§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1003201615235300
DOI 10.6846/TKU.2016.00271
論文名稱(中文) 網格碳纖維板嵌入於直接接觸式薄膜蒸餾系統之理論與實驗研究
論文名稱(英文) Distillate flux enhancement in direct contact membrane distillation modules with inserting carbon-fiber spacers
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 1
出版年 105
研究生(中文) 林伯泓
研究生(英文) Po-Hung Lin
學號 603400184
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-01-19
論文頁數 137頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
委員 - 涂志偉
委員 - 張煖
關鍵字(中) 薄膜蒸餾
透膜通量
溫度極化
碳纖維板
水力角度
紊流促進
關鍵字(英) membrane distillation
trans-membrane flux increment
Hydrodynamic angles
Temperature polarization coefficient
carbon-fiber spacers
eddy promoter
第三語言關鍵字
學科別分類
中文摘要
論文提要內容:薄膜蒸餾海水淡化用來製造純水提供民生及工業使用,因其優點特色為具有裝置簡潔、低成本、可模組化、高介面面積等,為近來廣受重視的一種技術。然而,薄膜蒸餾因模組通道限制,對於系統產能有相當顯著的影響,此現象越明顯則產能相對低落。本研究針對薄膜蒸餾之主要設備進行效率改善的研究,目的為:(1)設計新型紊流促進因子(Eddy promoter) ,以求有效改善系統內部的溫度極化現象進而提升系統產能,並歸納出一經驗公式,描述此型式的紊流促進因子對於通道內部熱對流效應的影響;(2)藉由一維數學模型針對薄膜蒸餾設備的熱量與質量傳送機制進行研究,配合實驗分析以驗證經驗公式與數學模型的正確性,並探討設計參數及操作條件對於薄膜蒸餾系統之流體溫度分佈、溫度極化現象、純水透膜通量增加百分率與水力損耗提升百分率的影響。研究結果顯示,網格型直接接觸式薄膜蒸餾系統之理論值與實驗值的相對誤差總平均為4.78 %,而本研究設定新型擾流因子能夠有效的提升系統透膜通量,最高可達到單位面積的45%的增益。本研究以操作在低體積流率之設備為主,除了有效利用通道內熱側流體以降低操作成本外,經由改善後的設計可提升設備效能並得到增加透膜通量總產量的效果。
英文摘要
Abstract:
    A new design of direct contact membrane distillation (DCMD) with various hydrodynamic angles of inserting carbon-fiber spacers in flow channels was proposed to increase the pure water productivity in saline water desalination. Temperature polarization causes the reduction of effection temperature driving force for membrane distillation. Attempts to reduce the temperature polarization were made by implementing the spacer-filled channel to create wakes and eddy in the flow characteristic. Experimental study has demonstrated its feasibility, and sustainable performance enhancement was obtained for the experimental system. The purposes of this study are (1) to develop the heat-transfer coefficient correlation for the carbon fiber channel; (2) to develop a one-dimensional mathematical model and propose a general numerical method for predicting pure water productivity of DCMD systems; (3) to study the effects of various operation parameters including the inlet fluid temperatures, volumetric flow rate, spacer-filled channel on the pure water productivity improvement. A correlated equation for estimating heat-transfer coefficient for spacer-filled channels with different hydrodynamic angles was obtained, and the results show that the agreement between the experimental results and the theoretical predictions is fairly good. The new design of eddy promoter can effectively enhance the mass flux, among the operating conditions set in this study, up to 45%.
第三語言摘要
論文目次
目錄
中文摘要I
英文摘要II
目錄III
圖目錄VI
表目錄XII
第一章緒論1
1-1引言1
1-2薄膜蒸餾系統簡介5
1-3研究動機與方向8
第二章文獻回顧11
2-1薄膜蒸餾11
2-2紊流促進因子14
第三章理論分析16
3-1直接接觸式薄膜蒸餾之熱量、質量傳送機制分析16
3-1-1直接接觸式薄膜蒸餾質傳機制之理論分析18
3-1-2直接接觸式薄膜蒸餾熱傳機制之理論分析23
3-1-3溫度極化現象與溫度極化係數26
3-2納賽數經驗公式建立與模型28
3-3直接接觸式薄膜蒸餾系統一維理論模型之建立31
3-3-1直接接觸式薄膜蒸餾系統一維理論模型31
3-3-2理論數據取得與計算分析流程-朗吉庫塔數值解析方法	36
3-3-3實驗數據之取得與分析計算流程39
3-4系統水力損耗45
3-5數學模擬參數之設定47
第四章實驗分析50
4-1網格型直接接觸式薄膜蒸餾系統50
4-2實驗步驟60
第五章結果與討論61
5-1 新型擾流直接接觸式薄膜蒸餾系統之納賽數經驗公式迴歸分析61
5-2 平板型直接接觸式薄膜蒸餾系統65
5-2-1 系統操作變因對於透膜通量之影響65
5-2-2 溫度分佈與溫度極化現象65
5-3 添加紊流促進因子之平板型直接接觸式薄膜蒸餾系統79
5-3-1 紊流促進因子對於透膜通量之影響79
5-3-2 溫度分佈與溫度極化現象80
5-4 模組設計參數於透膜通量與水力損耗之影響114
5-4-1 透膜通量增益程度與水力損耗提升程度114
5-4-2 透膜通量與水力損耗提升程度之比較116
第六章結論124
6-1 新型紊流促進因子之納賽數經驗公式124
6-2 平板型直接接觸式薄膜蒸餾系統125
6-3 添加紊流促進因子之平板型直接接觸式薄膜蒸餾系統125
6-4 模組設計參數於透膜通量與水力損耗之影響126
符號說明127
參考文獻132
圖目錄
圖1-1-1世界海水淡化使用技術比例2
圖1-1-2海水淡化成本3
圖1-2-1薄膜蒸餾之操作型態6
圖1-2-2薄膜蒸餾之模組型式	6
圖1-3-1研究架構圖10
圖3-1-1薄膜蒸餾系統熱量及質量傳送機制示意圖	17
圖3-1-2薄膜蒸餾於薄膜內之質量傳送阻力模式20
圖3-1-3薄膜蒸餾之質量傳送阻力示意圖23
圖3-1-4熱量傳送之阻力串聯模式23
圖3-1-5溫度極化示意圖26
圖3-3-1順流操作之平板型直接接觸式薄膜蒸餾系統示意圖32
圖3-3-2逆流操作之平板型直接接觸式薄膜蒸餾系統示意圖34
圖3-3-3朗吉庫塔法求解聯立方程組之計算示意圖38
圖3-3-4順流平板型薄膜蒸餾系統運算流程圖39
圖3-3-5逆流平板型薄膜蒸餾系統運算流程圖40
圖3-3-6不同操作流態之溫度分佈示意圖	41
圖3-3-7熱對流係數運算流程圖44
圖4-1-1順流平板型直接接觸式薄膜蒸餾系統簡圖51
圖4-1-2逆流平板型直接接觸式薄膜蒸餾系統簡圖52
圖4-1-3網格型直接接觸式薄膜蒸餾系統實驗設備圖53
圖4-1-4溢流桶實際圖54
圖4-1-6尼龍纖維支撐層示意圖57
圖4-1-7碳纖維板規格圖57
圖4-1-5網格型直接接觸式薄膜蒸餾模組分解圖59
圖5-1-1納賽數理論值與實驗值比較圖64
圖5-2-1順流操作下且熱側流體為純水時,不同操作參數對於透膜通量之影響68
圖5-2-2順流操作下且熱側流體為鹽水時,不同操作參數對於透膜通量之影響69
圖5-2-3逆流操作下且熱側流體為純水時,不同操作參數對於透膜通量之影響70
圖5-2-4逆流操作下且熱側流體為鹽水時,不同操作參數對於透膜通量之影響71
圖5-2-5順流狀態下且熱側流體為鹽水時,不同體積流率於主流區域與薄膜表面溫度分佈之影響74
圖5-2-6逆流狀態下且熱側流體為鹽水時,不同體積流率於主流區域與薄膜表面溫度分佈之影響75
圖5-2-7順流狀態下且熱側流體為鹽水時,不同操作參數於溫度極化係數之影響76
圖5-2-8逆流狀態下且熱側流體為鹽水時,不同操作參數於溫度極化係數之影響77
圖5-3-1順流操作下且熱側流體為鹽水時,裝載寬度2 mm 60。之碳纖維板支撐條,不同操作參數對於透膜通量之關係圖81
圖5-3-2順流操作下且熱側流體為鹽水時,裝載寬度2 mm 90。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖82
圖5-3-3順流操作下且熱側流體為鹽水時,裝載寬度2 mm 120。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖83
圖5-3-4順流操作下且熱側流體為鹽水時,裝載寬度3 mm 60。之碳纖維板支撐條,不同操作參數對於透膜通量之關係圖84
圖5-3-5	順流操作下且熱側流體為鹽水時,裝載寬度3 mm 90。之碳纖維板支撐條,不同操作參數對於透膜通量之關係圖85
圖5-3-6順流操作下且熱側流體為鹽水時,裝載寬度3 mm 120。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖86
圖5-3-7逆流操作下且熱側流體為鹽水時,裝載寬度2 mm 60。之碳纖維板支撐條,不同操作參數對於透膜通量之關係圖87
圖5-3-8逆流操作下且熱側流體為鹽水時,裝載寬度2 mm 90。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖88
圖5-3-9逆流操作下且熱側流體為鹽水時,裝載寬度2 mm 120。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖89
圖5-3-10	逆流操作下且熱側流體為鹽水時,裝載寬度3 mm 60。之碳纖維板支撐條,不同操作參數對於透膜通量之關係圖90
圖5-3-11	逆流操作下且熱側流體為鹽水時,裝載寬度3 mm 90。之碳纖維板支撐條,不同操作參數對於透膜通量之關係圖91
圖5-3-12	逆流操作下且熱側流體為鹽水時,裝載寬度3 mm 120。之碳纖維支撐條,不同操作參數對於透膜通量之關係圖92
圖5-3-13	順流操作下且熱側流體為鹽水時,不同碳纖維支撐條寬度與操作參數對於透膜通量之關係圖93
圖5-3-14	逆流操作下且熱側流體為鹽水時,不同碳纖維支撐條寬度與操作參數對於透膜通量之關係圖94
圖5-3-15	順流操作下且熱側流體為鹽水時,不同水力角度與操作參數對於透膜通量之關係圖	95
圖5-3-16	逆流操作下且熱側流體為鹽水時,不同水力角度與操作參數對於透膜通量之關係圖	96
圖5-3-17	
順流狀態下且熱側流體為鹽水時,不同碳纖維度支撐條寬度於主流區域與薄膜表面溫度分佈之影響105
圖5-3-18	順流狀態下且熱側流體為鹽水時,不同水力角度於主流區域與薄膜表面溫度分佈之影響106
圖5-3-19	逆流狀態下且熱側流體為鹽水時,不同碳纖維度支撐條寬度於主流區域與薄膜表面溫度分佈之影響107
圖5-3-20	逆流狀態下且熱側流體為鹽水時,不同水力角度於主流區域與薄膜表面溫度分佈之影響108
圖5-3-21	順流狀態下且熱側流體為鹽水時,不同碳纖維板支撐條寬度與操作參數於溫度極化係數之影響109
圖5-3-22	順流狀態下且熱側流體為鹽水時,不同水力角度與操作參數於溫度極化係數之影響	110
圖5-3-23	逆流狀態下且熱側流體為鹽水時,不同碳纖維板支撐條寬度與操作參數於溫度極化係數之影響111
圖5-3-24	逆流狀態下且熱側流體為鹽水時,不同水力角度與操作參數於溫度極化係數之影響	112
圖5-4-1	順流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力耗損提升程度比較圖121
圖5-4-2順流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力耗損提升程度比較圖122
表目錄
表1-2-1不同操作型態之薄膜蒸餾應用領域7
表3-2-1經驗式參數表28
表3-5-1模組相關參數47
表3-5-2疏水性薄膜(聚四氟乙烯+聚丙烯複合膜)相關參數47
表3-5-3流體相關參數48
表3-5-4流體相關參數式49
表4-1-1PTFE/PP複合膜之薄膜性質58
表5-1-1	納賽數經驗公式所需實驗數據之操作變因表62
表5-2-1	順流操作下平板型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差比較表72
表5-2-2逆流操作下平板型直接接觸式薄膜蒸餾系統實驗值與理論值之相對誤差比較表73
表5-2-3不同操作流向對於平均溫度極化係數之影響比較表78
表5-3-1順流純水操作下網格型(2mm)直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表97
表5-3-2順流純水操作下網格型(3mm)直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表98
表5-3-3逆流純水操作下網格型(2mm)直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表99
表5-3-4	逆流純水操作下網格型(3mm)直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表100
表5-3-5順流鹽水操作下網格型(2mm)直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表101
表5-3-6順流鹽水操作下網格型(3mm)直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表102
表5-3-7逆流鹽水操作下網格型(2mm)直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	103
表5-3-8逆流鹽水操作下網格型(3mm)直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表	104
表5-3-9不同操作流向與模組於平均溫度極化係數之影響比較表113
表5-4-1順流鹽水操作下網格型直接接觸式薄膜蒸餾模組,不同碳纖維板支撐條寬度之理論透膜通量增益比例表117
表5-4-2	逆流鹽水操作下網格型直接接觸式薄膜蒸餾模組,不同碳纖維板支撐條寬度之理論透膜通量增益比例表	117
表5-4-3順流鹽水操作下網格型直接接觸式薄膜蒸餾模組,不同水力角度之理論透膜通量增益比例表118
表5-4-4	逆流鹽水操作下網格型直接接觸式薄膜蒸餾模組,不同水力角度之理論透膜通量增益比例表	119
表5-4-5不同碳纖維板支撐條寬度之水力損耗提升程度比較表120
表5-4-6順流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力損耗提升程度比值表123
表5-4-7逆流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力損耗提升程度比值表123
參考文獻
1.	Meindersma G.W., Guijt C.M., de Haan A.B. Desalination and water recycling by air gap membrane distillation, Desalination, 187, 291-301 (2006).
2.	United Nation Population Fund, The Power of 1.8 Billion, United Nation Population Fund (2014).
3.	United Nations Environment Programme, Global Environment Outlook 4, United Nations Environment Programme (2007).
4.	Committee on Advancing Desalination Technology, National Research Council, Desalination: A National Perspective, National Academy of Sciences (2008).
5.	Lattemann S., Kennedy M.D., Schippers J.C., Amy G., Chapter 2 Global desalination situation, Sustainability Science and Engineering, vol. 2, 7-39 (2010).
6.	Bhatt D.V., Hetal K. T., Renewable resources used for seawater desalination, IJAERS., vol. 1, 35-41 (2011).
7.	Kalogirou S.A., Seawater desalination using renewable energy sources, Prog. Energy Combstion Sci., 31, 242-281 (2005).
8.	Meindersma, G. W., Guijt, C. M., & De Haan, A. B., Desalination and water recycling by air gap membrane (2006).
9.	El-Bourawi M.S., Ding Z., Ma R., Khayet M., A framework for better understanding membrane distillation separation process, J. Membr. Sci., 285, 4–29 (2006).
10.	Asghari M., Harandizadeh A., Dehghani M., Harami H.R., Persian Gulf desalination using air gap membrane distillation: Numerical simulation and theoretical study, Desalination, 374, 92-100 (2015).
11.	Phattaranawik J., Jiraratananon R., Fane A.G., Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies, J. Membr. Sci., 217, 193-206 (2003).
12.	Bodell B.R., Silicone rubber vapor diffusion in saline water distillation, United States Patent Application Serial, 285, 32 (1963).
13.	Weyl P.K., Recovery of demineralized water form saline waters, United States Patent 3, 340, 186 (1967).
14.	Findley M.E., Vaporization through porous membranes, Ind. Eng. Chem. Process Des. Dev., 6, 226-230 (1967).
15.	Schofield R.W., Fane A.G., Fell C.J.D., Heat and mass transfer in membrane distillation, J. Membr. Sci., 33, 299-313 (1987).
16.	Drioli E., Wu Y., Membrane distillation:An experimental study, Desalination, 53, 339-346 (1985).
17.	Hanbury W.T., Hodgkiess T., Membrane distillation - An assessment, Desalination, 56, 287-297 (1985).
18.	Jönsson A.S., Wimmerstedt R., Harrysson A.-C., Membrane distillation - a theoretical study of evaporation through microporous membranes, Desalination, 56, 237-249 (1985).
19.	Sarti G.C., Gostoli C., Matulli S., Low energy cost desalination processes using hydrophobic membranes, Desalination, 56, 277-286 (1985).
20.	Tomaszewska, M., Gryta, M. and Morawski, A. W., A study of separation by the direct-contact membrane distillation process, Separations Technology, 4, 244-248 (1994).
21.	Lawson, K. W., & Lloyd, D. R., Membrane distillation. Journal of membrane Science, 124(1), 1-25 (1997).
22.	Phattaranawik J., Jiraratananon R., Direct contact membrane distillation:effect of mass transfer on heat transfer, J. Membr. Sci., 188, 137-143 (2001).
23.	Gryta M., Tomaszewska M., Morawski A.W., Membrane distillation with laminar flow, Sep. Purif. Technol., 11, 93-101 (1997).
24.	Martínez-Díez L., Vázquez-González M.I., Effects of polarization on mass transport through hydrophobic porous membranes, Ind. Eng. Chem. Res., 37, 4128-4135 (1998).
25.	Phattaranawik J., Jiraratananon R., Fane AG., Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci., 212, 177-193 (2003).
26.	Khayet M., Godino M.P., Mengual J.I., Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method, Desalination, 157, 297-305 (2003).
27.	Bui V.A., Vu L.T.T., Nguyen M.H., Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules, J. Membr. Sci., 353, 85-93 (2010).
28.	Lawson K.W., Lloyd D.R., Membrane distillation. II. Direct contact MD, J. Membr. Sci., 120, 123-133 (1996).
29.	Srisurichan S., Jiraratananon R., Fane A.G., Mass transfer mechanisms and transport resistances in direct contact membrane distillation process, J. Membr. Sci., 277, 186-194 (2006).
30.	Gryta M., Tomaszewska M., Heat transport in the membrane distillation process., J. Membr. Sci., 144, 211-222 (1998).
31.	Fernández-Pineda C., Izquierdo-Gil M.A., García-Payo M.C., Gas permeation and direct contact membrane distillation experiments and their analysis using different models, J. Membr. Sci., 198, 33-49 (2002).
32.	Zhongwei D., Liying L., Runyu M., 2003, Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation, J. Membr. Sci., 215, 11-23 (2003).
33.	Chen T.C., Ho C.D., Yeh H.M., Theoretical modeling and experimental analysis of direct contact membrane distillation, J. Membr. Sci., 330, 279-287 (2009)
34.	Schofield R.W., Fane A.G., Fell C.J.D., Gas and vapour transport through microporous membranes. II. Membrane distillation, J. Membr. Sci., 53, 173-185 (1990).
35.	Mohamed Khayet, Membrane and theoretical modeling of membrane distillation: review, Advances in Colloid and Interface Science, 164, 56-88 (2011).
36.	Martínez-Díez L, Vázquez-González M.I., Florido-DõÂaz F.J., Study of membrane distillation using channel spacers, J. Membr. Sci., 144, 45-56 (1998).
37.	Phattaranawik J, Jiraratananon R, Fane A.G., Halim C., Mass flux enhancement using spacer filled channels in direct contact membrane distillation, J. Membr. Sci., 187, 193-201 (2001).
38.	Da Costa A.R., Fane A.G., Fell C.J.D., Franken A.C.M., Optimal channel spacer design for ultrafiltration, J. Membr. Sci., 62, 275-291 (1991).
39.	Da Costa A.R., Fane A.G., Wiley D.E., Spacer characterization and pressure drop modeling in spacer-filled channels for ultrafiltration, J. Membr. Sci., 87, 79-98 (1994).
40.	Shakaib M., Hasani S. M. F., Ahmed I., Yunus R.M., A CFD study on the effect of spacer orientation on temperature polarization in membrane distillation modules, Desalination, 284, 332-340 (2012).
41.	Ho C.D., Chang H., Chang C.L., Huang C.H., Theoretical and experimental studies of flux enhancement with roughened surface in direct contact membrane distillation desalination, J. Membr. Sci., 433, 160-166 (2013).
42.	El-Bourawi, M. S., Ding, Z., Ma, R., & Khayet, M., A framework for better understanding membrane distillation separation process, Journal of Membrane Science, 285(1), 4-29 (2006).
43.	Phattaranawik J, Jiraratananon R and Fane A.G., “Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation,” J. Membr. Sci., 215, 75-85 (2003).
44.	Ding Z.W., Ma R.Y. and Fane A.G., “A new model for mass transfer in direct contact membrane distillation. ” Desalination, 151, 217 (2003).
45.	Banat F.A., Simandl J., Desalination by membrane distillation:a parametric study, Sep. Sci. Technol., 33, 201-226(1998).
46.	Iversen S.B., Bhatia V.K., Dam-Jphasen K., Jonsson G., Characterization of microporous membranes for use in membrane contactors, J. Membr. Sci., 130, 205-217(1997).
47.	Fuller E.N., Schettler P.D., Giddings J.C., New method for prediction of binary gas-phase diffusion coefficients, Industrial & Engineering Chemistry, 58, 18-27(1966).
48.	Schwinge J., Wiley D.E., Fane A.G., Guenther R., Characterization of a zigzag spacer for ultrafiltration, J. Membr. Sci., 172, 19-31(2000).
49.	Welty J.R., Wick C.E., Wilson R.E., Fundamentals of Momentum, Heat and Mass Transfer, third ed. John Wiley & Sons, New York(1984).
50.	Satish G. Kandlikar, Derek Schmitt., Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels, PHYSICS OF FLUIDS, 17, 100606 (2005).
51.	Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, second ed., John Wiley & Sons, New York(2007).
52.	Ozbek H., Phillips S.L., Thermal conductivity of aqueous sodium chloride solutions from 20 to 330°C, J. Chem. Eng. Data, 25, 263-267 (1980).
53.	Incropera F.P., DeWitt D.P., Fundamentals of Heat and Mass Transfer, fourth ed.,: John Wiley & Sons Inc., New York(1996).
54.	Chenlo F., Moreira R., Pereira G., Ampudia A., Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes, J. Food Eng., 54, 347-352(2002).
55.	Magalhães M.C.F., Königsberger E., May P.M., Hefter G., Heat capacities of concentrated aqueous solutions of sodium sulfate, sodium carbonate, and sodium hydroxide at 25 °C, J. Chem. Eng. Data, 47, 590-598(2002).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信