§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1002201715311600
DOI 10.6846/TKU.2017.00332
論文名稱(中文) 化學還原法從聚電解質加強超過濾程序產生之濃縮液中回收鎳之研究
論文名稱(英文) Chemical reduction to recover nickel from Polyelectrolyte-Enhanced Ultrafiltration retentate
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 1
出版年 106
研究生(中文) 林宗叡
研究生(英文) Zong-Ruei Lin
學號 604480045
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-01-09
論文頁數 80頁
口試委員 指導教授 - 李奇旺
委員 - 彭晴玉
委員 - 陳孝行
關鍵字(中) 化學還原法

連二亞硫酸鈉
聚電解質加強超過濾處理程序
聚電解質
關鍵字(英) Chemical reduction
nickel
dithionite
PEUF
polyelectrolyte
第三語言關鍵字
學科別分類
中文摘要
聚電解質結合超過濾(PEUF)程序為近幾十年來去除鎳金屬研究之熱門議題,而以往之研究專注於如pH值、不同聚電解質對金屬的負載量(loading rate)、分子截流量(MWCO),和螯合劑之濃度對於去除重金屬的影響,但是對於同時含有重金屬與聚電解質之PEUF濃縮液要如何處理並沒有多做研究,所以本研究以化學還原法處理PEUF之濃縮液。本研究使用PEI與PSS做為PEUF之聚電解質,測試此兩種聚電解質是否可以去除鎳離子,接著以dithionite做為化學還原法之還原劑,測試各pH值對於鎳的還原有何影響。實驗將使用之廢水分為兩種,一種為以NiSO4‧6H2O製備之人工廢水,另一種為桃園某家PCB廠產生之可能含螯合劑之實廠廢水,測試此技術是否可以整治實廠廢水。
PEUF程序處理鎳研究顯示,當PEI為PEUF之聚電解質時,pH值大於5之後去除率介於83-85%。當PSS為PEUF之聚電解質時,去除率會隨pH值上升而增加,且在pH 9以上去除率可達99%。本實驗之化學還原法分別使用Sodium dithionite (Na2S2O4) 和sodium sulfide (Na2S)處理PEUF濃縮液之鎳離子。以dithionite處理含有PEI之濃縮液時,鎳的去除率在各pH值下皆不超過10%;而當以dithionite處理含有PSS之濃縮液時,在pH 4-pH 9之去除率會隨pH值升高而增加,但在pH 10之後會明顯下降。從PSS system中所回收之固體經由 XRD分析可以知回收固體為Ni3S2,並從TGA分析可以得知在pH 9時所形成之固體有30%為PSS。以Na2S處理含有PSS之濃縮液時,在pH 5-pH 9的條件下,對鎳的去除率皆低於15%。
當PEUF處理可能含有螯合劑之實廠含鎳廢水時,PSS因為電性與金屬螯合物不合,去除率受到pH值很大之限制,在pH 5.4-pH 11之間,鎳的去除率介於20.6-98.2%之間,且經由分析TOC可以知道PEUF無法去除水中之螯合劑。因為PSS作為聚電解質進行PEUF處理程序在pH 11時仍有不錯之去除效果,所以本實驗便將PSS與含鎳實廠廢水混合模擬PEUF之濃縮液,並使用dithionite還原水中的鎳離子。由實驗結果可知,在pH 8-10的條件下鎳之去除率可以達到99%以上,且從XRD與SEM分析可知回收固體與還原人工廢水所產生之固體是相同的。
英文摘要
The PEUF process is frequently studied for the removal of nickels in recent decades. The majority of PEUF studies investigated the metal removal under various operation conditions such as pH, metal loading ratio, types of polyelectrolytes and metals, molecular weight cutoff (MWCO), and concentration of ligands without paying much attention on the treatment of the retentate generated from PEUF which contains both metal and polyelectrolyte. In this study, simultaneous removal and recovery of nickel and regeneration of polyelectrolyte from PEUF retentate by chemical reduction was explored. PEI and PSS were studied to explore their effects on the nickel removal in PEUF and on the nickel recovery by chemical reduction under various pH conditions. With PEI as the polyelectrolyte in PEUF process, the nickel removal efficiency was around 83-85% as the pH value greater than 5. With PSS, PEUF achieves almost 99% nickel removal efficiency as the pH higher than 9, and the nickel removal efficiency increases with increasing pH. Sodium dithionite (Na2S2O4) and sodium sulfide (Na2S) were used to remove nickel from PEUF retentate. With sodium dithionite, the nickel removal efficiency in retentate containing PEI was less than 10% for all pH ranges. For retentate containing PSS, the nickel removal efficiency increased with increasing pH from pH 4-9, and decreased dramatically as the pH higher than 10.The soilds obtained from PSS system were analyzed by XRD with Ni3S2 positively identified. TGA analysis was employed to analyzed the organic content of the obtained solids, showing PSS attached on the particles with weight ratio of 30% at pH 9. Sodium sulfide was also used to remove nickel from PEUF retentate for PSS
system. The result shows that the nickel removal efficiency for pH value ranges from 5-9 were lower than 15 %, indicating that precipitation of Ni by Na2S is not an efficient process.
For real industrial wastewater which might contain organic ligands, the nickel removal efficiency for PEUF process with PSS polyelectrolyte increased from 20.6 to 98.2% when pH increasing from 5.4 to 11. Based on TOC analysis of industrial wastewater and PEUF permeate, organic ligands were not removed by PEUF at all pH ranges. Chemical reduction was used to recover simulated PEUF retentate containing PSS and real industrial wastewater. More than 99% of nickel removal was achieved at pH of 8-10. The obtained solids were subjected with XRD and SEM analysis, and the results are similar to those obtained from chemical reduction of PEUF retentate prepared from synthetic wastewater.
第三語言摘要
論文目次
目錄
目錄	I
List of Figure	IV
List of Table	VII
第一章	研究緣起	1
1.1	研究計畫之背景	1
1.2	研究計畫之目的	3
第二章	研究背景	4
2.1	印刷電路板廢水特性	4
2.2	重金屬廢水的處理方法	6
2.2.1	化學混凝沉澱法	7
2.2.2	電解法	7
2.2.3	電透析法	8
2.2.4	離子交換法	9
2.2.5	離子浮選法	10
2.2.6	氧化還原法	10
2.3	聚電解質的種類與結合機制	13
2.3.1	配位鍵(Coordinate Bond)	14
2.3.2	靜電吸引力( Electrostatic Attraction)	15
2.4	聚電解質結合超過濾之研究	17
2.4.1	影響PEUF去除金屬之因子	18
2.4.2	近年來PEUF去除鎳之研究	22
2.5	還原劑還原金屬離子	24
2.5.1	氧化還原電位	24
2.5.2	連二亞硫酸鈉(Na2S2O4, dithionite)	25
2.5.3	dithionite做為還原劑之研究	27
第三章	材料與方法	29
3.1	實驗材料	29
3.1.1	主要材料	29
3.1.2	薄膜	32
3.1.3	其他	33
3.2	實驗設備	34
3.2.1	實驗流程	34
3.2.2	掃流式過濾設備	35
3.2.3	瓶杯試驗	36
3.3	分析設備	37
3.3.1	鎳離子分析方法	37
3.3.2	X光繞射法(X-ray Diffraction ; XRD)	38
3.3.3	掃描式電子顯微鏡(Scanning Electron Microscope,SEM)	38
3.3.4	熱重分析儀TGA	39
3.3.5	總有機碳分析(Total Organic Carbon,TOC)	40
第四章	結果與討論	41
4.1	pH對於PEUF影響	41
4.1.1	PEI去除鎳之效果	41
4.1.2	PSS去除鎳之效果	44
4.2	以dithionite還原PEUF後之濃縮液	47
4.2.1	pH對於回收PEI中鎳的影響	47
4.2.2	pH對於回收PSS中鎳的影響	49
4.2.3	固體物分析	53
4.3	以Na2S回收鎳金屬	57
4.3.1	不含聚電解質pH值的影響	57
4.3.2	含PSS時pH值的影響	60
4.4	實廠廢水	62
4.4.1	PEUF	63
4.4.2	以dithionite還原	69
4.4.3	固體物分析	71
第五章結論	74
5.1	結論	74
Reference	77

 
List of Figure
Figure 1. 胺基聚電解質與二價金屬結合之示意圖	14
Figure 2. 磺酸類聚電解質與金屬結合示意圖	15
Figure 3. 羧類聚電解質與金屬結合示意圖	15
Figure 4. PEUF操作之示意圖	17
Figure 5. PEI單體結構式	30
Figure 6. PSS單體結構式	30
Figure 7. 分裝Dithionite示意圖	31
Figure 8. 實驗流程圖	34
Figure 9. 掃流式薄膜過濾裝置(Solvent-resistant Stirred Cell -XFUF07601)	35
Figure 10. 火焰式原子吸收光譜之分析檢量線	37
Figure 11. Scanning Electron Microscope, LEO-1530, Japan	39
Figure 12. pH對於PEUF去除Ni效率之影響。(Monomer PEI: Ni=5:1,VCF=1.5)	43
Figure 13. pH對PEUF 滲出之TOC之影響。(Monomer PEI: Ni=5:1,VCF=1.5)	43
Figure 14. pH對PEUF去除Ni效率之影響。(Monomer PSS: Ni=5:1,VCF=1.5)	46
Figure 15. pH對PEUF 滲出之TOC之影響。(Monomer PSS: Ni=5:1,VCF=1.5)	46
Figure 16. pH對於Dithionite還原含鎳PEI溶液之影響。(Monomer PEI: Ni: dithionite=5:1:3)	48
Figure 17. pH對Dithionite還原含鎳PSS溶液之影響。(Monomer PSS: Ni: dithionite=5:1:3)	51
Figure 18. 實驗60分鐘後,pH對Dithionite還原含鎳PSS溶液之影響。(Monomer PSS: Ni: dithionite=5:1:3)	51
Figure 19. 實驗120分鐘後,pH對Dithionite還原含鎳PSS溶液之影響。(Monomer PSS: Ni: dithionite=5:1:3)	52
Figure 20. dithionite還原含鎳PSS溶液之固體。(pH 7)	54
Figure 21.dithionite還原含鎳PSS溶液之固體。(pH5、6、8)	54
Figure 22. XRD分析 dithionite還原PEUF濃縮液產生之固體。(pH5- pH9)	55
Figure 23. SEM分析pH 8時dithionite還原PEUF濃縮液產生之固體。(a).30X (b).400X (c).1000X	55
Figure 24. TGA分析dithionite還原PEUF濃縮液產生之固體。(pH 8、9)	56
Figure 25. pH3- pH6 Na2S處理不含聚電解質之含鎳廢水。(Ni: Na2S=1:3)	58
Figure 26. 各pH值下以0.45μm過濾Na2S處理鎳溶液之濾液照片。	58
Figure 27. XRD分析Na2S處理鎳溶液產生之固體。(pH 3-pH 6)	59
Figure 28. pH對Na2S去除Ni效率之影響。(Monomer PSS: Ni: Na2S=5:1:3)	61
Figure 29. pH對PEUF去除Ni效率之影響。(Monomer PEI: Ni =5:1)	65
Figure 30. pH對PEUF之TOC滲出率影響。(Monomer PEI: Ni =5:1)	65
Figure 31. pH對PEUF之鎳去除效果影響。(Monomer PSS: Ni =5.5:1)	67
Figure 32. pH對PEUF之TOC滲出率影響。(Monomer PSS: Ni =5.5:1)	68
Figure 33. 聚電解質為PSS時,以PEUF處理實廠廢水螯合劑流出之型態示意圖(a) pH 9以下時大部分鎳離子與螯合劑一起流出(b)pH 9以上時PSS會與螯合劑競爭鎳離子,螯合劑與鎳離子分離並流出薄膜。	68
Figure 34. pH對Dithionite還原同時含螯合劑與PSS鎳溶液之影響(Monomer PSS: Ni: dithionite=5:1:3)	70
Figure 35. XRD分析 pH 8- pH 10 dithionite還原PEUF濃縮液產生之固體。	72
Figure 36. SEM分析pH 9 dithionite還原PEUF濃縮液產生之固體。(a).30X (b).200X (c).800X	72
Figure 37. SEM分析pH 10 dithionite還原PEUF濃縮液產生之固體。(a).30X (b).400X (c).700X	73

 
List of Table
Table 1. 典型PCB製造業原廢水汙染濃度表[4]	5
Table 2. 不同官能基所對應的聚電解質	13
Table 3. 不同聚電解質與金屬結合所對應之機制	16
Table 4. dithionite在不同pH值下之氧化還原電位	27
Table 5. 實驗用之其他藥品	33
參考文獻
Reference
[1] World PCB Production by Region, in: Taiwan Printed Circuit Association, https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CD4QFjAA&url=http%3A%2F%2Fwww.tpca.org.tw%2Fdownload.aspx%3Fdlfn%3DTPCAShow_Market.pdf&ei=tTp8Uuz_FueSiAfYm4F4&usg=AFQjCNFRNQiKCdDnx6LmD9Vv7E3chTA5Qw&sig2=ApYj3zk4Q2auxHgSKqG7Uw, 8 November, 2013
[2] 2010-2013年全球及台灣廠商PCB產值分析, in: Topology Research Institute, http://www.topology.com.tw/DataContent/graph/2010%EF%BD%9E2013%E5%B9%B4%E5%85%A8%E7%90%83%E5%8F%8A%E5%8F%B0%E7%81%A3%E5%BB%A0%E5%95%86PCB%E7%94%A2%E5%80%BC%E5%88%86%E6%9E%90/2840,, 25 June, 2016 
[3] The principle of PCB, in: National Sun Yat-sen University, http://www2.nsysu.edu.tw/IEE/lou/elec/web/process/pcb.htm, 25 June, 2016
[4] 經濟部工業局, 印刷電路板製造業水污染防治技術, (1994).
[5] V. Coman, B. Robotin, P. Ilea, Nickel recovery/removal from industrial wastes: A review, Resour Conserv Recy, 73 (2013) 229-238.
[6] K.E. Geckeler, K. Volchek, Removal of hazardous substances from water using ultrafiltration in conjunction with soluble polymers, Envir SciTech Lib, 30 (1996) 726-734.
[7] Y.-H. Chou, J.-H. Yu, Y.-M. Liang, P.-J. Wang, C.-W. Li, S.-S. Chen, Recovery of Cu(II) by chemical reduction using sodium dithionite, Chemosphere, 141 (2015) 183-188.
[8] R. Kumar, A.M. Isloor, A.F. Ismail, Preparation and evaluation of heavy metal rejection properties of polysulfone/chitosan, polysulfone/N-succinyl chitosan and polysulfone/N-propylphosphonyl chitosan blend ultrafiltration membranes, Desalination, 350 (2014) 102-108.
[9] J. Shao, S. Qin, J. Davidson, W. Li, Y. He, H.S. Zhou, Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine, J Hazard Mater, 244–245 (2013) 472-477.
[10] S.I. Kadioglu, L. Yilmaz, H. Onder Ozbelge, Estimation of binding constants of Cd(II), Ni(II) and Zn(II) with polyethyleneimine (PEI) by polymer enhanced ultrafiltration (PEUF) technique, Separ Sci Technol, 44 (2009) 2559-2581.
[11] 余瑞軒, 化學還原法回收廢水中的重金屬鎳(博士論文), in, 淡江大學, 2016.
[12] S. İslamoğlu, L. Yılmaz, Effect of ionic strength on the complexation of polyethyleneimine (PEI) with Cd2+ and Ni2+ in polymer enhanced ultrafiltration (PEUF), Desalination, 200 (2006) 288-289.
[13] A. Tabatabai, J.F. Scamehorn, S.D. Christian, Economic feasibility study of polyelectrolyte-enhanced ultrafiltration (PEUF) for water softening, J Membrane Sci, 100 (1995) 193-207.
[14] X. Tan, N.N. Kyaw, W.K. Teo, K. Li, Decolorization of dye-containing aqueous solutions by the polyelectrolyte-enhanced ultrafiltration (PEUF) process using a hollow fiber membrane module, Sep Purif Technol, 52 (2006) 110-116.
[15] T.A. Kurniawan, G.Y.S. Chan, W.-H. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chem Eng J, 118 (2006) 83-98.
[16] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J Environ Manage, 92 (2011) 407-418.
[17] K. Bensadok, M. Belkacem, G. Nezzal, Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation, Desalination, 206 (2007) 440-448.
[18] N.H. Shaidan, U. Eldemerdash, S. Awad, Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique, J Taiwan Inst Chem E, 43 (2012) 40-45.
[19] S.H. Hu, M.S. Tsai, F.S. Yen, T. Onlin, Recovery of copper-contaminated sludge in a two-stage leaching process, Environ Prog, 25 (2006) 72-78.
[20] M.C.C. Maguyon, C.G. Alfafara, V.P. Migo, J.L. Movillon, C.M. Rebancos, Recovery of copper from spent solid printed-circuit-board (PCB) wastes of a PCB manufacturing facility by two-step sequential acid extraction and electrochemical deposition, J Environ Sci Manag, 15 (2012) 17-27.
[21] A. Khelifa, S. Aoudj, S. Moulay, M. De Petris-Wery, A one-step electrochlorination/electroflotation process for the treatment of heavy metals wastewater in presence of EDTA, Chem Eng Process, 70 (2013) 110-116.
[22] R.F. Dalla Costa, C.W. Klein, A.M. Bernardes, J.Z. Ferreira, Evaluation of the electrodialysis process for the treatment of metal finishing wastewater, J Braz Chem Soc, 13 (2002) 540-547.
[23] L. Alvarado, I.R. Torres, A. Chen, Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater, Sep Purif Technol, 105 (2013) 55-62.
[24] A. Da̧browski, Z. Hubicki, P. Podkościelny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56 (2004) 91-106.
[25] E. Pehlivan, T. Altun, Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80, J Hazard Mater, 140 (2007) 299-307.
[26] 高瑩, 溶氣浮選法處理重金屬離子廢水的研究, in, 中南大學, 2010.
[27] A.I. Zouboulis, K.A. Matis, N.K. Lazaridis, P.N. Golyshin, The use of biosurfactants in flotation: application for the removal of metal ions, Miner Eng, 16 (2003) 1231-1236.
[28] R.-S. Juang, C.-H. Chiou, Ultrafiltration rejection of dissolved ions using various weakly basic water-soluble polymers, J Membrane Sci, 177 (2000) 207-214.
[29] M. Bodzek, I. Korus, K. Loska, Application of the hybrid complexation-ultrafiltration process for removal of metal ions from galvanic wastewater, Desalination, 121 (1999) 117-121.
[30] P. Cañizares, A. Pérez, R. Camarillo, J.J. Linares, A semi-continuous laboratory-scale polymer enhanced ultrafiltration process for the recovery of cadmium and lead from aqueous effluents, J Membrane Sci, 240 (2004) 197-209.
[31] K. Volchek, L. Keller, D. Velicogna, H. Whittaker, Selective removal of metal ions from ground water by polymeric binding and microfiltration, Desalination, 89 (1993) 247-262.
[32] C.-W. Li, C.-H. Cheng, K.-H. Choo, W.-S. Yen, Polyelectrolyte enhanced ultrafiltration (PEUF) for the removal of Cd(II): Effects of organic ligands and solution pH, Chemosphere, 72 (2008) 630-635.
[33] R.S. Juang, M.N. Chen, Removal of Copper(II) Chelates of EDTA and NTA from Dilute Aqueous Solutions by Membrane Filtration, Ind Eng Chem Res, 36 (1997) 179-186.
[34] E. Matthiasson, B. Sivik, Concentration polarization and fouling, Desalination, 35 (1980) 59-103.
[35] C.-W. Li, Y.-S. Chen, Fouling of UF membrane by humic substance: Effects of molecular weight and powder-activated carbon (PAC) pre-treatment, Desalination, 170 (2004) 59-67.
[36] H. Valle, J. Sánchez, B.L. Rivas, Poly(N-vinylpyrrolidone-co-2-acrylamido-2-methylpropanesulfonate sodium): Synthesis, characterization, and its potential application for the removal of metal ions from aqueous solution, J Appl Polym Sci, 132 (2015).
[37] J.E. Szecsody, J.S. Fruchter, M.D. Williams, V.R. Vermeul, D. Sklarew, In situ chemical reduction of aquifer sediments: Enhancement of reactive iron phases and TCE dechlorination, Envir SciTech Lib, 38 (2004) 4656-4663.
[38] G.D. Watt, A. Burns, The thermochemical characterization of sodium dithionite, flavin mononucleotide, flavin adenine dinucleotide and methyl and benzyl viologens as low potential reductants for biological systems, Biochem J, 152 (1975) 33-37.
[39] S. Raghavan, S. Fowler, Use of dithionite in the removal of nickel from ammoniacal solutions, Hydrometallurgy, 11 (1983) 125-129.
[40] C.-W. Li, J.-H. Yu, Y.-M. Liang, Y.-H. Chou, H.-J. Park, K.-H. Choo, S.-S. Chen, Ni removal from aqueous solutions by chemical reduction: Impact of pH and pe in the presence of citrate, J Hazard Mater.
[41] 王稟然, 低亞硫酸鈉化學還原法回收廢水中的銅:不同螯合劑的影響(碩士論文), in, 淡江大學, 2014.
[42] M. Hammami, D.J. Ennigrou, K.H. Naifer, M. Ferid, Recovery of samarium (III) from aqueous solutions by poly(sodium 4-styrenesulfonate) assisted-ultrafiltration, Environ Prog Sustain Energy, 35 (2016) 1091-1097.
[43] M.V. Norton, F.A. DiGiano, R.T. Hallen, Selective separation of europium using polymer-enhanced ultrafiltration, Water Environ Res, 69 (1997) 244-253.
[44] V. Ramachandhran, S.K. Samanta, B.M. Misra, Radiocerium separation behavior of ultrafiltration membranes, J Radioanal Nucl Chem, 237 (1998) 121-124.
[45] 劉凡華, 微胞加強超過濾結合化學還原法去除水中重金屬(碩士論文), in, 淡江大學, 2016.
[46] E. Ntumba Malenga, A.F. Mulaba-Bafubiandi, W. Nheta, Alkaline leaching of nickel bearing ammonium jarosite precipitate using KOH, NaOH and NH4OH in the presence of EDTA and Na2S, Hydrometallurgy, 155 (2015) 69-78.
[47] R.M.M. Sampaio, R.A. Timmers, N. Kocks, V. André, M.T. Duarte, E.D. van Hullebusch, F. Farges, P.N.L. Lens, Zn–Ni sulfide selective precipitation: The role of supersaturation, Sep Purif Technol, 74 (2010) 108-118.
[48] 戴文灿, 周发庭, 黄. 晴, Na2S-DDTC 深度處理螯合鎳高濃度電鍍廢水, in, 廣東工業大學, 2016.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信