淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1006200815582100
中文論文名稱 具保固期的可修復產品之最佳不完全預防性維護時間
英文論文名稱 Optimal Imperfect Preventive Maintenance Time for Repairable Products with Warranty
校院名稱 淡江大學
系所名稱(中) 統計學系碩士班
系所名稱(英) Department of Statistics
學年度 96
學期 2
出版年 97
研究生中文姓名 劉邦旭
研究生英文姓名 Pang-Hsu Liu
學號 695650159
學位類別 碩士
語文別 英文
口試日期 2007-05-17
論文頁數 32頁
口試委員 指導教授-蔡宗儒
委員-吳柏林
委員-廖敏治
委員-蘇懿
中文關鍵字 非齊次卜瓦松過程  Power law process  最小維護  週期性維護  MIL-STD-721B  截斷抽樣 
英文關鍵字 Nonhomogeneous Poisson process  Power law process  Minimal repair  Periodic maintenance  MIL-STD-721B  Truncated sampling 
學科別分類 學科別自然科學統計
中文摘要 考慮不完全的預防性維護的條件下,本論文建立一個預防性維護計畫。在此計畫中,預防性維護的檢查點是在預先排定的時間表下,週期性地執行。若產品失效發生在預防性維護檢查點之間,則以最小維修來修復產品。本論文假設產品的失效模式服從非齊次卜瓦松過程,在有限的產品保固期之下,建立此一計畫的成本函數,並以最小化成本函數為條件來求得到最佳的預防性維護計畫。此外,我們藉由近似的方法來估算真正的成本與估計的成本之間的差異,並以此評估本預防性維護的品質。本文以一個實例來說明所提出的預防性維護計畫之應用。
英文摘要 This thesis establishes a preventive maintenance plan under an imperfect preventive maintenance policy. The preventive maintenance check points are prescheduled and implemented periodically. Moreover, the minimal repairs are done whenever the product fails between successive preventive maintenance check points. The failures of product are modeled according to a nonhomogeneous Poisson process. An expected cost function is established under a finite warranty period, and the optimal strategy is framed which minimizes the expected cost function. The asymptotically error bound between the real cost and the estimated cost is determined to assess the quality of the proposed preventive plan. Moreover, the use of the proposed method is illustrated by an example.
論文目次 1 Introduction 1
2 The Proposed Preventive Maintenance Policy 6
3 Statistical Methods 15
4 Numerical Example 24
5 Conclusions 28

List of Figures
2.1 Flow chart of the searching
process . . . . . . . . . . . . . . . 14

List of Tables
4.1 Power Transformers Data Set . . . . . . . . . . . . . . . . . . 25
4.2 Optimal PM Plans for Various Warranty Lengths . . . . . . . 27

參考文獻 Adam, R. A. (1999). Calculus: a complete course, 4 edn, Addison Wesley.
Ascher, H. and Feingold, H. (1984). Repairable Systems Reliaility: Modeling, Inference, Misconception and Their Causes, Marcel Dekker, New York.
Bain, L. J. and Engelhardt, M. (1991). Statistical Analysis of Reliability and Life-Testing Models, Theory and Methods, Marcel Dekker, New York.
Barlow, R. E. and Proshan, F. (1965). Mathematical Theory of Reliability, Wiley, New York.
Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics, Chapman and Hall, London.
Cox, D. R. and Miller, H. D. (1965). The Theory of Stochastic Processes, Methuen, London.
Crow, L. R. (1974). Reliability analysis or complex systems, in F. Proschan and J. Serfling (eds), Reliability and Biometry: Statistical Analysis of Lifelength, SIAM, Philadelphia, PA., pp. 379–410.
Gilardoni, G. L. and Colosimo, E. A. (2007). Optimal maintenance time for repairable systems, Journal of Quality Technology 39(1): 48–53.
Lawless, J. F. (1982). Statistical models and methods for lifetime data, Wiley, New York.
Pham, H. and Wang, H. (1996). Imperfect maintenance, European Journal of Operational Research 94: 425–438.
Pulcini, G. (2001). A bounded intensity process for the reliability of repairable equipment, Journal of Quality Technology 33: 480–492.
Rigdon, S. E. and Basu, A. P. (2000). Statistical Methods for the Reliability of Repairable Systems, Wiley, New York.
Yeh, R. H. and Chen, M.-Y. (2005). Optimal preventive-maintenance warranty policies for repairable products with age-dependent maintenance costs, International Journal of Reliability, Quality and Safety Engineering 12(2): 111–125.
Zhao, M. and Xie, M. (1996). On maximum likelihood estimation for a general non-homogeneous poisson process, Scandinavian Journal of Statistics 23(4): 597–607.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-06-24公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-06-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信