淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1001201717233600
中文論文名稱 3d過渡金屬氧化物中調制結構的研究
英文論文名稱 Study of the Modulated Structures in 3d Transition Metal Oxides
校院名稱 淡江大學
系所名稱(中) 物理學系博士班
系所名稱(英) Department of Physics
學年度 105
學期 1
出版年 106
研究生中文姓名 李書翰
研究生英文姓名 Shu-Han Lee
學號 899210032
學位類別 博士
語文別 英文
口試日期 2017-01-06
論文頁數 102頁
口試委員 指導教授-杜昭宏
委員-彭維鋒
委員-杜昭宏
委員-薛宏中
委員-黃迪靖
委員-朱明文
中文關鍵字 X光散射  共振散射  第一原理計算  La2-xSrxNiO4  SrFeO3-δ 
英文關鍵字 X-Ray Scattering  Resonant Scattering  First-Principle Calculation  La2-xSrxNiO4  SrFeO3-δ 
學科別分類
中文摘要 本論文主要針對兩種不同的3d過渡金屬氧化物,La1.66Sr0.33NiO4(LSNO)及SrFeO2.81(SFO),在低溫下所產生的電荷及電子自旋有序調制結構的相變化進行研究,其中利用硬X光繞射及共振軟X光繞射技術來量測電荷及電子自旋有序調制結構的相變化。在La2-xSrxNiO4系統中,當Sr摻雜量為x = 0.33時,在低溫下所產生的電荷有序波向量及電子自旋有序波向量為QCO(4.66 0 3)及QSO(0.66 0 0),而其相變溫度分別為TCO = 230 (K)和TSO = 190 (K),特別的是,電荷有序調制結構的相變化過程中會產生"反向有序到無序"(Inverse Order-Disorder Transition)的相變化,而本論文中亦針對此現象探討。
而在另一個3d過渡金屬氧化物系統,SrFeO2.81,在低溫下所產生的電荷有序波向量及電子自旋有序波向量為QCO(0 0 3.37)及QSO(0 0 0.5),而其相變溫度分別為TCO = 110 (K)和TSO = 70 (K),在此系統中除了有豐富的調制結構的相變化,亦產生四方體轉單斜晶的結構變化,而此結構變化亦伴隨著遲滯現象的發生。針對SFO系統,本論文中利用光譜計算來模擬低溫下Fe L3,2-edge的螢光吸收光譜,並利用低溫下單斜晶的原子結構來做第一原理(LDA+U)的計算,透過態密度(Density of State)及能帶結構(Band Structure)來分析在低溫下SFO系統的電子結構,並確認了反鐵磁相以及電荷轉移的傳導機制。
英文摘要 We report the phase transition of charge and spin modulations in two different kinds of 3d transition metal oxides, La1.66Sr0.33NiO4(LSNO) and SrFeO2.81(SFO). Hard X-Ray and resonant soft X-Ray diffractions were used to measure charge and spin ordering reflections as a function of temperature. In La2-xSrxNiO4, hole doped by strontium, x = 0.33, the wave vector of charge ordering and spin ordering were located at QCO(4.66 0 3) and QSO(0.66 0 0) and their phase transition temperatures were observed to be TCO = 230 (K) and TSO = 190 (K), respectively. Interestingly, the charge ordering was observed to display an inverse order-disorder transition at about 230 K where the spin ordering forms. We show that this inverse transition is due to the interlayer coupling between the charge and spin ordering. This discovery points out the importance of the interlayer correlation in strongly correlated electron systems.
The oxygen-defective ferrite, SrFeO2.81, also has both of charge and spin modulated structures at low temperatures, which accompanies with the unusual transport behavior. Using X-Ray scattering, the wave vector changes of reflection were located at QCO(0 0 3.37) and QSO(0 0 0.5) with the transition temperatures of TCO ~ 110 (K) and TSO ~ 70 (K), respectively. In addition, SFO also shows a lattice distortion at around 60 K where a hysteresis transition occurs. For further understanding the electronic structures, we used the first-principles LDA+U method to simulate the absorption spectrum at the Fe2,3-edge.
論文目次 Table of Contents

Chapter 1. Introduction 1
Chapter 2. X-Ray Scattering and Density Functional Theory 4
2-1 Synchrotron 4
2-2 Bragg’s Law 7
2-3 Scattering Cross Section 8
2-4 Resonant Soft X-Ray Scattering (RSXS) 11
2-5 Density Functional Theory 20
Chapter 3. Inverse Order-Disorder Transition of Charge Stripe in La1.67Sr0.33NiO4 28
3-1 Introduction 28
3-2 Experiment 32
3-3 Discussion 42
3-4 Conclusion 46
Chapter 4. Spin and Charge Modulation Structures in SrFeO3-δ 47
4-1 Introduction 47
4-2 Experiment 52
4-2-1 Hard X-Ray scattering in SrFeO2.81 54
4-2-2 Resonant Soft X-Ray Scattering in SrFeO2.81 61
4-3 Discussion and First Principle Calculation Results 68
4-4 Conclusions 82
Chapter 5. Summary 95
Reference 98


List of Figures

FIG. 2-1-1 The synchrotron light source. 5
FIG. 2-1-2 The spectrum of light of synchrotron. 5
FIG. 2-2-1 The diagram of geometry of Bragg's Law. 7
FIG. 2-4-1 The diagram shows the interaction between electric field and dipole moment. 12
FIG. 2-4-2 The diagram shows the solution of the real part and the imaginary part. 13
FIG. 3-1-1 The atomic structure of LSNO. 29
FIG. 3-1-2 The pattern of domains of spin and charge stripes. 30
FIG. 3-1-3 The spin and charge reflections for LSNO (x=0.33) in reciprocal space. 31
FIG. 3-1-4 The electronic state of Ni2+ and Ni3+. 31
FIG. 3-2-1 Sample of La1.67Sr0.33NiO4 32
FIG. 3-2-2 The resolution function of Bargg peak (0 0 4) 33
FIG. 3-2-3 The resistivity versus temperature measurement for La1.67Sr0.33NiO4. The hollow black circle and the hollow red circle are E parallel and perpendicular to a-b plane. 34
Fig 3-2-4 The temperature evolution of ratio of the correlation lengths along the K and H-axis. 35
FIG. 3-2-5 The temperature evolution of the correlation lengths along the L-axis. 35
FIG. 3-2-6 Peak profiles of charge reflection around (4.66 0 3) along H and K-axis at different temperature points. 36
FIG. 3-2-7 Peak profiles of charge reflection around (4.66 0 3) along L-axis at different temperature points. 36
FIG. 3-2-8 The peak intensity versus temperature of charge and spin ordering. 38
FIG. 3-2-9 The peak width versus temperature of charge and spin ordering. 38
FIG. 3-2-10 The energy scan in π-channel and the Q dependent energy scan of QSO (0.66 0 0) with different polarizations at Ni L3,2-edge. 39
FIG. 3-2-11 Peak profiles at Ni L3,2-edge in π- and σ-channel. 39
FIG. 3-2-12 Q The energy scan in π-channel and the Q dependent energy scan of QCO (0.72 0 1) with different polarizations at Ni L3,2-edge. 41
FIG. 3-3-1 The thermal effects on the charge stripe modulation along L direction. 43
FIG. 3-3-3 Temperature dependence of peak widths of charge stripes with different hole concentrations . 45
FIG. 4-1-1 The Atomic Structure for Sr8Fe8O23. 48
FIG. 4-1-2. The FIG. 4-1-2(a) is Ref.[45] and (b) is SQUID measurement for our sample. 50
FIG. 4-1-3. Resistivity warming up and cooling down measurements without magnetic field which shows a non-linear transition and hysteresis behavior at TCO=110 (K) and T=50 (K) 50
FIG. 4-1-4. MR measurement, the block ball is for cooling down process, and the red hollow circle is for warming up process. (a) shows the measurement which is parallel to the c-axis, and (b) is perpendicular to the c-axis. 51
FIG.4-2-1 Foating-Zone. 52
FIG.4-2-2 SrFeO2.81 single crystal. 52
FIG. 4-2-2 SrFeO2.81 high quality single crystal with (0 0 1) normal direction. 53
FIG.4-2-3. L-scan peak profile of Bragg peak (0 0 4). 53
FIG.4-2-4. L-scan peak profile of Bragg peak (0 0 4). 54
FIG. 4-2-5. Long range linear L-scan at T=20 (K). 55
FIG. 4-2-6. SQUID and RT measurements. 56
FIG. 4-2-7. The charge ordering peak (0 0 0.66) which was obtained in resonant soft X-Ray diffraction experiment for warming up. 56
FIG. 4-2-8. The process of hysteresis behavior of cooling down and warming up for FWHM which are as function of temperature. 57
FIG. 4-2-9. The temperature dependence of charge ordering (0 0 3.37) is as function of temperature. 57
FIG. 4-2-10. The diagram shows the commensurate position is as function of temperature. 58
FIG. 4-2-11. The lattice constant of c-axis length is as function of temperature. 58
FIG. 4-2-12. The temperature dependence of FWHM and L-position are shown in this diagram. 59
FIG. 4-2-13. The architecture of EPU beamline. 62
FIG. 4-2-14. The geometry of EPU beamline chamber from top view. 62
FIG. 4-2-15. Sample geomtry. 63
FIG. 4-2-16 EPU beamline end-station chamber. 63
FIG.4-2-17. The magnetism measurment shows the G-type[42] anti-ferromagnetic. phase transition is about at 70 (K), and the inset graph shows the quality of SFO single crystal which the FWHM of rocking curve is about 0.112°. 64
FIG. 4-2-18. The Qso (0 0 0.5) peak is as function of temperature and the phase transition is about at 70 (K). 64
FIG. 4-2-19. The energy scan in π-channel and the Q dependent energy scan of QSO (0 0 0.5) with different polarizations at Fe L3,2-edge. 65
FIG. 4-2-20. The energy scan in π-channel and the Q dependent energy scan of QSO (0 0 0.5) with different polarizations at O K-edge. 66
FIG. 4-2-20. The energy scan in π-channel and the Q dependent energy scan of QCO (0 0 0.63) in π- and σ-channel at Fe L3,2-edge. 67
FIG. 4-3-1. shows a monoclinic phase of SFO at T = 2 (K) in space group, I2/m. 68
FIG. 4-3-2. Charge reflection (0 0 3.37) is as a function of azimuthal angel Ψ. 70
FIG. 4-3-3. The solid circle is XAS result and the color lines are FDMNES simulation results. 71
FIG. 4-3-4 Total density of state of Sr, Fe and O for FM phase. 73
FIG. 4-3-5 s-orbit projected density of Sr, Fe and O for FM phase. 74
FIG. 4-3-6 p-orbit projected density of Sr, Fe and O for FM phase. 75
FIG. 4-3-7 d-orbit projected density of Sr, Fe and O for FM phase. 76
FIG. 4-3-8 Total density of state of Sr, Fe and O for AFM phase. 77
FIG. 4-3-9 s-orbit projected density of Sr, Fe and O for AFM phase. 78
FIG. 4-3-10 p-orbit projected density of Sr, Fe and O for AFM phase. 79
FIG. 4-3-11 d-orbit projected density of Sr, Fe and O for AFM phase. 80
FIG. 4-4-1 The Brillouin zone is considered in VASP calculating process. 82
FIG. 4-4-2 the total PDOS and Fe 3d-orbit and O 2p-orbit for FM phase by LDA+U calculation. 83
FIG. 4-4-3 the total PDOS and Fe 3d-orbit and O 2p-orbit for AFM phase by LDA+U calculation. 83
FIG. 4-4-4 The PDOS of O 2p-orbit for FM phase by LDA+U calculation. 84
FIG. 4-4-6 The PDOS of Fe 3d-orbit for FM phase by LDA+U calculation. 85
FIG. 4-4-7 The PDOS of Fe 3d-orbit for AFM phase by LDA+U calculation. 85
FIG. 4-4-8 Comparing with O 2p-orbit and Fe 3d-orbit for FM phase by LDA+U. 86
FIG. 4-4-9 Comparing with O 2p-orbit and Fe 2p, 3d-orbit for AFM phase by LDA+U. 86
FIG. 4-4-10 PDOS of Fe(1), Fe(21), Fe(22) and Fe(3) 3d-orbit for FM by LDA+U. 88
FIG. 4-4-11 PDOS of Fe(1), Fe(21), Fe(22) and Fe(3) 3d-orbit for AFM by LDA+U. 88
FIG. 4-4-12 Total band structure for FM phase by LDA and LDA+U calculation. 89
FIG. 4-4-13 Partial band structure for FM phase by LDA and LDA+U calculation. 89
FIG. 4-4-14 Total band structure for AFM phase by LDA and LDA+U calculation. 90
FIG. 4-4-15 Partial band structure for AFM phase by LDA and LDA+U calculation. 90
FIG. 4-4-16 Total band structure for tetragonal phase by LDA and LDA+U calculation. 93
FIG. 4-4-17 Partial band structure for tetragonal phase by LDA and LDA+U calculation. 93






List of Tables

Table 2-4-1 the calculated value of scattering amplitude is obtained by resonant scattering which is coming from different bands. 19
Table. 4-2-1. Polarization of EPU phase. 62
Table 4-4-1. The net magnetic moment and total energy by LDA calculation. 91
Table 4-4-2. The net magnetic moment and total energy by LDA+U calculation. 91

參考文獻 [1] Georg Bednorz and K. Alex Muller, Nobel lecture, December 8, 1987
[2] M. K. Wu et al., Phy. Rev. Lett. 58, 908 (1987)
[3] The National Synchrotron Radiation Research Center, NSRRC, web site.
[4] R. Shankar, “Principles of Quantum Mechanics”, Kluwer Academic 2nd edition (1994)
[5] M. Blume et al., Phys. Rev. B 37, 1779 (1988)
[6] David T. Attwood, “Soft X-Rays and Extreme Ultraviolet Radiation:Principles and applications”, Cambridge University (1999)
[7] J. D. Jackson, “Classical Electrodynamics”, John Wiley (1998)
[8] C.K. Chen,Master Thesis, National Tsing Hua University (2008)
[9] J. P. Hannon et al., Phys. Rev. Lett. 61, 1245 (1988)
[10] M. C. Payne, M. P. Teter, et al., "Iterative minimization techniques for ab initio total-energy calculations : molecular dynamics and conjugate gradients', Reviews of Modern Physics, V.64 N.4, 1045 (1992)
[11] Michael Soringborg, "Density-Functional Methods in Chemistry and Material Science", Chichester : Wiley, Chapter 1 (1997)
[12] P. Hohenberg, W. Kohn, Physical Review, V.136 N.3B, B864 (1964)
[13] W. Kohn, L. J. Sham, Physical Review, V.140 N.4A, A1133 (1965)
[14] P.A. Lee, Naoto Nagaosa, and Xiao-GangWen, Rev. Mod. Phys. 78, 17 (2006)
[15] J. M. Tranquada et. al., Nature (London) 375, 561 (1995).
[16] G. Ghiringhelli et. al., Science 337, 821 (2012).
[17] J. M. Tranquada, G. D. Gu, M. Hcker, et. al., Phys. Rev. B 78, 174529 (2008).
[18] S. A. Kivelson et. al., Rev. Mod. Phys. 75, 1201 (2003).
[19] E. Fradkin et al., Ann. Rev. Cond. Mat. Phys. 1, 153 (2010).
[20] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature (London) 393, 550 (1998).
[21] M. Vojta, Adv. Phys. 58, 699 (2009).
[22] P. G. Freeman et al., Phys. Rev. B 70, 024413 (2004).
[23] S. H. Lee, and S-W. Cheong, Phys. Rev. Lett. 79, 2514 (1997).
[24] S. Anissimova et al., Nature Commun. 5, 3467 (2014).
[25] S. H. Lee et al., Phys. Rev. Lett. 88, 126401 (2002).
[26] S. Yamamoto et al., Phys. Rev. B 76, 165114(2007)
[27] C. H. Du et al., Phys. Rev. Lett. 84, 3911 (2000)
[28] M. Hucker, M. V. Zimmermann, and G. D. Gu, Phys. Rev. B 74, 085112 (2006)
[29] S. Anissimova et al., Nature Commun. 5, 3467 (2014).
[30] S. H. Lee et al., Phys. Rev. Lett. 88, 126401 (2002).
[31] A. M. Milinda Abeykoon et al., Phys. Rev. Lett. 111, 096404 (2013).
[32] E. P. Rosenthal et al., Nature Phys. 10, 225 (2014).
[33] A. P. Ramirez et al., Phys. Rev. Lett. 76, 447 (1996).
[34] R. Kajimoto et al., Phys. Rev. B 64, 144432 (2001).
[35] H. Yoshizawa et al., Phys. Rev. B 61, R854(R) (2000).
[36] K. Ishizaka et al., Phys. Rev. Lett. 92, 196404 (2004).
[37] J. Li, Y. Zhu et al., Phys. Rev. B 67, 012404 (2003).
[38] J. Lloyd-Hughes et al., Phys. Rev. B 77, 195114 (2008).
[39] W. S. Lee et al., Nature Commun. 3, 383 (2012).
[40] A. T. Boothroyd et al., Nature (London) 471, 341 (2011).
[41] T. Lancaster et al., Phys. Rev. B 89, 020405 (2014).
[42] M. Reehuis et. al. Phy. Rev. B 85, 184109 (2012)
[43] K. S. Aleksandrov, and V. V. Beznosikov, Physics of the Solid State 39, 695 (1997).
[44] Y. Takeda, K. Kanno, O. Yamamoto, M. Takano, N. Nakayama, and Y. Bando, J. of Solid State Chemistry 63, 237 (1986).
[45] A. Lebon et. al. Phy. Rev. Lett. 92, 037202 (2004)
[46] Wen Lai Huang et. al. J. Chem. Theory Comput. 2009, 5, 2787–2797
[47] S. Srinath and M. Mahes Kumar, Phy. Rev. B 72, 054425 (2005)
[48] NSRRC BL05B3 User's guide
[49] J. P. Hodges, S. Short, and J. D. Jorgensen, Journal od Solid State Chemistry 151, 190-209 (2000)
[50] P. Adler et. al. Phy. Rev. B 73, 094451 (2006)
[51] Jon P. Wright et. al. Phy. Rev. B 66, 214422 (2002)
[52] S. B. Wilkins et. al. Phy. Rev. Lett. 91, 167205 (2003)
[53] K. Nakamura et. al. Phy. Rev. B 60, 2425 (1999)
[54] Javier Herrero-Martin et. al. Phy. Rev. B 79, 054121 (2009)
[55] I.R. Shein et. al. Journal of Physics and Chemistry of Solids 67 (2006) 1436–1439
[56] Wen Lai Huang and Qingshan Zhu, J. Chem. Theory Comput. 2009, 5, 2787–2797
[57] Darrell W. Osborne et. al., THE REVIEW OF SCIENTIFIC INSTRUMENTS, V.38 N.2 159-168 (1967)
[58] Wen-Jye Jang and Humihiko Takei, Japanese Journal of Applied Physics, V. 30 N. 2 251-257 (1991)
[59] B. Barbiellini et al. Phy. Rev. B 92, 155119 (2015)
[60] O Bunău and Y Joly J. Phys.: Condens. Matter 21 (2009) 345501
[61] Parr, Robert G and Yang, Weitao Density-Functional Theory of Atoms and Molecules. Oxford : Oxford University Press (1994)
[62] Dirac, P. A. M. "Note on exchange phenomena in the Thomas-Fermi Atom". Proc. Cambridge Phil. Roy. Soc. 26 (3) : 376-385 (1930)
[63] F. Bloch Z., Physik 57, 549 (1929)
[64] M. Born and J. Robert Oppenheimer, Annalen der Physik 84, 457 (1927)
[65] Vladimir I. Anisimov, F. Aryasetiawan and A. I. Lichtenstein, J. Phys. Condensed Matter 9, 767 (1997)
[66] Li, Qi-Zheng, PHD Thesis, TamKang University (2007)
[67] C. Schuβler-Langeheine et al., Phys. Rev. Lett. 95, 156402 (2005)
[68] P. D. Hatton et al., J. Magn. Magn. Mater. 290-291 (2005)
[69] Paul Freeman, Magnetism and the Magnetic Excitations Charge Ordered La2-xSrxNiO4+δ , University College Trinity Term (2005)
[70] A. Sahiner et al., Phys. Rev. B 51, 5879 (1995)
[71] David T. Attwood, "Soft X-Rays and Extreme Ultraviolet Radiation : Principles and applications", Cambridge University (1999)
[72] R. Shankar, "Principles of Quantum Mechanics", Kluwer Academic 2nd edition (1994)
[73] R. Vidya, P. Ravindran, H. Fjellvag, and A. Kjekshus, Phys. Rev. B 74, 054422 (2006)
[74] S. Srinath, M. Mahesh Kumar, M. L. Post, and H. Srikanth1, Phys. Rev. B 72, 054425 (2005)
[75] Y.M. Zhaoa, P.F. Zhou, Journal of Magnetism and Magnetic Materials, 281, 214 (2004)
[76] E. K. Hemery, G. V. M. Williams, and H. J. Trodahl, Phys. Rev. B 75, 092403 (2007)
[77] A. Maljuk, J. Strempfer, C. Ulrich, A. Lebon, C.T. Lin, Journal of Crystal Growth, 257, 427 (2003)
[78] C. Kittle, "Introduction to Solid State Physics", John Wiley 8th edition (2005)
[79] Y. Takeda, K. Kanno, T. Takada, and O. Yamamoto, Journal of Solid State Chemistry, 63, 237 (1986)
[80] National Center for High-performance Computing, NCHC, web site.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-01-13公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-01-13起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信 dss@mail.tku.edu.tw