§ 瀏覽學位論文書目資料
  
系統識別號 U0002-0908201116024400
DOI 10.6846/TKU.2011.00306
論文名稱(中文) 胞外高分子物質對枯草桿菌之掃流微過濾的影響
論文名稱(英文) Effects of extracellular polymeric substances on the cross-flow microfiltration of bacillus subtilis
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 蔡明修
研究生(英文) Ming-Hsiu Tsai
學號 698400099
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2011-07-12
論文頁數 85頁
口試委員 指導教授 - 黃國楨
委員 - 李篤中
委員 - 莊清榮
委員 - 鄭東文
委員 - 童國倫
關鍵字(中) 枯草桿菌
微過濾
掃流過濾
胞外聚合物
阻擋率
關鍵字(英) Bacillus subtilis
Microfiltration
Cross-flow filtration
Extracellular polymeric substances
Rejection
第三語言關鍵字
學科別分類
中文摘要
本研究旨在探討枯草桿菌培養液中胞外高分子物質與操作條件對掃流微過濾性能之影響。實驗採用平板式掃流微過濾系統,使用平均孔徑為0.22 μm的聚二氟乙烯(PVDF)濾膜,過濾不同培養天數的枯草桿菌培養液,探討透膜壓差、掃流速度對過濾速度、過濾阻力、蛋白質和多醣體的阻擋率、濾餅性質等之影響。
研究結果發現,培養時間越久的菌體尺寸越大,從培養1天平均尺寸200 μm增加到5天的229 μm;胞外聚合物的濃度亦會隨培養時間而增加,更容易在膜面形成積垢,造成過濾阻力上升。經由過濾阻力分析,可得知濾餅阻力佔總阻力的90%以上;將離心後之上層澄清液與原菌液之過濾速度做比較,發現原菌液中的膠羽是造成過濾初期濾速急速下降的原因。膠羽粒子容易在膜表面形成積垢,而胞外聚合物則會在積垢的縫隙中進行填補,使得阻力增加、濾速降低。研究結果亦顯示,濾速會隨掃流速度與透膜壓差之增加而增加,當掃流速度由0.1增加至0.3 m/s,濾速最多增加1.7倍,而透膜壓差由20增加至120 kPa,濾速最多增加1.2倍;然而濾速卻隨培養天數之增加而減少,當掃流速度與透膜壓差固定時,培養時間由1天增加至5天,濾速皆會降低60%。此外,培養天數增加,胞外聚合物濃度的增加會導致濾餅更緻密,造成多醣體與蛋白質阻擋率的上升。多醣體與蛋白質的阻擋率皆會隨掃流速度之增加而增加,掃流速度由0.1增加至0.3 m/s,二者的阻擋率皆增加1.4倍,而蛋白質與多醣體的阻擋率受透膜壓差的影響不大。由枯草桿菌所形成的濾餅具高壓縮性,雖然壓縮係數隨掃流速度之增加並無明顯變化,然而卻隨透膜壓差之增加而增加,也隨培養天數之增加而增加,培養時間由1天增加至5天,濾餅壓縮係數會由0.60增加至0.88。
英文摘要
The effects of extracellular polymer substances (EPS) in Bacillus subtilis broth and operating conditions on the performance of cross-flow microfiltration are studied. A two-parallel-plate cross-flow system is used in experiments, and a 0.22 μm membrane made of polyvinylidene fluoride is used as the filter medium. The effects of culture time, transmembrane pressure and cross-flow velocity on the filtration rate, filtration resistance, rejections of proteins and polysaccharides and cake characteristics are discussed. 
The results show that a larger size of bacteria is observed for longer culture time, the mean size increases from 200 to 229 μm when the culture time increases from 1 to 5 days. An increase in culture time also leads to higher EPS concentration and higher filtration resistance caused by the fouling on the membrane surface. Analysis of filtration resistance indicates that the cake resistance is over 90% of the overall filtration resistance. Comparing the filtration data of the upper supernatant after centrifugation and the original Bacillus subtilis broth, the rapid decline in filtration rate at the early periods of filtration is attributed to the floc existence in the Bacillus subtilis broth.
The packing of EPS in the filter cake which is formed by the floc causes to significant increase in filtration resistance and decrease in filtration rate. The filtration rate increases with increasing cross-flow velocity or transmembrane pressure. The filtration rate increases 1.7-fold when cross-flow velocity increases from 0.1 to 0.3 m/s and increases 1.2 times if transmembrane pressure increases from 20 to 120 kPa. However, the filtration rate decreases with increasing culture time. the filtration rate decreases 60% when culture time increases from 1 to 5 days under the same cross-flow velocity and transmembrane pressure. Furthermore, the increase in EPS concentration for longer culture time results in more compact cake, as a result, in higher rejections of polysaccharides and proteins. The rejections of polysaccharides and proteins also increase with increasing cross-flow velocity. Both the rejections increase 1.4-fold when cross-flow velocity increases from 0.1 to 0.3 m/s. However, the transmembrane pressure has a trivial effect on the rejections of proteins and polysaccharides. The cake formed by Bacillus subtilis exhibits highly compressible behavior. Although the effect of cross-flow velocity on the cake compressibility factor is not obvious, the cake compressibility increases significantly with increasing transmembrane pressure and culture time. The cake compressibility factor increases from the 0.60 to 0.88 when the culture time increases from 1 to 5 days.
第三語言摘要
論文目次
中文摘要............................................... Ⅰ
英文摘要............................................... Ⅱ
目 錄.................................................. Ⅳ
圖目錄................................................. Ⅶ
表目錄................................................. Ⅹ

第一章	緒論.............................................. 1
1-1	前言........................................... 1
1-2	實驗動機與目的................................  5
第二章	文獻回顧.......................................... 6
2-1	可變形粒子之特性................................6
2-2	濾餅性質........................................8
2-3	掃流為過濾之特性...............................10
2-4	微生物過濾之特性...............................12
2-5	蛋白質過濾之特性...............................15
2-6	多醣體過濾之特性...............................17
2-7	聚集團內含水率.................................19
第三章	理論............................................. 22
3-1	阻力串聯模式...................................22
3-2	濾餅的過濾比阻、孔隙度和固體壓縮壓力之關係.....22
3-3	阻擋率的定義...................................23
第四章	實驗裝置與方法....................................24
4-1	掃流過濾實驗裝置...............................24
4-2	實驗物料與濾膜.................................25
4-3	分析儀器.......................................26
4-4	實驗步驟.......................................28
4-4-1	 懸浮液與緩衝液之配法........................28
4-4-2	 掃流微過濾之實驗步驟........................28
4-5	胞外聚合物分析.................................30
4-5-1	 蛋白質濃度之量測方法........................30
4-5-2	 葡聚醣濃度之測量方法........................30
第五章	結果與討論........................................32
5-1	枯草桿菌之特性.................................32
5-1-1	 枯草桿菌之生長曲線..........................32
5-1-2	 枯草桿菌液過濾膜積垢之成分..................36
5-2	枯草桿菌之掃流過濾特性.........................42
5-2-1	 離心處理對過濾之影響........................42
5-2-2	 濃度對過濾阻力之影響........................48
5-2-3	 透膜壓差對過濾阻力之影響....................51
5-2-4	 掃流速度的改變對過濾之影響..................56
5-2-5	 蛋白質與多醣體之阻擋率分析..................59
5-3	薄膜結垢分析...................................64
5-3-1	 掃描式電子顯微鏡之分析......................64
5-3-2	 共軛焦雷射顯微鏡之分析......................69
第六章	結論..............................................72
符號說明................................................74
參考文獻................................................76
附錄....................................................82
附錄A 實驗物料與濾膜種類............................82
附錄B 緩衝溶液的配置................................83
附錄C 懸浮液中蛋白質和多醣體濃度與培養時間圖........84

 
圖目錄
第一章
Fig.1- 1 Schematics of cross-flow filtration and dead-end filtration. (Lu,2004)	2
Fig.1- 2 Classification of membrane filtration process. (Wang,2004)	3
第二章
Fig.2- 1 An idealized plot of fraction density versus pressure for particle compaction showing the four overlapping stages. (German,1989)	7
Fig.2- 2 A conceptual visualization of the moisture distribution in sludge	20
Fig.2- 3 The Drying Apparatus(Tsang & Vesilind,1990)	21
Fig.2- 4 Drying curve for identifying four different types of water in sludge(Tsang & Vesilind,1990).	21
第四章
Fig.4- 1 The schematic diagram of cross-flow microfiltration system.	25
Fig.4- 2 The absorbance vs. concentration of BSA.	31
Fig.4- 3 The absorbance vs. concentration of Glucose.	31
第五章
Fig.5- 1 The microscope of Bacillus subtilis suspension.(900X,1day)	34
Fig.5- 2 The microscope of Bacillus subtilis suspension.(900X,3day)	34
Fig.5- 3The microscope of Bacillus subtilis suspension.(3600X,1day)	35
Fig.5- 4 The microscope of Bacillus subtilis suspension.(3600X,3day)	35
Fig.5- 5 Growth curve of Bacillus subtilis.	36
Fig.5- 6 The FTIR analysis of polysaccharide and protein under different operation.	40
Fig.5- 7 Size distributions of Bacillus subtilis under original broths and after centrifugation upperlayers by culture times.	41
Fig.5- 8 Concentration of samples under deferent preparations by culture times.	42
Fig.5- 9 Filtration fluxes of different condition under filtration times.	45
Fig.5- 10 Pseudo steady state filtration fluxes of different condition under culture times.	46
Fig.5- 11 The view of membrane surface after original broth filtration by SEM.(10kx,3day)	46
Fig.5- 12 The view of membrane surface after centrifugation upper layer filtration by SEM.(10kx,3day)	47
Fig.5- 13 The side view of membrane surface after original broth filtration by SEM.(10kx,3day)	47
Fig.5- 14 The side view of membrane surface after centrifugation upper layer filtration by SEM.(30kx,3day)	48
Fig.5- 15 The resistances change during cross-flow microfiltration under cell concentrations.	50
Fig.5- 16 The microscope of original broth filtrate.(3600X,1day)	50
Fig.5- 17 The specific filtration resistance change during cross-flow under culture times.	51
Fig.5- 18 The filtration flux change during cross-flow microfiltration under transmembrane pressures by culture times.	53
Fig.5- 19 The resistance of cake change during cross-flow microfiltration under transmembrane pressures by culture times.	54
Fig.5- 20 The cake masses change during cross-flow microfiltration under transmembrane pressures by culture times.	54
Fig.5- 21 The specific filtration resistance change during cross-flow microfiltration under transmembrane pressures by culture times.	55
Fig.5- 22 The 1- average porosity change during cross-flow microfiltration under transmembrane pressures by culture times.	55
Fig.5- 23 The filtration flux change during cross-flow microfiltration under cross-flow velocities by culture times.	57
Fig.5- 24 The resistance of cake change during cross-flow microfiltration under cross-flow velocities by culture times.	57
Fig.5- 25 The specific filtration resistance change during cross-flow microfiltration under cross-flow velocities by culture times.	58
Fig.5- 26 The porosity change during cross-flow microfiltration under cross-flow velocities by culture times.	58
Fig.5- 27 The rejection change during cross-flow microfiltration under transmembrane pressures by culture times.	61
Fig.5- 28 The rejection change during cross-flow microfiltration under cross-flow velocities by culture times.	62
Fig.5- 29 The mass fluxes change during cross-flow microfiltration under transmembrane pressures by culture times.	63
Fig.5- 30 The side view of clear membrane surface by SEM.(1kx)	65
Fig.5- 31 The side view of clear membrane surface by SEM.(10kx)	65
Fig.5- 32 The side view of membrane surface after original broth filtration by SEM.(10kx,1day)	66
Fig.5- 33 The side view of membrane surface after original broth filtration by SEM.(10kx,3day)	66
Fig.5- 34 The side view of membrane surface after original broth filtration by SEM.(10kx,5day)	67
Fig.5- 35 The top view of clear membrane surface by SEM.(10kx)	67
Fig.5- 36 The top view of membrane surface after original broth filtration by SEM.(10kx,1day)	68
Fig.5- 37 The top view of membrane surface after original broth filtration by SEM.(10kx,3day)	68
Fig.5- 38The top view of membrane surface after original broth filtration by SEM.(10kx,5day)	69
Fig.5- 39 The 2D image of membrane surface after O.D.660=0.285 suspension filtration by CSLM.(polysaccharide,operation depth:33 μm)	70
Fig.5- 40 The 2D image of membrane surface after O.D.660=0.285 suspension filtration by CSLM.(protein,operation depth: 33 μm)	71
Fig.5- 41 The 3D image of membrane surface after O.D.660=0.285 suspension filtration by CSLM.(protein& polysaccharide)	71
附錄
Fig.A- 1 Durapore membrane.	83
Fig.C- 1 The concentrations of protein and polysaccharide changes during different culture times of original broth.	84
Fig.C- 2 The concentrations of protein and polysaccharide changes during different culture times of supernatant.	85
 
表目錄
第四章
Table4- 1 Component of the suspension	26
Table4- 2 The operating conditions used in this study.	29
第五章
Table5- 1 The concentrations of proteins and polysaccharides in the original broths under various culture times.	39
Table5- 2 The concentrations of proteins and polysaccharides in upperlayer (supernatant)after centrifugation under various culture times.	39
參考文獻
Bura, R. , M. Cheung, B. Liao, J. Finlayson, B.C. Lee, I.G. Droppo, G.G. Leppard , S.N. Liss,” Composition of extracellular polymeric substances in the activated sludge floc matrix”, Water Sci. Technol., 37, 325-333(1998)
Dizge, N., G. Soydemir, A. Karagunduz, B. Keskinler,” Influence of type and pore size of membranes on cross flow microfiltration of biological suspension”, J. Membr. Sci., 366 (1-2), 278-285 (2011)
German,R. M., “Particle Packing Characteristics”, Chap. 9, Metal Powder Industries Federation, Princeton, New Jersey, 219-252 (1989).
Güell, C. and R. H. Davis, “Membrane fouling during microfiltration of protein mixtures”, J. Membr. Sci., 119, (2), 269-284 (1996). 
Güell, C., P. Czekaj, and R. H. Davis, “Microfiltration of protein mixtures and the effects of yeast on membrane fouling”, J. Membr. Sci., 155, (1), 113-122 (1999). 
Hodgson, P. A. Leslie, G. L. Schneider, R. P. Fane, A. G. Fell, C. J. D., K. C. Marshall, “Cake resistance and solute rejection inbacterial microfiltration: The role of the extracellular matrix.”, J. Membr. Sci., 79, 35-53 (1993).
Huisman, I. H., P. Prádanos, A. Hernández, “The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration”, J. Membr. Sci., 179, (1-2), 79-90 (2000). 
Hwang, K. J., Y. H. Cheng, “The role of dynamic membrane in cross-flow microfiltration of macromolecules”, Sep. Sci. Technol., 38, (4), 779-795 (2003). 
Hwang, K. J., Y. H. Cheng, K. L. Tung, “Modeling of cross-flow microfiltration of fine particle/macromolecule binary suspension”, J. Chem. Eng. Jpn., 36, (12), 1488-1497 (2003). 
Hwang, K. J., H. C. Hwang, “The purification of protein in cross-flow microfiltration of microbe/protein mixtures”, Sep. Purif. Technol., 51, (3), 416-423 (2006). 
Hwang, K. J., P.-Y. Sz, ” Membrane fouling mechanism and concentration effect in cross-flow microfiltration of BSA/dextran mixtures”, Chem. Eng. J., 166, (2), 669-677 (2011).
Jiao, D., M.M. Sharma, ” Mechanism of Cake Buildup in Crossflow Filtration of Colloidal Suspensions”,J. Colloid Sci., 162 (2), 454-462(1994).
Juang, R.S., H.L. Chen, Y.S. Chen, “Membrane fouling and resistance analysis in dead-end ultrafiltration of Bacillus subtilis fermentation broths”, Sep. Purif. Technol., 63, 531-538 (2008)
Kanani, D. M., X. Sun, R. Ghosh, “Reversible and irreversible membrane fouling during in-line microfiltration of concentrated protein solutions”, J. Membr. Sci., 315, (1-2), 1-10 (2008).
Kelly, S. T.,A. L. Zydney, “Mechanisms for BSA fouling during microfiltration”, J. Membr. Sci., 107, (1-2), 115-127 (1995).
Kim, J. S., C. H. Lee, I. C. Chang, “Effect of Pump Shear on the Performance of a Crossflow Membrane Bioreactor”, Water Res., 35, 2137-2144, (2001).
Kim, M. G., G. Nakhla, “Comparative studies on membrane fouling between two membrane-based biological nutrient removal systems”, J. Membr. Sci. ,331, 91-99 (2009).
Lu, W. M., K. J. Hwang, “Mechanism of Cake Formation in Constant Pressure Filtrations”, Sep. Technol., 3, 122-132 (1993).
Lu, W. M., K. L. Tung, C. H. Pan, C. P. Shih, K. J. Hwang, “Crossflow microfiltration of deformable particles”, J. Membr. Sci., 41-44 (1998).
Meng, F., H. Zhang, F. Yang, Y. Li, J. Xiao, X. Zhang, “Effect of filamentous bacteria on membrane fouling in submerged membrane reactor”, J. Membr. Sci., 272, 161-168 (2006).
Nakamura, K., K. Matsumoto, “Adsorption behavior of BSA in microfiltration with porous glass membrane”, J. Membr. Sci., 145, (1), 119-128 (1998). 
Pan, J. R,, Y. C. Su, C. Huang, H. C. Lee, “Effect of sludge characteristics on membrane fouling in membrane bioreactors”, J. Membr. Sci.,349, 287-294 (2010).
Pollice, A., A. Brookes, B. Jefferson, S. Judd, “Sub-critical flux fouling in membrane bioreactors - a review of recent literature.”, Desalination, 174, 221-230 (2005).
Rezaei, H., F. Z. Ashtiani, A. Fouladitajar,” Effects of operating parameters on fouling mechanism and membrane flux in cross-flow microfiltration of whey”, Desalination, 274 (1-3), 262-271 (2011).
Rojas, M., E. H., R. V. Kaam, S. Schetrite, C. Albasi, “Role and variations of supernatant compounds in submerged membrane bioreactor fouling. ”, Desalination, 179, 95-107 (2005).
Rosenberger, S., M. Kraume, “Filterability of activated sludge in membrane bioreactors.”, Desalination, 146, 373-379 (2002).
Shimizu, Y., M. Rokudai, S. Tohya, E. Kayaware, T. Yazawa, H. Tanaka,  K. Eguchi, “Filtration characteristics of charged alumina membranes for methanogenic waste.”, Chem. Eng. J., 22, 635-641 (1989).
Sorensen, P. B., J. A. Hansen, “Extreme Solid Compressibility in Biological Sludge Dewatering”, Water Sci. Technol., 28(1), 133 (1993).
Susanto, H., M. Ulbricht, “Influence of ultrafiltration membrane characteristics on adsorptive fouling with dextrans”, J. Membr. Sci., 266, (1-2), 132-142 (2005).
Tatara, Y., “Large Deformations of a Rubber Sphere under Diametral Compression-Part 1: Theoretical Analysis of Press Approach, Constant Radius and Lateral Extension”, JSME, Series A, 36(2), 190 (1993). 
Tiller, F.M., S. Haynes, W. M. Lu,” The Role of Porosity in Filtration VII : Effect of Side-Wall Friction in Compression-Permeability Cells. ”, A. I. Ch. E J., 18, 13-20 (1972).
Vernhet, A., M. Moutounet, “Fouling of organic microfiltration membranes by wine constituents: importance, relative impact of wine polysaccharides and polyphenols and incidence of membrane properties”, J. Membr. Sci., 201, (1-2), 103-122 (2002).
Wakeman, R. J., E. S. Tarleton, “Understanding Flux Decline in Crossflow Microfiltration Part I –Effect of particle and Pore Size”, Chem. Eng. Res. Des., 71, 399-410 (1993).
Wang, D. M., Y. L. Lin, W. M. Lu, Y. S. Lin, K. L. Tung, ”Compression and deformation of soft spherical particles”, Chem. Eng. Sci., 60, 195-203 (2008).
Socrates, G.,” Infrared and Raman Characteristic Group Frequencies”, Chapter 23 Biological Molecules-Macromolecules,p333~340, John Wiley & Sons Ltd (2001)
林瑩峰,”環境微生物”,第四章,第127頁,中華民國環境工程學會編印(1999)。
呂維明,”固液過濾技術”,第一章,第7頁,高立圖書有限公司,台北(2004)。
呂維明,”固液過濾技術”,第十五章,第433頁,高立圖書有限公司,台北(2004)。
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信