淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1006200811482600
中文論文名稱 三個分類水準的EWMA 及Shewhart-EWMA 管制圖
英文論文名稱 The Three-level EWMA and Shewhart-EWMA Control Charts
校院名稱 淡江大學
系所名稱(中) 統計學系碩士班
系所名稱(英) Department of Statistics
學年度 96
學期 2
出版年 97
研究生中文姓名 顏文品
研究生英文姓名 WEN-PIN YEN
學號 695650068
學位類別 碩士
語文別 英文
口試日期 2008-05-17
論文頁數 47頁
口試委員 指導教授-蔡宗儒
委員-吳柏林
委員-廖敏治
委員-蘇懿
中文關鍵字 平均連串長度  馬可夫鏈  Shewhart-EWMA 管制圖  EWMA 管制圖  管制圖 
英文關鍵字 Average run length  Markov chain  Shewhart-EWMA control  EWMA control chart  control chart 
學科別分類 學科別自然科學統計
中文摘要 在生產過程中,製程常會受到許多因素干擾而產生變異,進而對品質特性產生影響,降低品質水準。當製程因干擾而產生變異時,統計製程管制(Statistical Process Control,簡稱SPC)能迅速地偵測出造成製程變異的可歸屬原因,以利品質管制人員採取修正措施並降低不良品的產生數量 。
本論文延伸Cassady 和 Nachlas (2006) 所提出之三個分類水準Shewhart 管制圖到三個分類水準的指數加權移動平均(Exponentially Weighted Moving Average,EWMA)管制圖及Shewhart-EWMA 管制圖 。在本研究中,管制圖的管制界限是在給定管制狀態下的平均連串長度,使用馬可夫鏈方法計算得到
的 。基本上,本論文所提出的管制圖可以改善三個分類水準Shewhart 管制圖在對製程小偏移的偵測速度。
英文摘要 The thesis extends the three-level Shewhart control chart proposed by Cassady and Nachlas [8] to exponentially weighted moving average and Shewhart-EWMA control charts for monitoring the quality of three-level (conforming,
marginal, nonconforming) products. The control limits of the proposed control chart are established based on the zero-state average run lengths using Markov chain approximation. Basically, the proposed control charts improve the performance of the three-level Shewhart control chart signi¯cantly and are
able to detect small shifts in a process more quickly.
論文目次 Contents

1 Introduction...........................................1
2 The Three-level Shewhart control chart.................4
3 The Proposed Control Charts............................8
3.1 The Three-level EWMA Control Chart...................8
3.2 The Three-level Shewhart-EWMA Control Chart.........10
4 Performance Measures..................................12
4.1 The Average Run Length..............................12
4.2 The Calculation of ARL for the Three-level EWMA
Control Chart.......................................13
4.3 The Calculation of ARL for the Three-level Shewhart- EWMA Control Chart..................................16
5 Numerical study.......................................20
6 Conclusions...........................................44

List of Tables

5.1 The out-of-control ARLs under delta1_1=1.50 and delta_2=1.14. . . . . . . . . . . . 22
5.2 The out-of-control ARLs under delta_1=2.00 and delta_2=1.39. . . . . . . . . . . . 23
5.3 The out-of-control ARLs under delta_1=2.50 and delta_2=1.60. . . . . . . . . . . . . 24
5.4 The out-of-control ARLs under delta_1=3.00 and delta_2=1.78. . . . . . . . . . . . . 25
5.5 The out-of-control ARLs under delta_1=3.50 and delta_2=1.94. . . . . . . . . . . . . 26
5.6 The out-of-control ARLs under de1ta_1=4.00 and delta_2=2.09. . . . . . . . . . . . . 27
5.7 The out-of-control ARLs under delta_1=2.00 and delta_2=1.27. . . . . . . . . . . . . 28
5.8 The out-of-control ARLs under delta_1=2.50 and delta_2=1.49. . . . . . . . . . . . . 29
5.9 The out-of-control ARLs under delta_1=3.00 and delta_2=1.68. . . . . . . . . . . . . 30
5.10 The out-of-control ARLs under delta_1=3.50 and delta_2=1.85. . . . . . . . . . . . . 31
5.11 The out-of-control ARLs under delta_1=4.00 and delta_2=2.00. . . . . . . . . . . . . 32
5.12 The out-of-control ARLs under delta_1=4.50 and delta_2=2.14. . . . . . . . . . . . . 33
5.13 The out-of-control ARLs under delta_1=3.00 and delta_2=1.47. . . . . . . . . . . . . 34
5.14 The out-of-control ARLs under delta_1=3.50 and delta_2=1.66. . . . . . . . . . . . . 35
5.15 The out-of-control ARLs under delta_1=4.00 and delta_2=1.82. . . . . . . . . . . . . 36
5.16 The out-of-control ARLs under delta_1=4.50 and delta_2=1.97. . . . . . . . . . . . . 37
5.17 The out-of-control ARLs under delta_1=5.00 and delta_2=2.11. . . . . . . . . . . . . 38
5.18 The out-of-control ARLs under delta_1=5.50 and delta_2=2.23. . . . . . . . . . . . . 39
5.19 The out-of-control ARLs under lambda=0.1 and N=101. . . . . . . . . . . . . . 40
5.20 The out-of-control ARLs under lambda=0.15 and N=101. . . . . . . . . . . . . 41
5.21 The out-of-control ARLs under lambda=0.2 and N=101. . . . . . . . . . . . . . 42
5.22 The out-of-control ARLs under lambda=0.3 and N=101. . . . . . . . . . . . . . 43

List of Figures

4.1 In-control partition of interval. . . . . . . . . . . . . . . . . . . . . . . . . . 13

參考文獻 [1] Bray, D. Lyon, D. and Burr, I. (1973). Three-class
attributes plans in acceptance sampling.
Technometrics, 15(3): 575-585.
[2] Brror, C., Champ C. and Rigdon S. (1998). Poisson EWMA
control chart. Journal of Quality Technology, 30: 352-
361.
[3] Brror, C., Montgomery D. and Runger G. (1999).
Robustness of the EWMA control chart to non-normality.
Journal of Quality Technology, 21: 242-250.
[4] Clements, J. (1978). Standards and sampling plans for
product safety. ASQC Technical Conference
Transactions, 483-490.
[5] Clements, J. (1983). Trinomial sampling plans to match
MIL-STD-105D. ASQC Quality Congress Transactions, 37:
256-264.
[6] Crowder, S. V. (1989). Design of exponentially
weighted moving average schemes. Journal of Quality
Technology, 21: 155-162.
[7] Cassady, C. and Nachlas, J. (2003). Evaluating and
implementing 3-level acceptance sampling plans.
Quality Engineering, 15(3): 361-369.
[8] Cassady, C. and Nachlas, J. (2006). Evaluating and
implementing 3-level Control Charts. Quality
Engineering, 18: 285-292.
[9] Lucas, J. M. and Saccucci, M. S. (1987).
"Exponentially weighted moving average control
schemes: Properties and enhancements." Drexel
University Faculty Working Seris paper 87-4,
Philadelphia, PA.
[10] Lucas, J. M. and Saccucci, M. S. (1990).
Exponentially weighted moving average control
schemes: Properties and enhancements. Technometrics,
32: 1-12.
[11] Marcucci, M. (1985). Monitoring multinomial
processes. Journal of Quality Technology, 17(2): 86-
91.
[12] Montgomery, D. C. (2005). Introduction to Statistical
Quality Control. 5rd ed. John Wiley, Sons, New York,
NY.
[13] Newcombe, P. and Allen, O. (1988). A three-class
procedure for acceptance sampling by variables.
Technometrics, 30(4): 415-421.
[14] Ng, C. and Case K. (1989). Development and evaluation
of control charts using exponentially weighted moving
averages. Journal of Quality Technology , 31: 309-
315.
[15] Roberts, S. W. (1959). Control chart tests based on
geometric moving averages. Technometrics, 1: 239-250.
[16] Shah, D. and Phatak, A. (1973). The maximum
likelihood estimation under curtailed three-class
attributes plans. Technometrics, 19(2): 159-166.
[17] Shapiro, S. and Zahedi, H.(1990). Bernoulli trials
and discrete distributions. Journal of Quality
Technology, 22(3): 193-205.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-06-23公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-06-23起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信