淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1006200520191700
中文論文名稱 利用基因法則及TE極化波照射重建二維非完全導體之研究
英文論文名稱 Electromagnetic Transverse Electric Wave Inverse Scattering of a Two-dimensional Imperfectly Conducting Cylinder by Genetic Algorithm
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 蔡明峯
研究生英文姓名 Ming-Feng Tasi
學號 692350720
學位類別 碩士
語文別 中文
口試日期 2005-05-23
論文頁數 59頁
口試委員 指導教授-丘建青
委員-林丁丙
委員-李慶烈
委員-林俊華
委員-余金郎
中文關鍵字 基因法則  逆散射  非完全導體 
英文關鍵字 Genetic algorithm  imperfectly conducting cylinder  Transverse Electric-Wave 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文針對TE極化波入射的情況下,對於非完全導體的電磁成像問題進行探討。
對於非完全導體而言,我們利用非完全導體表面阻抗的觀念再加上表面電流的觀念,在物體的邊界上,可導出非線性積分方程式,繼而利用動差法求得正散射公式。經由推導出的正散射公式,我們可以得到散射場的相關資料。在於逆散射部分,我們使用了基因法則(Genetic Algorithm),經由適當地選取參數,同時結合所推導的散射公式,我們可以由觀測點所測得的散射場值,經由基因法則的運算,來反求得物體的形狀函數。
就整體而言不論初始的猜測值如何,基因法則總會收歛到整體的極值(global extreme),因此,在數值模擬中,即使最初的猜測值與實際值相距甚遠,我們仍可求得準確的數值解,成功的重建出物體形狀函數與導電率。而且量測的散射場即使加入高斯分佈的雜訊存在,依然可以得到良好的重建結果。此外我們也對於形狀函數跟導電率的雜訊容忍量予以比較。
英文摘要 This paper presents a computational approach to the transverse electric (TE) wave imaging of an imperfectly conducting cylinder. An imperfectly conducting cylinder of unknown shape and conductivity scatters the incident wave in the free space, and the scattered field is recorded outside the object. Based on the boundary condition and measured scattered field, a set of nonlinear integral equations is derived and the imaging problem is reformulated into an optimization one that solved by Genetic Algorithm. Numerical results demonstrated that, the even when the initial guess is far away from the exact one, good reconstruction for shape and conductivity of the object can be obtained and the object’s conductivity also can be reconstruction excellent, In addition, the effect of noise is also be investigated.
論文目次 第一章 簡介...................................1
1.1 研究動機與相關文獻....................... 1
1.2 本研究之貢獻............................. 5
1.3 各章內容簡述............................. 5
第二章 非完全導體在自由空間之逆散射.......... 7
2.1 理論推導................................ 8
2.2 數值方式................................ 11
2.3 基因演算法之基本概念.................... 15
2.4 介紹基因演算法則中的運算方式............. 16
2.4.1 編碼與解碼............................ 16
2.4.2 基因法則三大運算法則.................. 19
2.4.3 基因法則的主要特性.................... 22
2.5 基因法則在逆散射的應用.................. 24
第三章 數值分析與模擬結果.................... 32
3.1 模擬環境介紹............................ 32
3.2 正散射之驗證............................ 33
3.3 二維兩瓣物體之重建結果.................. 33
3.4 二維三瓣物體之重建...................... 34
3.5 散射場雜訊對重建的影響.................. 34
3.6 兩瓣物體導電率可重建範圍................ 35
3.7 三瓣物體導電率可重建範圍................ 35
3.8 不同編碼參數之模擬...................... 36
第四章 結論.................................. 48
參考文獻..................................... 50
圖2. 1 模擬環境………………………………………………………28
圖2.2 差分電流密度與電荷密度分佈………………………………… 29
圖2.3 各點源與場點的關係………………………………………….. 30
圖2.4 基因法則流程圖…………………………………………………. 31
圖3.1 二維兩瓣物體還原結果…………………………………………. 37
圖3.2 兩瓣物體每代物體函數偏差量………………………………... 38
圖3.3 兩瓣物體每代導電率偏差量……………………………………. 39
圖3.4二維三瓣物體還原結果………………………………………….. 40
圖3.5三瓣物體每代物體函數偏差量………………………………….. 41
圖3.6 三瓣物體每代導電率偏差量……………………………………. 42
圖3.7 三瓣不同noise形狀偏差量與導電率偏差量…………………... 43
圖3.8 兩瓣物體各不同導電率的還原偏差……………………………. 44
圖3.9 三瓣物體各不同導電率的還原偏差……………………………. 45
圖3.10 24bit之每代物體函數估測結果………………………………... 46
圖3.11 24bit之每代導電率之估測結果………………………………... 47
表2. 1 基因演算法相關名詞解釋與中英對照表..............26
參考文獻 [1] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, vol. 6, pp. 635-641, Aug. 1990

[2] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems. New York: Wiley 1977.

[3] V. A. Morozonv, Methods for Solving Incorrectly Posed Problems. New York: Spring-Verlag, 1984

[4] C. De Mol, “A critical survey of regularized inversion methods,” in inverse Problems in Scattering and Imaging, M. Bertero and E. R. Pike, Eds. Bristol, U.K.: Adam Hilger, 1992, pp. 345-370

[5] B. Hofmann, “Regularization of nonlinear problems and the degree of ill-posedness,”in Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine, G. Anger, R. Gorenflo, and H. Jockmann, Eds. New York: Wiley 1993, pp. 174-188.

[6] N. N. Bojarski, “A survey of the physical optics inverse scattering identity,” IEEE Trans. Antennas Propagat., vol. 30, pp.980-989, Sept.1982.

[7] R. M. Lewis, “Physical optics inverse diffraction,” IEEE Trans. Antennas Propagat., vol. 17, pp. 308-314, May 1969

[8] T. H. Chu and N. H. Farhat, “Polarization effects in microwave diversity imaging of perfectly conducting cylinders,” IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.

[9] M. Moghaddam and W. C. Chew, “Nonlinear two-dimensional velocity profile inverse using Time-domain data,” IEEE Trans. Geosci Remote Sensing, vol. 30,pp. 147-156, Jan. 1992

[10] W. Yu, Z. Peng, and L. Jen, “A fast convergent method in electromagnetic inverse scattering,” IEEE Trans. Antennas Propagation., Vol. 44, pp. 1529-1532, Nov. 1996.

[11] A. Qing and L. Jen, “Microwave imaging of dielectric cylinder in layered media,” Journal of Electromagnetic Waves and Applications., vol. 11, no.2, pp. 259-269, 1997

[12] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional permittivity using the distorted Born iterative method,” IEEE Trans. Med. Imag., vol. 9, pp. 218-225, 1990.

[13] W. C. Chew and Q. H. Liu, “Inversion of induction tool measurements using the distorted Born iterative method an CG-FFHT” IEEE Trans. Geosci. Remote Sensing., vol. 32,pp. 878-884, July 1994.

[14] R. E. Kleinman and P. M. van den Berg, “A modified gradient method for two-dimensional problems in tomography,” J. Comput. Appl. Math., vol. 42, no. 1, pp.17-35, 1992.

[15] P. M. van den Berg and M. van der Horst, “Nonlinear inverse in induction logging using the modified gradient method,” Radio Sci., vol. 30, pp.1355-1369, 1995.

[16] A. Roger, ”Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Trans. Antennas Propagat., vol. Ap-29, pp. 232-238, Mar.1981.

[17] H. T. Lin and Y. W. Kiang, “Microwave imaging for a dielectric cylinder,” IEEE Trans. Microwave Theory Tech., vol. 42, pp.1572-1579, Aug. 1994.

[18] A. Qing and L. Jen, “A novel method for microwave imaging of dielectric cylinder in layered media,” Journal of Electromagnetic Waves and Applications., vol. 11, pp. 1337-1348, Oct. 1997

[19] D. Colton and P. Monk, “A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region,” SIAM J. Appl. Math., vol. 45, pp. 1039–1053, 1985.

[20] F. Hettlich, “Two methods for solving an inverse conductive scattering problem,” Inv. Probl., vol. 10, pp. 375–385, 1994.

[21] W. C. Chew and G. P. Otto, “Microwave imaging of multiple conducting cylinders using local shape functions,” IEEE Microwave Guided Wave Lett., vol. 2, pp. 284–286, July 1992.

[22] W. H. Weedon and W. C. Chew, “Time-domain inverse scattering using the local shape function method,” Inv. Probl., vol. 9, pp. 551–564, 1993.

[23] G. P. Otto and W. C. Chew, “Inverse scattering of Hz waves using local shape-function imaging: A T-matrix formulation,” Int. J. Imag. Syst. Technol., vol. 5, no. 1, pp. 22–27, 1994.

[24] M. M. Ney, A. M. Smith, and S. Studchly, “A solution of electromagnetic imaging using pseudoinverse transformation,” IEEE Trans. Med. Imag., vol. MI-3, pp. 155–162, 1984.

[25] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. New York: Springer-Verlag, 1998.

[26] A. Tarantola and B. Valette, “Generalized nonlinear inverse problems solved using the least squares criterion,” Rev. Geophys. Space Phys., vol. 20, pp. 219–232, 1982.

[27] A. Tarantola, “A strategy for nonlinear elastc inversion of seismic reflection data,” Geophysics., vol. 51, pp. 1893–1903, 1986.

[28] I. T. Rekanos, T. V. Yioultsis, and T. D. Tsiboukis, “Inverse scattering using the finite-element method and a nonlinear optimization technique,” IEEE Trans. Microwave Theory., vol. 47, pp. 336–344, Mar. 1999.

[29] W. Wang and S. Zhang, “Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies,” IEEE Trans. Antennas Propagate., vol. 40, pp. 1292–1296, Nov. 1992.

[30] T. A. W. M. Lanen and D. W. Watt, “Singular value decomposition: A diagnostic tool for ill-posed inverse problems in optical computed tomography,” in Detection Technology for Mines and Minelike Targets, A. C. Dubey et al., Eds. Bellingham, WA: SPIE, 1995, pp. 174–185.

[31] T. S. Low and B. Chao, “The use of finite elements and neural networks for the solution of inverse electromagnetic problems,” IEEE Trans. Magn., vol. 28, pp. 3811–2813, May 1992.

[32] S. R. H. Hoole, “Artificial neural networks in the solution of inverse electromagnetic field problems,” IEEE Trans. Magn., vol. 29, pp. 1931–1934, Feb. 1993.

[33] M. R. Azimi-Sadjadi and S. A. Stricker, “Detection and classification of buried dielectric anomalies using neural networks—Further results,” IEEE Trans. Instrum. Meas., vol. 43, pp. 34–39, Feb. 1994.

[34] I. Elshafiey, L. Upda, and S. S. Upda, “Solution of inverse problems in electromagnetics using Hopfield neural networks,” IEEE Trans. Magn., vol. 31, pp. 852–861, Jan. 1995.

[35] A. K. Hamid and M. AlSunaidi, “Inverse scattering by dielectric circular cylindrical scatterers using a neural network approach,” in 1997 IEEE Int. Symp. Antennas Propagat., Montreal, QC, Canada , pp. 2278–2281, July 1997

[36] F. C. Morabito, A. Formisano, and R. Martone, “Wavelet tools for improving the accuracy of neural network solution of electromagnetic inverse problems,” IEEE Trans. Magn., vol. 34, pp. 2968–2971, May 1998.

[37] S. Caorsi et al., “Microwave imaging method using a simulated annealing approach,” IEEE Microwave Guided Wave Lett., vol. 1, pp. 331–333, Nov. 1991.

[38] L.Garneroetal. “Microwave imaging complex permittivity reconstruction by simulated annealing,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1801–1807, Nov. 1991.

[39] B. Cheng, “A cost minimization approach to microwave imaging using simulated annealing,” in 1993 Int. Joint Conf. Neural Networks, Aichi, Japan, pp. 1565–1568 , Oct. 1993.

[40] A. A. Arkadan, T. Sareen, and S. Subramaniam, “Genetic algorithms for nondestructive testing in crack identification,” IEEE Trans. Magn., vol. 30, pp. 4320–4322, June 1994.

[41] C. C. Chiu and P. T. Liu, “Image reconstruction of a perfectly conducting cylinder by the genetic algorithm,” Proc. Inst. Elect. Eng., Microw., Antennas Propagat., vol. 143, no. 3, pp. 249–253, 1996.

[42] Z. Q. Meng, T. Takenaka, and T. Tanaka, “Microwave imaging of conducting cylinders using genetic algorithms,” 1998 Int. Conf. Microwave Millimeter Wave Tech., pp. 933–936, 1998.

[43] A. Qing and S. Zhong, “Microwave imaging of two-dimensional perfectly conducting objects using real-coded genetic algorithm,” in 1998 IEEE Antennas and Propagation Int. Symp., Atlanta, GA, pp. 726–729, June 1998.

[44] C. S. Park and B. S. Jeong, “Reconstruction of a high contrast and large object by using the hybrid algorithm combining a Levenberg–Marquardt algorithm and a genetic algorithm,” IEEE Trans. Magn., vol. 35, pp. 1582–1585, Mar. 1999.

[45] A. Qing and C. K. Lee, “Shape reconstruction of a perfectly conducting cylinder using real-coded genetic algorithm,” in 1999 IEEE Antennas and Propagation Int. Symp., Orlando, FL, pp. 2148–2151, July 1999.

[46] A. Qing ,“Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,” Antennas and Propagation, IEEE Transactions vol 51, Issue 6 ,pp.1251 – 1262, June 2003.

[47] A. Qing ,“Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” Antennas and Propagation, IEEE Transactions.,vol. 52, Issue 5. pp.1223 – 1229, May 2004.


[48] C. C. Chiu and Y. W. Kiang, “Microwave imaging of multiple conducting cylinders,” IEEE Trans. Antennas Propagat., vol. 40, pp. 933–941, 1992.

[49] C. C. Chiu and P. T. Liu, “Image reconstruction of a complex cylinder illuminated by TE waves,” IEEE Trans. Microw Theory Tech., vol. 44, no. 10, pp. 1921–1927, Oct. 1996.

[50] C. C. Chiu and P. T. Liu, “Electromagnetic TE-wave inverse scattering of a conductor by the genetic algorithm,” Int. J. Imaging Syst. Technol., vol. 9, no. 5, pp. 388–394, 1998.

[51] A. Qing ,“Electromagnetic imaging of two-dimensional perfectly conducting cylinders with transverse electric scattered field,” Antennas and Propagation, IEEE Transactions, vol. 50, Issue 12, pp.1786 – 1794, Dec. 2002

[52] C. C. Chiu and Y. M. Kiang, “Electromagnetic imaging for an imperfectly conducting cylinders,” IEEE Trans. Microwave Theory Tech, vol. 39, pp. 1632- 1639, Sept. 1991.

[53] F. M. Tesche, “On the inclusion of loss in time domain solutions of electromagnetic interaction problems,” IEEE Trans. Electromagn. Compat., vol. 32, pp. 1-4, 1990.
[54] J. Michael Johnson and Yahya Rahmat-Samii,”Genetic Algorithm in Engineering Electromagnetics,” IEEE Antennas and Propagation Magazine, vol.39,No.4, August 1997

[55] R. F. Harrington, Time-harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-06-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-06-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信