§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0908201821331800
DOI 10.6846/TKU.2018.00275
論文名稱(中文) 數位化馬達轉速控制應用於電焊機之送絲機構
論文名稱(英文) Digital Motor Speed Control Applied to Wire Feeder of Welding Machine
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 傅道格
研究生(英文) Dao-Ge Fu
學號 605460061
學位類別 碩士
語言別 英文
第二語言別
口試日期 2018-07-16
論文頁數 66頁
口試委員 指導教授 - 劉寅春
委員 - 蕭德仁
委員 - 林偉正
關鍵字(中) 數位訊號處理(DSP)
PID 控制器
馬達轉速控制
關鍵字(英) Digital signal process (DSP)
PID controller
Motor speed control
第三語言關鍵字
學科別分類
中文摘要
近幾年來,由於電力電子、數位訊號處理(DSP)等控制技術與近代
控制理論的快速發展,數位化馬達驅動已成為現代伺服技術發展的主
流。具有高速運算能力的數位訊號處理控制平台(DSP),以廣泛應用於
各種影像處理、語音處理、數位通訊以及伺服系統。本篇論文題出了數
位化馬達控制應用於電焊機之送絲機構,主要使用美國德州儀器公司所
開發之定點式DSP 晶片TMS320F2808 結合馬唯科技所開發之DSP 控制板作為數位化馬達控制的主要控制平台,在此平台上完成馬達轉速回授、PWM 生成以及設計控制轉速之PID 控制器。使用此方法之優點在於過去馬達轉速控制主要利用電壓對應轉速之查表方式來得知目前轉速,因此當負載改變時,也就是焊材之不同、焊槍管路之蜷曲,輸出之電流也會跟著改變,導致轉速出現誤差,因此本論文將馬達轉速控制數位化,利用馬達本身之編碼器,回授當下馬達轉速,成功克服此一問題。
英文摘要
In recent years, with the rapid development of control technologies such as power electronics, digital signal processing (DSP) and modern control theories, digital motor drive has become the mainstream of modern servo technology. Digital signal processing control platform (DSP) with high-speed computing capability is widely used in various image processing, speech processing, digital communications and servo system. This paper questions the digital motor control is applied to welding wire feeding mechanism,the main use American Texas instruments TMS320F2808 fixed-point type DSP chip development by combining Ma Wei technology development of DSP control board as the main control platform of digital motor control, in this platform for motor speed feedback, PWM generation and control the speed of PID controller is designed. The advantages of using this method is in the motor speed control in the past was mainly done using voltage corresponding to the rotating speed of the look-up table method to know the current speed, therefore, when the load changes, that is, different welding materials, welding torch pipe curled up, the current will also follow the change of output and lead to error of
speed, so this paper will motor speed control digital, using the encoder of the motor itself, feedback the motor speed, successfully overcome the problem.
第三語言摘要
論文目次
Acknowledgement I
Abstract in Chinese II
Abstract in English III
Contents IV
List of Figures VI
List of Tables X
1 Introduction 1
1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Wire Feeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Motor Control System 8
2.1 DSP Control Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 H-bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Rotary Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Control Strategy 16
3.1 DSP Control Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Experiment Result 20
4.1 Experiment Environment 1 . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Experiment Environment 2 . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Experiment Environment 3 . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Conclusions and Future Works 61
References 63
Appendix A PID Control 65
Appendix B Control Logic 66


List of Figures
1.1 F2808 chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Manual welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Automatic wire feeder . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Hardware environment diagram . . . . . . . . . . . . . . . . . . . . . . 7
2.1 system architecture diagram . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 DSP control board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 H-bridge forward voltage circuit . . . . . . . . . . . . . . . . . . . . . . 10
2.4 H-bridge reverse voltage circuit . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Motor brake circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Overcurrent protection circuit . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Motor brake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Motor stop freely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 The rotary encoder diagram . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 The rotary encoder feedback diagram . . . . . . . . . . . . . . . . . . . 15
3.1 Hardware architecture diagram . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Control flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 PID controller architecture . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Experimental environment 1 . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Experimental environment 2 . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Experimental environment 3 . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 ref=1.5k hz(6.87m/min)motor speed feedback . . . . . . . . . . . . . . 25
4.5 ref=1.5k hz(6.87m/min)error . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 ref=1.5k hz(6.87m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7 ref=2k hz(9.16m/min)motor speed feedback . . . . . . . . . . . . . . . 27
4.8 ref=2k hz(9.16m/min)error . . . . . . . . . . . . . . . . . . . . . . . . 27
4.9 ref=2k hz(9.16m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.10 ref=2.5k hz(11.45m/min)motor speed feedback . . . . . . . . . . . . . 29
4.11 ref=2.5k hz(11.45m/min)error . . . . . . . . . . . . . . . . . . . . . . . 29
4.12 ref=2.5k hz(11.45m/min)duty . . . . . . . . . . . . . . . . . . . . . . . 30
4.13 ref=3k hz(13.75m/min)motor speed feedback . . . . . . . . . . . . . . 31
4.14 ref=3k hz(13.75m/min)error . . . . . . . . . . . . . . . . . . . . . . . . 31
4.15 ref=3k hz(13.75m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . 32
4.16 ref=3.5k hz(16.04m/min)motor speed feedback . . . . . . . . . . . . . 33
4.17 ref=3.5k hz(16.04m/min)error . . . . . . . . . . . . . . . . . . . . . . . 33
4.18 ref=3.5k hz(16.04m/min)duty . . . . . . . . . . . . . . . . . . . . . . . 34
4.19 ref=4k hz(18.33m/min)motor speed feedback . . . . . . . . . . . . . . 35
4.20 ref=4k hz(18.33m/min)error . . . . . . . . . . . . . . . . . . . . . . . . 35
4.21 ref=4k hz(18.33m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . 36
4.22 ref=1.5k hz(6.87m/min)motor speed feedback . . . . . . . . . . . . . . 37
4.23 ref=1.5k hz(6.87m/min)error . . . . . . . . . . . . . . . . . . . . . . . 37
4.24 ref=1.5k hz(6.87m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . 38
4.25 ref=2k hz(9.16m/min)motor speed feedback . . . . . . . . . . . . . . . 39
4.26 ref=2k hz(9.16m/min)error . . . . . . . . . . . . . . . . . . . . . . . . 39
4.27 ref=2k hz(9.16m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.28 ref=2.5k hz(11.45m/min)motor speed feedback . . . . . . . . . . . . . 41
4.29 ref=2.5k hz(11.45m/min)error . . . . . . . . . . . . . . . . . . . . . . . 41
4.30 ref=2.5k hz(11.45m/min)duty . . . . . . . . . . . . . . . . . . . . . . . 42
4.31 ref=3k hz(13.75m/min)motor speed feedback . . . . . . . . . . . . . . 43
4.32 ref=3k hz(13.75m/min)error . . . . . . . . . . . . . . . . . . . . . . . . 43
4.33 ref=3k hz(13.75m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . 44
4.34 ref=3.5k hz(16.04m/min)motor speed feedback . . . . . . . . . . . . . 45
4.35 ref=3.5k hz(16.04m/min)error . . . . . . . . . . . . . . . . . . . . . . . 45
4.36 ref=3.5k hz(16.04m/min)duty . . . . . . . . . . . . . . . . . . . . . . . 46
4.37 ref=4k hz(18.33m/min)motor speed feedback . . . . . . . . . . . . . . 47
4.38 ref=4k hz(18.33m/min)error . . . . . . . . . . . . . . . . . . . . . . . . 47
4.39 ref=4k hz(18.33m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . 48
4.40 ref=1.5k hz(6.87m/min)motor speed feedback . . . . . . . . . . . . . . 49
4.41 ref=1.5k hz(6.87m/min)error . . . . . . . . . . . . . . . . . . . . . . . 49
4.42 ref=1.5k hz(6.87m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . 50
4.43 ref=2k hz(9.16m/min)motor speed feedback . . . . . . . . . . . . . . . 51
4.44 ref=2k hz(9.16m/min)error . . . . . . . . . . . . . . . . . . . . . . . . 51
4.45 ref=2k hz(9.16m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.46 ref=2.5k hz(11.45m/min)motor speed feedback . . . . . . . . . . . . . 53
4.47 ref=2.5k hz(11.45m/min)error . . . . . . . . . . . . . . . . . . . . . . . 53
4.48 ref=2.5k hz(11.45m/min)duty . . . . . . . . . . . . . . . . . . . . . . . 54
4.49 ref=3k hz(13.75m/min)motor speed feedback . . . . . . . . . . . . . . 55
4.50 ref=3k hz(13.75m/min)error . . . . . . . . . . . . . . . . . . . . . . . . 55
4.51 ref=3k hz(13.75m/min)duty . . . . . . . . . . . . . . . . . . . . . . . . 56
4.52 ref=3.5k hz(16.04m/min)motor speed feedback . . . . . . . . . . . . . 57
4.53 ref=3.5k hz(16.04m/min)error . . . . . . . . . . . . . . . . . . . . . . . 57
4.54 ref=3.5k hz(16.04m/min)duty . . . . . . . . . . . . . . . . . . . . . . . 58
4.55 ref=4k hz(18.33m/min)motor speed feedback(Can’t reach the target speed) 59
4.56 ref=4k hz(18.33m/min)error(Can’t reach the target speed) . . . . . . . 59
4.57 ref=4k hz(18.33m/min)duty(Can’t reach the target speed) . . . . . . . 60


List of Tables
2.1 H-bridge working status . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Comparison of duty under different experimental environments and rotating speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
參考文獻
[1] D. S. Spirov and N. G. Komitov, “Dsp based induction motor drive with parallel quasi-resonant converter,” in 2016 XXV International Scientific Conference Electronics (ET), Sept 2016, pp. 1–4.
[2] H. Wang, S. Wang, W. Zhang, L. Xie, X. Yang, L. Vladareanu, and R. Munteanu, “Fuzzy controller design of the wire feeder of invasive vascular interventional
surgery robot,” in 2015 International Conference on Advanced Mechatronic Systems (ICAMechS), Aug 2015, pp. 30–35.
[3] F. J. Lin, P. H. Chou, C. S. Chen, and Y. S. Lin, “Dsp-based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode
control,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1061–1073, Feb 2012.
[4] N. Matsui and H. Ohashi, “Dsp-based adaptive control of a brushless motor,” IEEE Transactions on Industry Applications, vol. 28, no. 2, pp. 448–454, Mar 1992.
[5] Z. Hongbing, H. Shisheng, and Z. Yiqing, “Fuzzy control of wire feeder in pulse welding system,” in 2007 8th International Conference on Electronic Measurement
and Instruments, Aug 2007, pp. 3–670–3–674.
[6] V. Gupta, “Working and analysis of the h - bridge motor driver circuit designed for wheeled mobile robots,” in 2010 2nd International Conference on Advanced
Computer Control, vol. 3, March 2010, pp. 441–444.
[7] T. D. S. Moraes, N. K. Nguyen, E. Semail, F. Meinguet, and M. Guerin, “Dualmultiphase motor drives for fault-tolerant applications: Power electronic structures and control strategies,” IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 572–580, Jan 2018.
[8] A. Masi, M. Butcher, R. Losito, and R. Picatoste, “Dsp based smart sensorless stepping motor driver for lhc collimators,” IEEE Transactions on Nuclear Science,
vol. 60, no. 5, pp. 3514–3520, Oct 2013.
[9] C. W. Tao, C. M. Wang, and C. W. Chang, “A design of a dc-ac inverter using a modified zvs-pwm auxiliary commutation pole and a dsp-based pid-like fuzzy control,” IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 397–405, Jan 2016.
[10] A. Rubaai, M. J. Castro-Sitiriche, and A. R. Ofoli, “Dsp-based laboratory implementation of hybrid fuzzy-pid controller using genetic optimization for highperformance
motor drives,” IEEE Transactions on Industry Applications, vol. 44, no. 6, pp. 1977–1986, Nov 2008.
[11] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive pid speed control design for permanent magnet synchronous motor drives,” IEEE Transactions
on Power Electronics, vol. 30, no. 2, pp. 900–908, Feb 2015.
[12] H. H. Choi, H. M. Yun, and Y. Kim, “Implementation of evolutionary fuzzy pid speed controller for pm synchronous motor,” IEEE Transactions on Industrial
Informatics, vol. 11, no. 2, pp. 540–547, April 2015.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信