的WiMAX為IEEE 802.16介面標準,就具有高頻寬、高傳輸速率和涵蓋範圍大等優點。雖然無線通訊有很多優點,但是伴隨而來的卻是各種的干擾和來自通道的衰減,因而會造成封包傳送的失敗,為了確保傳送時的準確性,所以有了不同的重傳機制的提出。
本篇論文以現行無線通訊蜂巢式系統為基礎,其系統效能受到來自同一細胞內,與其它細胞中用戶的同通道干擾(Co-Channel Interference;CCI)而被嚴重的限制;所以本論文模擬的系統,除了包含一般通道探討時必備的大範圍訊號衰減所造成的遮蔽衰落模型、路徑衰減模型,小範圍訊號衰減所造成的Rayleigh衰落之外;還建構出包含同通道干擾的通道模型,做為本論文系統模擬探討的依據。
重傳的機制,一般主要有二種,一種是自動回覆請求重傳(Automatic Repeat Request,ARQ),但是ARQ的問題是他回傳的狀態報告(Status Report),並不會在封包遺失的第一時間回傳,所以等到ARQ發現封包遺失需要重傳時已過了不小的延遲時間;所以我們探討的是另一種新的重傳機制,那就是混合式自動回覆請求(Hybrid ARQ,HARQ)。HARQ 是一種結合了前饋式錯誤修正(Forward Error Correction)與ARQ 方法的技術,可以由前一個失敗的嘗試中存下有用的資訊,供之後的解碼使用。在通訊進行時,基地台會透過每個傳輸時間間隔回傳的肯定或否定性的確認(ACK/NACK)與通道品質指標(ChannelQuality Indication,CQI)獲得目前通道的狀況資訊,進而用不同的編碼方式重新傳送,以提高重傳的成功機率。
在本篇論文建構的系統中,會探討無線通訊從低速到高速,在同通道干擾的影響之下,所必需要採行的混合式自動回覆請求的機制為何;本論文使用的自動回覆請求機制,首先是以原始的Type I型配合AMC和新型的Type I型(Chase Combining)的HARQ為主,前者在重傳的時候,會傳和原本Packet一樣大的資料,而舊的傳送資料,則予以刪除,重傳的資料配合較低的調變,可以達到減少錯誤發生的可能;至於Chase Combining,他重傳的Packet,也是和原本的一樣大,但是不同的地方在於舊的資料不會被刪去,會保留在Symbol Level的地方做Soft Combining,來增加解碼的效能;而最終重傳機制選擇的方式為何,是根據模擬時系統規格的要求,像是重傳次數限制、重傳暫存器大小限制,PER(Packet Error Rate)小於10%等限制為我們選擇的要件。
英文摘要 In recent years due to the successful development of wireless local area network such as IEEE 802.11-a,-b and -g, the applications and services of wireless broadband Internet have become widely populated. As time evolves and extensive development of new specifications the wireless network services have been expanded toward the mobile communication services. Its evolution is in the research and development of the services when the mobile is moving in the high mobility environment; for example, the development of WiMAX interfaces for the IEEE 802.16 standards that possess the advantages of high-bandwidth, high transmission speed and wide area coverage. Although there are many advantages of wireless communication, it is accompanied by a variety of interferences and attenuation influences when the data is transmitted through the communication channel that would cause the failure detection at the receiver end of the packet transmitted, and in order to ensure an acceptable system performance several packets retransmission techniques have been proposed.
In this study we consider a basic cellular communication system that the system performance is seriously affected by the Co-channel interference (CCI) from other cells operating at the same frequency and propose a complete system simulation model that it not only includes the common simulation model as discussed in the wireless communication system such as the shadowing fading due to large-scale attenuation, path-loss attenuation and small- scale Rayleigh fading etc. but also includes the model due to Co-channel interference effect.
There are two kinds of retransmission methods, one is the automatic repeat request (ARQ) technique, and in this retransmission method if a packet is lost this packet lost information will not be reached at the transmitting side instantaneously because of the propagation delay of the transmission of this information in the feedback channel. It needs to have some packets ‘re-arrangement and management’ processes at the transmitter/receiver side. The other retransmission mechanism, hybrid automatic repeat request (HARQ), is a technique that combines the forward error (FEC) correction technique and the ARQ process. In this retransmission technique when a packet is failed in the decoding process it is not deleted as in the ARQ retransmission but is saved to be used with the later received retransmitted new data Furthermore in HARQ retransmission, the adaptive modulation and coding technique (AMC) is exploited that different modulation method and/or different coding rate can be adopted in the packets initial transmission and retransmissions depending on the channel quality and system performance requirement to possibly improve the system throughput.
In this study we propose the system architecture for HARQ retransmission in a wireless communication system when a mobile moves in low and high mobility and suffers co-channel interference during the packet transmission. Two retransmission mechanisms are considered in the architecture, one is the combination of the conventional Type I retransmission with AMC and the other is the new Type I retransmission, Chase Combining. In the first HARQ retransmission mechanism the retransmitted packet will have the same size as the initially transmitted packet and when the packet is retransmitted it will be transmitted at lower modulation level to enhance the retransmitted packet quality; meanwhile the original failed decoded packet will be deleted at the receiver side. In the Chase Combing retransmission the retransmitted packet will also have the same size as the initially transmitted packet the failed transmitted packet will not be deleted but be kept at the symbol level for later used in the performing of Soft Combining to improve the decoding efficiency. It depends on the system requirements and system specifications such as the maximum retransmission number allowed, the buffer size in the store of the retransmitted packets and packet error rate (PER) etc. to determine which retransmission mechanism will be exploited.
論文目次 目錄
第一章 緒論 1
1.1研究動機和目的 1
1.2章節介紹 3
第二章 模擬環境的建立 4
2.1 SISO系統下單一子載波的SIR 5
2.2路徑損失模型(Pass Loss Model) 7
2.3遮蔽衰落模型 (Shadow Fading Model) 8
2.4同頻道間干擾模型(Co-channel interference Model) 12
2.5快速衰落模型 (Fast Fading Model) 16
2.6程式的參數設置和最後的結果 17
第三章 重傳的方式與錯誤曲線圖 26
3.1 HARQ簡介 28
3.1.1 HARQ的三型 29
3.1.2同步與非同步 29
3.1.3自適應與非自適應 30
3.1.4模擬所使用的二種方式 31
3.2 Type I with AMC 31
3.2.1編碼與調變 32
3.2.2 pilot的型式 33
3.2.3通道的介紹 34
3.2.4通道估測的方法 35
3.2.5程式使用的方式 36
3.2.6程式的參數和最後的結果 37
3.3 Chase Combining 41
3.3.1程式使用的方式 43
3.3.2程式的參數和最後的結果 43
第四章 HARQ重傳的判斷 48
4.1 HARQ重傳的單位 49
4.2 HARQ的組成 51
4.3單一訊號錯誤容錯數找尋程式 52
4.3單一SIR值錯誤訊號分配比例找尋程式 57
4.5程式的最後結果 60
第五章 HARQ的運作 63
5.1 HARQ的運作設定 63
5.2程式的運作流程 65
5.3簡易圖解Buffer運作流程 68
5.4程式的參數設定 73
5.5程式的最後結果 74
第六章 結論與未來展望 99
參考文獻 105

圖目錄
圖2. 1程式步驟一示意圖 4
圖2. 2 COST 231 HATA Model 7
圖2. 3 Cell被格子所均分示意圖 8
圖2. 4格子內Shadowing的值 9
圖2. 5 不同速度下遮蔽衰退之自相關函數 11
圖2. 6沒有使用FFR的同頻帶干擾示意圖 13
圖2. 7使用FFR的同頻帶干擾示意圖 14
圖2. 8本論文模擬時考慮的同頻帶干擾圖 15
圖2. 9本論文考慮的同頻帶干擾SIR變化圖 16
圖2. 10 IEEE 802.16m 速度3km/hr距離 300m SIR圖 19
圖2. 11 IEEE 802.16m 速度80km/hr距離 300m SIR圖 19
圖2. 12 IEEE 802.16m 速度350km/hr距離 300m SIR圖 20
圖2. 13 IEEE 802.16m 速度3km/hr距離 600m SIR圖 20
圖2. 14 IEEE 802.16m 速度80km/hr距離 600m SIR圖 21
圖2. 15 IEEE 802.16m 速度350km/hr距離 600m SIR圖 21
圖2. 16 LTE 速度3km/hr距離 300m SIR圖 22
圖2. 17 LTE 速度80km/hr距離 300m SIR圖 22
圖2. 18 LTE 速度350km/hr距離 300m SIR圖 23
圖2. 19 LTE 速度3km/hr距離 600m SIR圖 23
圖2. 20 LTE 速度80km/hr距離 600m SIR圖 24
圖2. 21 LTE 速度350km/hr距離 600m SIR圖 24
圖3. 1程式步驟二示意圖 27
圖3. 2 Type I with AMC系統模型圖 32
圖3. 3 IEEE 802.16m Resource Unit Pilot Structure 33
圖3. 4 LTE Resource Block Pilot Structure 34
圖3. 5 IEEE 802.16m 3km/hr SIR對SER曲線圖 38
圖3. 6 IEEE 802.16m 80km/hr SIR對SER曲線圖 38
圖3. 7 IEEE 802.16m 350km/hr SIR對SER曲線圖 39
圖3. 8 LTE 3km/hr SIR對SER曲線圖 39
圖3. 9 LTE 80km/hr SIR對SER曲線圖 40
圖3. 10 LTE 80km/hr SIR對SER曲線圖 40
圖3. 11 Chase Combining系統模型圖 42
圖3. 12 IEEE 802.16m 3km/hr QPSK1/2 SIR對SER圖 45
圖3. 13 IEEE 802.16m 3km/hr QPSK3/4 SIR對SER圖 45
圖3. 14 IEEE 802.16m 3km/hr 16QAM1/2 SIR對SER圖 46
圖3. 15 IEEE 802.16m 3km/hr 16QAM3/4 SIR對SER圖 46
圖3. 16 IEEE 802.16m 3km/hr 64QAM2/3 SIR對SER圖 47
圖3. 17 IEEE 802.16m 3km/hr 64QAM3/4 SIR對SER圖 47
圖4. 1 程式步驟3示意圖 48
圖4. 2 HARQ Structure 51
圖4. 3單一訊號錯誤容錯數找尋程式系統模型圖 53
圖4. 4 IEEE 802.16m QPSK1/2容錯數 53
圖4. 5 IEEE 802.16m QPSK3/4容錯數 53
圖4. 6 IEEE 802.16m 16QAM1/2容錯數 54
圖4. 7 IEEE 802.16m 16QAM3/4容錯數 54
圖4. 8 IEEE 802.16m 64QAM2/3容錯數 54
圖4. 9 IEEE 802.16m 64QAM3/4容錯數 55
圖4. 10 LTE QPSK1/2容錯數 55
圖4. 11 LTE QPSK3/4容錯數 55
圖4. 12 LTE 16QAM1/2容錯數 55
圖4. 13 LTE 16QAM3/4容錯數 56
圖4. 14 LTE 64QAM2/3容錯數 56
圖4. 15 LTE 64QAM3/4容錯數 56
圖4. 16單一SIR值錯誤訊號分配比例找尋程式系統模型圖 58
圖4. 17 LTE 64QAM2/3 80km/hr at SIR 20 Symbol Error Ratio 59
圖4. 18 LTE 64QAM2/3 80km/hr at SIR 25 Symbol Error Ratio 59
圖4. 19 LTE 64QAM2/3 80km/hr at SIR 30 Symbol Error Ratio 59
圖4. 20 IEEE 802.16m 3km/hr不同SIR不同MCS的錯誤訊號容忍數 60
圖4. 21 IEEE 802.16m 80km/hr不同SIR不同MCS的錯誤訊號容忍數 61
圖4. 22 IEEE 802.16m 350km/hr不同SIR不同MCS的錯誤訊號容忍數 61
圖4. 23 LTE 3km/hr不同SIR不同MCS的錯誤訊號容忍數 61
圖4. 24 LTE 80km/hr不同SIR不同MCS的錯誤訊號容忍數 62
圖4. 25 LTE 350km/hr不同SIR不同MCS的錯誤訊號容忍數 62
圖5. 1 IEEE 802.16m Frame Structure FDD 64
圖5. 2 LTE Frame Structure FDD 64
圖5. 3 IEEE 802.16m HARQ運作時序圖 65
圖5. 4 LTE HARQ運作時序圖 65
圖5. 6 程式運作流程圖 67
圖5. 7 第一個Subframe時間下Buffer內的情況 69
圖5. 8第二個Subframe時間下Buffer內的情況 70
圖5. 9 第七個Subframe時間下Buffer內的情況 71
圖5. 10第八個Subframe時間下Buffer內的情況 72
圖5. 11 IEEE 802.16m 速度80km/hr距離 300m SIR圖 75
圖5. 12 資料傳輸比例0.6 Buffer的情況 76
圖5. 13 資料傳輸比例0.6時相關模擬數據結果 76
圖5. 14 資料傳輸比例0.55 Buffer的情況 77
圖5. 15 資料傳輸比例0.55時相關模擬數據結果 77
圖5. 16 資料傳輸比例0.5 Buffer的情況 78
圖5. 17 資料傳輸比例0.5時相關模擬數據結果 78
圖5. 18 資料傳輸比例0.45 Buffer的情況 79
圖5. 19 資料傳輸比例0.45時相關模擬數據結果 79
圖5. 20 資料傳輸比例0.4 Buffer的情況 80
圖5. 21 資料傳輸比例0.4時相關模擬數據結果 80
圖5. 22 資料傳輸比例0.25 Buffer的情況 81
圖5. 23 資料傳輸比例0.25時相關模擬數據結果 81
圖6. 1 HARQ硬體傳送端與接收端圖 102
圖6. 2 Packet Allocation A內部運作圖 103
圖6. 3 Packet Allocation B內部運作圖 103
圖6. 4 並行混合自動重傳請求(HARQ)的QoS排程器 104


表目錄
表2. 2 IEEE 802.16m 遮蔽衰退標準差 9
表2. 3不同速度時的格子大小 12
表2. 4程式步驟一模擬參數表 18
表3. 2 重傳可使用的降級MCS選項表 36
表3. 3程式步驟二Type I with AMC模擬參數表 37
表3. 4程式步驟二Chase Combining模擬參數表 44
表4. 1 IEEE 802.16m HARQ Packet Size for a Subchannel 49
表4. 2 LTE HARQ Packet Size for a Subchannel 50
表4. 3 使用Type I with AMC重傳時需要付出的RU數目 51
表5. 1 HARQ模擬參數設定 73
表5. 2 IEEE 802.16m距離300m速度3km/hr 82
表5. 3 IEEE 802.16m距離300m速度80km/hr 83
表5. 4 IEEE 802.16m距離300m速度350km/hr 84
表5. 5 IEEE 802.16m距離600m速度3km/hr 85
表5. 6 IEEE 802.16m距離600m速度80km/hr 86
表5. 7 IEEE 802.16m距離600m速度350km/hr 87
表5. 8 LTE距離300m速度3km/hr 88
表5. 9 LTE距離300m速度80km/hr 89
表5. 10 LTE距離300m速度350km/hr 90
表5. 11 LTE距離600m速度3km/hr 91
表5. 12 LTE距離600m速度80km/hr 92
表5. 13 LTE距離600m速度350km/hr 93
表5. 14 最高Date Rate考量下的傳輸MCS與重傳方式選擇組合 95
表5. 15 IEEE 802.16m觀察在300m不同速度時HARQ技術的選擇 96
表5. 16 IEEE 802.16m觀察在600m不同速度時HARQ技術的選擇 97
表5. 17 LTE觀察在300m不同速度時HARQ技術的選擇 97
表5. 18 LTE觀察在600m不同速度時HARQ技術的選擇 98


參考文獻 參考文獻
[1] Nokia, Shkumbin Hamiti, SDD editor, “IEEE 802.16m System Description Document.”IEEE 802.16 Broadband Wireless Access Working Group, April. 2009,
[2] Roshni Srinivasan, Intel Corporation ,“IEEE 802.16m Evaluation Methodology Document (EMD).” IEEE 802.16 Broadband Wireless Access Working Group, IEEE 802.16m-08/004r4, April. 2009,
[3] M. Cudak, “IEEE 802.16m System Requiremens,” IEEE 802.16 Broadband Wireless Access Working Group, C802.16m-08/008, Jan. 2008.
[4] 3GPP TS 36.211: "Physical channels and modulation".
[5] 3GPP TS 36.212: "Multiplexing and channel coding".
[6] 3GPP TS 36.213: "Physical layer procedures".
[7] 3GPP TS 36.214: "Physical layer – Measurements".
[8] Haipeng Lei; Xin Zhang; Dacheng Yang; “A Novel Frequency Reuse Scheme for Multi-Cell OFDMA Systems.” Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th , Sept. 30 2007-Oct. 3 2007 Page(s):347 – 351
[9] Mahmudur Rahman, Halim Yanikomeroglu, and William Wong , “Interference Avoidance with Dynamic Inter-Cell Coordination for Downlink LTE System.”
[10] M. Gudmundson, “Correlation model for shadow fading in mobile radio systems,” Electronics Letters, Vol. 27, Issue 23, Nov. 1991.
[11] Rajat Prakash, Student Member, IEEE, and Venugopal V. Veeravalli, “Adaptive hard handoff algorithms,” IEEE Journal on Selected Areas in Communications, Vol. 18, Issue 11, Nov. 2000.
[12] William C. Jakes, “Microwave mobile communication,” New York IEEE Press, 1974.
[13] Hyungho Park, Doo-Hyun Sung, Eunjong Lee, HanGyu Cho, “Downlink Control Structure related to Hybrid-ARQ.” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_151, March 2008
[14] Sungkyung Kim, Kwangjae Lim, Sungcheol Chang, Seokheon Cho, Jungim Kim, Chulsik Yoon , ETRI, “Hybrid ARQ Operation for IEEE 802.16m.” IEEE C802.16m-08/454r1, May 2008.
[15] Alexei Davydov, Alexander Maltsev, Intel , “Hybrid ARQ for synchronous allocation in distributed subcarrier mode.” IEEE 802.16 Broadband Wireless Access Working Group, C80216m-08_290r1, May 2008
[16] Chiu Chun-Yuan, Fang-Ching Ren, Richard Li, ITRI, “HARQ process timing and HARQ process number.” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_307, May 2008
[17] Arnab Das, Farooq Khan, Ashwin Sampath, Hsuan-jung Su ,“Adaptive, Asynchronous Incremental Redundancy (A²IR) With Fixed Transmission Time Intervals (TTI) For HSDPA.”
[18] Zhifeng Tao; Anfei Li; Jinyun Zhang; Kuze, T.Performance Improvement for Multichannel HARQ Protocol in Next Generation WiMAX System.” Wireless Communications and Networking Conference, 2008. WCNC 2008. IEEE, March 31 2008-April 3 2008 Page(s):2009 – 2014
[19] Meng-Han Hsieh and Che-Ho Wei, “Channel Estimation for OFDM Systems Based On Comb-Type Pilot Arrangement in Frequency Selective Fading Channels,” Department of Electronics Engineering National Chiao Tung University, Hsinchu, Taiwan 30050, R.O.C
[20] M. Saad Akram,“ Pilot-based Channel Estimation in OFDM Systems,” Nokia, June 2007
[21] IEEE 802.16 Broadband Wireless Access Working Group “DRAFT Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems .” P802.16Rev2/D8 December 2008
[22] Qualcomm Europe, “Evaluation parameters for positioning studies.” 3GPP TSG-RAN WG1 #56,R1-090853,9-13 February, 2009
[23] Kun Pang; Yonghui Li; Vucetic, B.; “An Improved Hybrid ARQ Scheme in Cooperative Wireless Networks.” Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th , 21-24 Sept.2008 Page(s):1-5
[24] Sassan Ahmadi, Hujun Yin, “Proposal for IEEE 802.16m Frame Structure.”IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_082, Jan. 2008
[25] Muthu Venkatachalam, Sassan Ahmadi , “IEEE 802.16m MAC Layer Protocols: Design Principles.” IEEE 802.16 Broadband Wireless Access Working Group IEEE C80216m-08/409r1, May 2008
[26] Alexei Davydov, Alexander Maltsev, “Hybrid ARQ for synchronous allocation in distributed subcarrier mode.” For discussion and adoption by IEEE 802.16m group S80216m-08_290r1, May 2008.
[27] Chiu Chun-Yuan, Fang-Ching Ren, Richard Li, ITRI, Wern-Ho Sheen, NCTU/ITRI , “HARQ process timing and HARQ process number” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_307, May 2008
[28] Mamadou Kone, Ming-Hung Tao, Ying-Chuan Hsiao, Richard Li, ITRI , “HARQ with an Adaptive N Packets Transmission per CID.” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_315r2, May 2008
[29] Eunjong Lee, Doo-hyun Sung, HanGyu Cho, Hyungho Park , “Hybrid-ARQ data transmission for sub-frame concatenation.” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_414r1, May 2008
[30] Rong-Terng Juang, Chien-Yu Kao, Jen-Yuan Hsu, Yu-Tao Hsieh, Pang-An Ting, Richard Li, ITRI, “HARQ Based ICI Cancellation for 802.16m.” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_308, May 2008.
[31] Hung-Yu Wei, Ching-Chun Chou, National Taiwan University, Chun-Yen Wang, Richard Li, ITRI, “ACK and NACK Feedback Schemes for HARQ Operation.” IEEE 802.16 Broadband Wireless Access Working Group C80216m-08_294r5, May 2008
[32] Shin-Ming Cheng, Chai-Hien Gan, Phone Lin, Guan-Hua Tu, “KEY ISSUES AND TECHNOLOGIES FOR UMTS HIGH SPEED DOWNLINK PACKET ACCESS.” Bulletin of the College of Engineering, N.T.U., No. 90, February 2004, pp. 57–63
[33] Alexander Sayenko, Henrik Martikainen, Alexander Puchko, “Performance comparison of HARQ and ARQ mechanisms in IEEE 802.16 networks.” International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, 2008, Pages 411-416
[34] Yair Bourlas, Lei Wang, Erik Colban, Ken, Stanwood , “NACK based ARQ Over HARQ in IEEE 802.16m.” IEEE 802.16 Broadband Wireless Access Working Group, Sep. 2008
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-06-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-06-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信