§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1006200914293700
DOI 10.6846/TKU.2009.00247
論文名稱(中文) 具動態調變編碼機制之無線通訊系統設計與分析
論文名稱(英文) Design and Analysis using velocity-specific Modulation and Coding Mechanism in Wireless Communication System
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 林柏戎
研究生(英文) Po-Jung Lin
學號 696440048
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-06-06
論文頁數 46頁
口試委員 指導教授 - 李揚漢
委員 - 李揚漢
委員 - 詹益光
委員 - 曹恆偉
委員 - 許獻聰
委員 - 李永定
關鍵字(中) 適應性調變和編碼
長期演進技術
關鍵字(英) Adaptive Modulation and Coding
IEEE 802.16m
Long Term Evolution (LTE)
Modulation and Coding Schemes
第三語言關鍵字
學科別分類
中文摘要
適應性調變與編碼(Adaptive Modulation and Coding, AMC),利用通道變動進行系統的調整,以得到好處。行動台在移動狀態時,期間受到各種通道干擾,當接收訊號越來越差時,為了想要維持住行動台之良好的服務品質,基地台可以可調式的改變適合的調變及編碼技術,以維持與行動台傳輸的良好服務品質,以確保資料能正確傳送。
    提出新一代無線通訊系統IEEE 802.16m及LTE適用之調變及編碼的結構(Modulation and Coding Scheme, MCS)模組,在不考慮各種重傳(Automatic Repeat Request, ARQ)機制下,由於AMC控制器需根據接收端訊雜比值(Signal-to-noise ratio, SNR),有效率的控制發射的調變率和編碼比率,所以需發展出一套合理的調變和編碼策略,透過精細的SNR值界定合適調變和編碼。由於行動台不同的移動速度下其效能表現不盡相同,所以其SNR界限值也會有所不同,模擬不同速度之通道狀態下適應性調變和編碼的SNR界限值。
    將提出考慮行動台移動速度下之動態適應性調變及編碼技術機制方式,整合入開發出的基地台流量模擬GUI介面軟體,提供基地台在選擇適用調變和編碼方式與行動台溝通時的選擇機制,協助此GUI介面軟體開發完善。
英文摘要
When a user moves during his information transmission the users received signal strength will encounter various kinds of fading and interference effects. In order to maintain a good and acceptable signal quality at the receiver end, the base station and/or the mobile station may use Adaptive Modulation and Coding (AMC) mechanism to adaptively change and select its modulation scheme and coding rate to accommodate the varying communication environment.
    We propose a new Modulation and Coding Scheme (MCS) for the now being developed future wireless mobile communications, IEEE 802.16m and LTE. Without considering the Automatic Repeat Request (ARQ) mechanism the AMC controller will base on its received Signal-to-noise ratio (SNR) to adjust the transmitter’s modulation scheme and coding rate. From the possible SNR threshold ranges and its statistical characteristics generating from the simulation of the channel responses when the mobile speed changes we develop a reasonable and feasible Modulation and Coding adjustment strategy that varies with the changing of the channel characteristics. 
    Finally we propose a dynamic and adaptive Modulation and Coding mechanism when the mobile speed is taken into consideration in the design of the modulation and coding scheme. We also develop the interface software for the Graphical User Interfaces (GUI) to provide a proper interface in the design of the dynamic and adaptive Modulation and Coding scheme when the base station is communicating with the mobile station.
第三語言摘要
論文目次
目錄
第一章	緒論  ………………………………………………………1
         1.1研究動機與目的 ………………………………………1
         1.2章節介紹 ………………………………………………2
第二章	無線通訊系統介紹  ………………………………………4
         2.1IEEE 802.16m系統介紹 ………………………………4
         2.2 LTE系統介紹 …………………………………………4
         2.3適應性調變與編碼 ……………………………………5
第三章	通道模型  …………………………………………………7
         3.1通道損失及衰落模型 …………………………………7
         3.2 雜訊比與距離關係 …………………………………10
第四章	IEEE 802.16m系統下有考慮行動台移動速度之動態調變編碼機制  ………………………………………………………………12
         4.1IEEE 802.16m系統傳收發機模型  …………………12
         4.2不同速度下的SNR界限值分析 ………………………16
         4.3動態調變編碼機制效能模擬分析  …………………23
第五章	LTE系統下動態調變編碼機制之SNR界限值分析 ………26
第六章	具動態調變編碼機制之基地台流量模擬GUI介面軟體…36
第七章	結論與未來展望 …………………………………………42
參考文獻  ……………………………………………………………43

圖目錄
圖2.1適應性調變與編碼系統流程圖 …………………………………6
圖3.1Rayleigh Fading信號強度變化示意圖(a)移動速度 3 km/hr ……………………………………………………………………………9
圖3.1Rayleigh Fading信號強度變化示意圖(b)移動速度 60 km/hr  …………………………………………………………………10
圖3.2雜訊比與距離關係圖(a)行動台靜止狀態 ……………………11
圖3.2雜訊比與距離關係圖(b)行動台移動速度 120 km/hr ………11
圖4.1(a)傳送端系統架構 ……………………………………………13
圖4.1(b)接收端系統架構 ……………………………………………13
圖4.2IEEE 802.16m DL之Pilot格局(Pilot Pattern) ……………15
圖4.3靜止狀態下不同MCS的SNR與BER模擬圖 ………………………18
圖4.4時速3 km/hr下不同MCS的SNR與BER模擬圖  …………………19
圖4.5時速60 km/hr下不同MCS的SNR與BER模擬圖 …………………20
圖4.6時速120 km/hr下不同MCS的SNR與BER模擬圖  ………………21
圖4.7時速350 km/hr下不同MCS的SNR與BER模擬圖  ………………22
圖4.8動態及非動態調變編碼機制流程圖  …………………………24
圖5.1LTE DL之Pilot格局(Pilot Pattern)  ………………………28
圖5.2LTE系統靜止狀態下QPSK不同編碼率的SNR與BER模擬圖 ……29
圖5.3LTE系統靜止狀態下QAM不同編碼率的SNR與BER模擬圖  ……29
圖5.4LTE系統3 km/hr下QPSK不同編碼率的SNR與BER模擬圖  ……30
圖5.5LTE系統3 km/hr下QAM不同編碼率的SNR與BER模擬圖 ………31
圖5.6LTE系統60 km/hr下不同MCS的SNR與BER模擬圖  ……………32
圖5.7LTE系統120 km/hr下不同MCS的SNR與BER模擬圖 ……………33
圖5.8LTE系統350 km/hr下不同MCS的SNR與BER模擬圖 ……………34
圖6.1基地台流量模擬GUI介面軟體 …………………………………36
圖6.2基地台流量模擬GUI介面軟體整合動態調變編碼技術之流程   …………………………………………………………………………37
圖6.3IEEE 802.16m基地台流量模擬GUI介面軟體整合動態調變編碼機制之運用 (a)無考慮行動台移動速度之適應性調變和編碼機制 …………………………………………………………………………40
圖6.3IEEE 802.16m基地台流量模擬GUI介面軟體整合動態調變編碼機制之運用(b)有考慮行動台移動速度之動態調變編碼機制 ……40
 

表目錄
表4.1IEEE 802.16e規範接收訊雜比與調變碼率關係(BER≦10-6) …………………………………………………………………………12
表4.2於IEEE 802.16m系統下提出的六種調變和編碼架構 ………16
表4.3IEEE 802.16m系統模擬參數值表 ……………………………17
表4.4靜止狀態下不同MCS的SNR界限值 ……………………………18
表4.5時速3 km/hr下不同MCS的SNR界限值  ………………………19
表4.6時速60 km/hr下不同MCS的SNR界限值 ………………………20
表4.7時速120 km/hr下不同MCS的SNR界限值  ……………………21
表4.8時速350 km/hr下不同MCS的SNR界限值  ……………………23
表4.9行動台移動速度120 km/hr下動態及非動態調變編碼機制其效能表現  ………………………………………………………………25
表5.1LTE系統模擬參數值表  ………………………………………27
表5.2於LTE系統下提出的三種調變和編碼架構  …………………28
表5.3LTE系統靜止狀態下不同MCS的SNR界限值  …………………30
表5.4LTE系統3 km/hr下不同MCS的SNR界限值 ……………………31
表5.5LTE系統60 km/hr下不同MCS的SNR界限值  …………………32
表5.6LTE系統120 km/hr下不同MCS的SNR界限值 …………………33
表5.7LTE系統350 km/hr下不同MCS的SNR界限值 …………………35
表6.1基地台流量模擬參數值表 ……………………………………38
表6.2IEEE 802.16m系統下HTTP服務品質連線成功率 ……………41
表6.3LTE系統下HTTP服務品質連線成功率  ………………………41
參考文獻
[1]M. Cudak, “IEEE 802.16m System Requiremens,” IEEE 802.16 Broadband Wireless Access Working Group, C802.16m-08/008, 2008.
[2]J. Zhuang, L. Jalloul, R. Novk, J. Park “Project 802.16m Evaluation Methodology Document (EMD)” IEEE 802.16 Broadband Wireless Access Working Group, IEEE 802.16m-08/004, 2008.
[3]R. B. Marks, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” IEEE 802.16e Standard, Feb. 2006.
[4]3GPP TS 36.212: “Multiplexing and channel coding”.
[5]A.J. Goldsmith, S.-G. Chua, “Adaptive coded modulation for fading channels,” Communications, IEEE Transactions on, vol. 46, Issue 5, May 1998, pp.595-602.
[6]A. Farrokh, V. Krishnamurthy, R. Schober, “Optimal Adaptive Modulation and Coding with Switching Costs,” Communications, IEEE Transactions on, Vol. 57, Issue 3, March 2009, pp. 697-706.
[7]Shang Jing, Gao Yan, Li Zhen, Man Yi, Song Junde, “Performance study of adaptive modulation/coding in MIMO-OFDM system,” Electrical and Computer Engineering, 2003. IEEE CCECE 2003. Canadian Conference on, Vol. 3, 4-7 May 2003, pp. 1559-1562.
[8]Soon-Ghee Chua, A. Goldsmith, “Adaptive coded modulation for fading channels,” Communications, 1997. ICC 97 Montreal, 'Towards the Knowledge Millennium'. 1997 IEEE International Conference on, Vol. 3, 8-12 June 1997, pp. 1488-1492.
[9]Xiaoxin Qiu, K. Chawla, “On the performance of adaptive modulation in cellular systems,” Communications, IEEE Transactions on, Vol. 47, Issue 6, June 1999, pp. 884-895.
[10]Z. Lin, E. Erkip, M. Ghosh, “Adaptive modulation for coded cooperative systems,” Signal Processing Advances in Wireless Communications, 2005 IEEE 6th Workshop on, 5-8 June 2005, pp. 615-619.
[11]V. Wen-Kai Cheng, W.E. Stark, “ Adaptive coding and modulation for spread-spectrum signals,” Vehicular Technology Conference, 1997 IEEE 47th, Vol. 3, 4-7 May 1997, pp. 1987-1997. 
[12]E.H. Satorius, Zhong Ye, “Adaptive modulation and coding techniques in MUOS fading/scintillation environments,” MILCOM 2002. Proceedings, Vol. 1, 7-10 Oct. 2002, pp. 321-327. 
[13]Kee-Bong Song, A. Ekbal, Seong Taek Chung, J.M. Cioffi, “Adaptive modulation and coding (AMC) for bit-interleaved coded OFDM (BIC-OFDM),” Wireless Communications, IEEE Transactions on, Vol. 5, Issue 7, July 2006, pp. 1685-1694. 
[14]Ju-Ling Zeng, Bing Xie, Wen-An Zhou, Jun-De Song, “Cross-Layer Design Combining Adaptive Modulation and Coding with ARQ on Frequency Domain Subcarrier of OFDM,” Wireless Communications, Networking and Mobile Computing, 2008. WiCOM '08. 4th International Conference on, 12-14 Oct. 2008, pp. 1-7. 
[15]E. Sengul, E. Akay, E. Ayanoglu, “Adaptive Modulation and Coding for Bit Interleaved Coded Multiple Beamforming,” Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd, Vol. 5, 7-10 May 2006 , pp. 2088-2092.
[16]Guoquan Lu, Baojin Li, He Wang, Yang Song, Dacheng Yang, “Adaptive Modulation and Coding for MIMO Systems with V-BLAST Detection,” Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th, Sept. 30 2007-Oct. 3 2007, pp. 392-396. 
[17]Fei Peng, Jinyun Zhang, W.E. Ryan, “Adaptive Modulation and Coding for IEEE 802.11n,” Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE, 11-15 March 2007, pp. 656-661. 
[18]T. Keller, L. Hanzo, “Adaptive modulation techniques for duplex OFDM transmission, ” Vehicular Technology, IEEE Transactions on, Vol. 49,  Issue 5, Sept. 2000, pp. 1893-1906.
[19]K. Ishihara, Y. Takatori, S. Kubota, M. Umehira, “Comparison of SCFDE and OFDM with adaptive modulation and coding in nonlinear fading channel,” Electronics Letters, Vol. 43, Issue 3, Feb. 1 2007, pp. 174-175. 
[20]D.A.J. Pearce, A.G. Burr, T.C. Tozer, “Capacity of cellular dynamic channel assignment schemes employing adaptive modulation and coding,” Electronics Letters, Vol. 37, Issue 2, 18 Jan 2001, pp. 101-102.
[21]D. Marabissi, D. Tarchi, R. Fantacci, F. Balleri, “Efficient Adaptive Modulation and Coding Techniques for WiMAX Systems,” Communications, 2008. ICC '08. IEEE International Conference on, 19-23 May 2008, pp. 3383-3387. 
[22]J. Yang, N. Tin, A.K. Khandani, “Adaptive modulation and coding in 3G wireless systems,” Vehicular Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th, Vol. 1, 24-28 Sept. 2002, pp. 544-548. 
[23]V. Erceg, K. V. S. Hari, M. S. Smith, D.S. Baum, and P. Soma, “Channel Models for Fixed Wireless Applications,” IEEE 802.16 Broadband Wireless Access Working Group, C802.16.3c-01/29r4, June 2003.
[24]A. F. Molisch, H. Asplund, R. Heddergott, M. Steinbauer, and T. Zwick, “The COST259 directional channel model – I. overview and methodology,” IEEE Trans. Wireless Communcation, Vol. 5, pp. 3421–3433, 2006.
[25]M. Steinbauer, A. F. Molisch, and E. Bonek, “The double-directional radio channel,” IEEE Antennas and Propagation Magazine, pp. 51–63, August 2001.
[26]G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communications, Vol. 6, pp. 311–335, Feb. 1998.
[27]W. C. Jakes, “Microwave mobile communication,” New York IEEE Press, 1974.
[28]J. Cao, William S. Cleveland, Dong Lin, Don X. Sun., “On the Non-stationarity of Internet Traffic”, Proc. ACM SIGMETRICS 2001, pp. 102-112, 2001.
[29]P. C. Ng, S. C. Liew, and C. Lin, “Voice over wireless LAN via IEEE 802.16 wireless MAN and IEEE 802.11 wireless distribution system,” in Proc. of IEEE WIRELESSCOM, 2005.
[30]F. D. Smith, F. H. Campos, K. Jeffay, D. Ott, “What TCP/IP Protocol Headers Can Tell Us About the Web”, Proc. 2001 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, June 2001, pp. 245-256.
[31]Jeffrey G. Andrews, Arunabha Ghosh, and Rias Muhamed, Fundamentals of WiMAX: Understanding Broadband Wireless Networking. Prentice Hall, 2007.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信